1
|
Porru M, Brero F, Dìaz-Ufano C, Mariani M, Orsini F, Arosio P, Morales MDP, Lascialfari A. Iron oxide nanospheres: dual functionality as MRI contrast agents and magnetic fluid hyperthermia therapeutics. Dalton Trans 2025. [PMID: 40376782 DOI: 10.1039/d5dt00609k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Magnetic nanoparticles offer the possibility of combining diagnostic and therapeutic purposes within a single nano-object. In this work, we explore two distinct sets of iron oxide-based nanospheres for their application as contrast agents in magnetic resonance imaging and as heating mediators in magnetic fluid hyperthermia. The nanoparticles were produced with the green microwave polyol-assisted method. The nanoparticles in the first set have a mean core diameter of 11 nm and are coated with polyacrylic acid (PAA), carboxymethyl-dextran (CM-D), or dimercaptosuccinic acid (DMSA). The second set has nanoparticles of a mean diameter of 14 nm, which are coated with PAA or CM-D. The longitudinal and transverse 1H-NMR nuclear relaxivities (r1,2) exhibit a field behavior that depends on the particle core size and on the coating. It is shown that the combination of size and coating is relevant to optimize the relaxometric efficiency, with the PAA coating being able to double the r2 efficiency for the smallest size. The heating release was evaluated under various combinations of external alternating magnetic fields, with frequency values ranging from 102.2 kHz to 971.2 kHz and amplitude values ranging from 7 mT to 40 mT. The results indicate that the heating efficiency is independent of the coating for both the 11 and 14 nm particles, while it is significantly higher for the samples of largest size. We conclude that the combination of size and coating (i.e., surface modifications) of the magnetic nanoparticles can play a crucial role in the relaxometric and heating properties of magnetic nanoparticles with core size of <15 nm.
Collapse
Affiliation(s)
- Margherita Porru
- Physics Department, University of Pavia, Via Agostino Bassi 6, 27100 Pavia, Italy.
- National Institute for Nuclear Physics (INFN), Section of Pavia, Italy
| | - Francesca Brero
- Physics Department, University of Pavia, Via Agostino Bassi 6, 27100 Pavia, Italy.
- National Institute for Nuclear Physics (INFN), Section of Pavia, Italy
| | - Carlos Dìaz-Ufano
- Department of Nanoscience and Nanotechnology, Materials Science Institute of Madrid, ICMM-CSIC, 28049 Madrid, Spain
| | - Manuel Mariani
- Physics Department, University of Pavia, Via Agostino Bassi 6, 27100 Pavia, Italy.
- National Institute for Nuclear Physics (INFN), Section of Milano, Italy
| | - Francesco Orsini
- Physics Department, University of Milano, Via Giovanni Celoria, 16 20133 Milano, Italy
- National Institute for Nuclear Physics (INFN), Section of Milano, Italy
| | - Paolo Arosio
- Physics Department, University of Milano, Via Giovanni Celoria, 16 20133 Milano, Italy
- National Institute for Nuclear Physics (INFN), Section of Milano, Italy
| | - Marìa Del Puerto Morales
- Department of Nanoscience and Nanotechnology, Materials Science Institute of Madrid, ICMM-CSIC, 28049 Madrid, Spain
| | - Alessandro Lascialfari
- Physics Department, University of Pavia, Via Agostino Bassi 6, 27100 Pavia, Italy.
- National Institute for Nuclear Physics (INFN), Section of Pavia, Italy
| |
Collapse
|
2
|
Heydari F, Ilosvai ÁM, Kovács N, Máthé D, Kristály F, Daróczi L, Kaleta Z, Viskolcz B, Nagy M, Vanyorek L, Forgách L, Szigeti K. Solvothermal synthesis of polyvinyl pyrrolidone encapsulated, amine-functionalized copper ferrite and its use as a magnetic resonance imaging contrast agent. PLoS One 2025; 20:e0316221. [PMID: 39913433 PMCID: PMC11801609 DOI: 10.1371/journal.pone.0316221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/07/2024] [Indexed: 02/09/2025] Open
Abstract
Copper ferrite nanoparticles for use as MRI contrast agents were synthesized using two different methods. A novel microwave-assisted (MW) solvothermal method was developed and compared to a conventional 12-hour synthesis (Reflux) as an eco-friendlier approach. This innovative synthesis method successfully produced nanoparticles with enhanced properties compared to traditional ferrite materials. The nanoparticles' morphological and magnetic properties were evaluated and tested in in-vivo MRI studies. The results revealed both similarities and differences between the amine-functionalized copper ferrite nanoparticles. FTIR, XRD, HRTEM, and VSM analyses indicated improved properties in the CuFe2O4-NH2 MW particles, while AFM confirmed successful polymer encapsulation of the nanoparticles. For the CuFe2O4-NH2 MW sample, 76.8 wt% copper ferrite and 23.2 wt% magnetite were detected, with crystallite sizes of 8 ± 2 nm and 13 ± 2 nm, respectively. In the CuFe2O4-NH2 Refl. sample, in addition to these two magnetic phases, larger copper particles (31.6 wt%) were also formed. DLS analysis demonstrated that the CuFe2O4-NH2 MW sample exhibited excellent colloidal stability, maintaining its size distribution in aqueous media for 3 hours without aggregation, unlike the CuFe2O4-NH2 Refl. sample, which showed slight aggregation. The CuFe2O4-NH2 MW sample displayed superparamagnetic behavior (Ms: 15 emu/g, Mr: 0 emu/g, Hc: 0 Oe), while the CuFe2O4-NH2 Refl. sample exhibited ferromagnetic characteristics (Ms: 40 emu/g, Mr: 1.35 emu/g, Hc: 30 Oe). Both samples produced comparable results during in vitro MRI measurements, showing similar T2* relaxation and signal characteristics. Further in vivo studies demonstrated that both samples induced significant hypointense changes. The study provides valuable insights into the synthesis, properties, and potential applications of these materials, emphasizing the importance of eco-friendly methods and the optimization of ferrite-based MRI contrast agents.
Collapse
Affiliation(s)
- Fatemeh Heydari
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
- In Vivo Imaging Advanced Core Facility, Hungarian Center of Excellence for Molecular Medicine (HCEMM), Szeged, Hungary
| | - Ágnes M. Ilosvai
- Institute of Chemistry, University of Miskolc, Miskolc-Egyetemváros, Miskolc, Hungary
- Higher Education and Industrial Cooperation Centre, University of Miskolc, Miskolc, Hungary
| | - Noémi Kovács
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
- In Vivo Imaging Advanced Core Facility, Hungarian Center of Excellence for Molecular Medicine (HCEMM), Szeged, Hungary
| | - Domokos Máthé
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
- In Vivo Imaging Advanced Core Facility, Hungarian Center of Excellence for Molecular Medicine (HCEMM), Szeged, Hungary
| | - Ferenc Kristály
- Institute of Mineralogy and Geology, University of Miskolc, Miskolc-Egyetemváros, Hungary
| | - Lajos Daróczi
- Department of Solid-State Physics, University of Debrecen, Debrecen, Hungary
| | - Zoltán Kaleta
- Pro-Research Laboratory, Progressio Engineering Bureau Ltd., Szekesfehervar, Hungary
- Institute of Organic Chemistry, Semmelweis University, Budapest, Hungary
| | - Béla Viskolcz
- Institute of Chemistry, University of Miskolc, Miskolc-Egyetemváros, Miskolc, Hungary
- Higher Education and Industrial Cooperation Centre, University of Miskolc, Miskolc, Hungary
| | - Miklós Nagy
- Institute of Chemistry, University of Miskolc, Miskolc-Egyetemváros, Miskolc, Hungary
| | - László Vanyorek
- Institute of Chemistry, University of Miskolc, Miskolc-Egyetemváros, Miskolc, Hungary
| | - László Forgách
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
- In Vivo Imaging Advanced Core Facility, Hungarian Center of Excellence for Molecular Medicine (HCEMM), Szeged, Hungary
| | - Krisztián Szigeti
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
- In Vivo Imaging Advanced Core Facility, Hungarian Center of Excellence for Molecular Medicine (HCEMM), Szeged, Hungary
| |
Collapse
|
3
|
Rezaei B, Harun A, Wu X, Iyer PR, Mostufa S, Ciannella S, Karampelas IH, Chalmers J, Srivastava I, Gómez-Pastora J, Wu K. Effect of Polymer and Cell Membrane Coatings on Theranostic Applications of Nanoparticles: A Review. Adv Healthc Mater 2024; 13:e2401213. [PMID: 38856313 DOI: 10.1002/adhm.202401213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/28/2024] [Indexed: 06/11/2024]
Abstract
The recent decade has witnessed a remarkable surge in the field of nanoparticles, from their synthesis, characterization, and functionalization to diverse applications. At the nanoscale, these particles exhibit distinct physicochemical properties compared to their bulk counterparts, enabling a multitude of applications spanning energy, catalysis, environmental remediation, biomedicine, and beyond. This review focuses on specific nanoparticle categories, including magnetic, gold, silver, and quantum dots (QDs), as well as hybrid variants, specifically tailored for biomedical applications. A comprehensive review and comparison of prevalent chemical, physical, and biological synthesis methods are presented. To enhance biocompatibility and colloidal stability, and facilitate surface modification and cargo/agent loading, nanoparticle surfaces are coated with different synthetic polymers and very recently, cell membrane coatings. The utilization of polymer- or cell membrane-coated nanoparticles opens a wide variety of biomedical applications such as magnetic resonance imaging (MRI), hyperthermia, photothermia, sample enrichment, bioassays, drug delivery, etc. With this review, the goal is to provide a comprehensive toolbox of insights into polymer or cell membrane-coated nanoparticles and their biomedical applications, while also addressing the challenges involved in translating such nanoparticles from laboratory benchtops to in vitro and in vivo applications. Furthermore, perspectives on future trends and developments in this rapidly evolving domain are provided.
Collapse
Affiliation(s)
- Bahareh Rezaei
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, United States
| | - Asma Harun
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, 79409, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, Texas, 79106, United States
| | - Xian Wu
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, United States
| | - Poornima Ramesh Iyer
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, United States
| | - Shahriar Mostufa
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, United States
| | - Stefano Ciannella
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, United States
| | | | - Jeffrey Chalmers
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, United States
| | - Indrajit Srivastava
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, 79409, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, Texas, 79106, United States
| | - Jenifer Gómez-Pastora
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, United States
| | - Kai Wu
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, United States
| |
Collapse
|
4
|
Eker F, Duman H, Akdaşçi E, Bolat E, Sarıtaş S, Karav S, Witkowska AM. A Comprehensive Review of Nanoparticles: From Classification to Application and Toxicity. Molecules 2024; 29:3482. [PMID: 39124888 PMCID: PMC11314082 DOI: 10.3390/molecules29153482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Nanoparticles are structures that possess unique properties with high surface area-to-volume ratio. Their small size, up to 100 nm, and potential for surface modifications have enabled their use in a wide range of applications. Various factors influence the properties and applications of NPs, including the synthesis method and physical attributes such as size and shape. Additionally, the materials used in the synthesis of NPs are primary determinants of their application. Based on the chosen material, NPs are generally classified into three categories: organic, inorganic, and carbon-based. These categories include a variety of materials, such as proteins, polymers, metal ions, lipids and derivatives, magnetic minerals, and so on. Each material possesses unique attributes that influence the activity and application of the NPs. Consequently, certain NPs are typically used in particular areas because they possess higher efficiency along with tenable toxicity. Therefore, the classification and the base material in the NP synthesis hold significant importance in both NP research and application. In this paper, we discuss these classifications, exemplify most of the major materials, and categorize them according to their preferred area of application. This review provides an overall review of the materials, including their application, and toxicity.
Collapse
Affiliation(s)
- Furkan Eker
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Emir Akdaşçi
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Ecem Bolat
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Sümeyye Sarıtaş
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Anna Maria Witkowska
- Department of Food Biotechnology, Medical University of Bialystok, 15-089 Bialystok, Poland
| |
Collapse
|
5
|
Ilieş BD, Yildiz I, Abbas M. Peptide-conjugated Nanoparticle Platforms for Targeted Delivery, Imaging, and Biosensing Applications. Chembiochem 2024; 25:e202300867. [PMID: 38551557 DOI: 10.1002/cbic.202300867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/09/2024] [Indexed: 04/24/2024]
Abstract
Peptides have become an indispensable tool in engineering of multifunctional nanostructure platforms for biomedical applications such as targeted drug and gene delivery, imaging and biosensing. They can be covalently incorporated into a variety of nanoparticles (NPs) including polymers, metallic nanoparticles, and others. Using different bioconjugation techniques, multifunctional peptide-modified NPs can be formulated to produce therapeutical and diagnostic platforms offering high specificity, lower toxicity, biocompatibility, and stimuli responsive behavior. Targeting peptides can direct the nanoparticles into specific tissues for targeted drug and gene delivery and imaging applications due to their specificity towards certain receptors. Furthermore, due to their stimuli-responsive features, they can offer controlled release of therapeutics into desired sites of disease. In addition, peptide-based biosensors and imaging agents can provide non-invasive detection and monitoring of diseases including cancer, infectious diseases, and neurological disorders. In this review, we covered the design and formulation of recent peptide-based NP platforms, as well as their utilization in in vitro and in vivo applications such as targeted drug and gene delivery, targeting, sensing, and imaging applications. In the end, we provided the future outlook to design new peptide conjugated nanomaterials for biomedical applications.
Collapse
Affiliation(s)
- Bogdan Dragoş Ilieş
- Department of Chemistry, Khalifa University of Science and Technology, P.O. Box, 127788, Abu Dhabi, UAE
- Functional Biomaterials Group, Khalifa University of Science and Technology, P.O. Box, 127788, Abu Dhabi, UAE
| | - Ibrahim Yildiz
- Department of Chemistry, Khalifa University of Science and Technology, P.O. Box, 127788, Abu Dhabi, UAE
- Functional Biomaterials Group, Khalifa University of Science and Technology, P.O. Box, 127788, Abu Dhabi, UAE
| | - Manzar Abbas
- Department of Chemistry, Khalifa University of Science and Technology, P.O. Box, 127788, Abu Dhabi, UAE
- Functional Biomaterials Group, Khalifa University of Science and Technology, P.O. Box, 127788, Abu Dhabi, UAE
| |
Collapse
|
6
|
Mi Y, Zhang MN, Ma C, Zheng W, Teng F. Feature Matching of Microsecond-Pulsed Magnetic Fields Combined with Fe 3O 4 Particles for Killing A375 Melanoma Cells. Biomolecules 2024; 14:521. [PMID: 38785928 PMCID: PMC11117552 DOI: 10.3390/biom14050521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
The combination of magnetic fields and magnetic nanoparticles (MNPs) to kill cancer cells by magneto-mechanical force represents a novel therapy, offering advantages such as non-invasiveness, among others. Pulsed magnetic fields (PMFs) hold promise for application in this therapy due to advantages such as easily adjustable parameters; however, they suffer from the drawback of narrow pulse width. In order to fully exploit the potential of PMFs and MNPs in this therapy, while maximizing therapeutic efficacy within the constraints of the narrow pulse width, a feature-matching theory is proposed, encompassing the matching of three aspects: (1) MNP volume and critical volume of Brownian relaxation, (2) relaxation time and pulse width, and (3) MNP shape and the intermittence of PMF. In the theory, a microsecond-PMF generator was developed, and four kinds of MNPs were selected for in vitro cell experiments. The results demonstrate that the killing rate of the experimental group meeting the requirements of the theory is at least 18% higher than the control group. This validates the accuracy of our theory and provides valuable guidance for the further application of PMFs in this therapy.
Collapse
Affiliation(s)
- Yan Mi
- State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China; (M.-N.Z.); (C.M.); (W.Z.)
| | - Meng-Nan Zhang
- State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China; (M.-N.Z.); (C.M.); (W.Z.)
| | - Chi Ma
- State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China; (M.-N.Z.); (C.M.); (W.Z.)
| | - Wei Zheng
- State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China; (M.-N.Z.); (C.M.); (W.Z.)
| | - Fei Teng
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China;
| |
Collapse
|
7
|
Dash P, Panda PK, Su C, Lin YC, Sakthivel R, Chen SL, Chung RJ. Near-infrared-driven upconversion nanoparticles with photocatalysts through water-splitting towards cancer treatment. J Mater Chem B 2024; 12:3881-3907. [PMID: 38572601 DOI: 10.1039/d3tb01066j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Water splitting is promising, especially for energy and environmental applications; however, there are limited studies on the link between water splitting and cancer treatment. Upconversion nanoparticles (UCNPs) can be used to convert near-infrared (NIR) light to ultraviolet (UV) or visible (Vis) light and have great potential for biomedical applications because of their profound penetration ability, theranostic approaches, low self-fluorescence background, reduced damage to biological tissue, and low toxicity. UCNPs with photocatalytic materials can enhance the photocatalytic activities that generate a shorter wavelength to increase the tissue penetration depth in the biological microenvironment under NIR light irradiation. Moreover, UCNPs with a photosensitizer can absorb NIR light and convert it into UV/vis light and emit upconverted photons, which excite the photoinitiator to create H2, O2, and/or OH˙ via water splitting processes when exposed to NIR irradiation. Therefore, combining UCNPs with intensified photocatalytic and photoinitiator materials may be a promising therapeutic approach for cancer treatment. This review provides a novel strategy for explaining the principles and mechanisms of UCNPs and NIR-driven UCNPs with photocatalytic materials through water splitting to achieve therapeutic outcomes for clinical applications. Moreover, the challenges and future perspectives of UCNP-based photocatalytic materials for water splitting for cancer treatment are discussed in this review.
Collapse
Affiliation(s)
- Pranjyan Dash
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan.
| | - Pradeep Kumar Panda
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan City 32003, Taiwan
| | - Chaochin Su
- Institute of Organic and Polymeric Materials, Research and Development Center for Smart Textile Technology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
| | - Yu-Chien Lin
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan.
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- ZhongSun Co., LTD, New Taipei City 220031, Taiwan
| | - Rajalakshmi Sakthivel
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan.
| | - Sung-Lung Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan.
| | - Ren-Jei Chung
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan.
- High-value Biomaterials Research and Commercialization Center, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
| |
Collapse
|
8
|
Mahmoud SM, Barakat OS, Kotram LE. Stimulation the immune response through ξ potential on core-shell 'calcium oxide/magnetite iron oxides' nanoparticles. Anim Biotechnol 2023; 34:2657-2673. [PMID: 35981058 DOI: 10.1080/10495398.2022.2111310] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
This study investigated the role of ξ Potential on Monometallic (MM) and Bimetallic (BM) Calcium Oxide/Magnetite Iron Oxides nanoparticles to stimulate the immune response. Metallic nanoparticles (MNPs) were biosynthesis using Pseudomonas fluorescens S48. MNPs characterization was carried out by UV-Vis spectra, XRD analysis, Zeta potential and Particles size, SEM-EDS, and TEM, and the concentrations were calculated by ICP-AES. The immune system activity was measured by estimation of lymphocytes transformation, phagocytic activity. The end point was in evaluating the toxicity of Metallic NPs by comet assay. SEM-EDS and TEM micrographs showed that MM CaO and Fe3O4 represent a perfect example of zero-dimensional (0-D) NPs with cubic and spherical particles in shape, while BM CaO/Fe3O4 NPs appeared in the form of Core-shell structure. The variations effect of novelty MM, BM CaO/Fe3O4 NPs in enhancing immune activity were based on the ξ Potential whereas negatively and positively charged. These findings demonstrate that the cationic CaO/Fe3O4 NPs are inefficient in stimulating the immune system which causes a high cytotoxic effect. But the anionic CaO/Fe3O4 NPs have advantages in targeting the immune system because of enhanced delivery to the cells through adsorptive endocytosis as well as the half-life clearance from the blood.
Collapse
Affiliation(s)
- Sara Mohamed Mahmoud
- Biotechnology Department, Faculty of Graduate Studies and Environmental Researches, Ain Shams University, Cairo, Egypt
| | - Olfat S Barakat
- Agricultural Microbiology Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Laila E Kotram
- Immunity Department, Animal Reproduction Research Institute (ARRI), Agriculture Research Center (ARC), Giza, Egypt
| |
Collapse
|
9
|
Wang Q, Cheng Y, Wang W, Tang X, Yang Y. Polyetherimide- and folic acid-modified Fe 3 O 4 nanospheres for enhanced magnetic hyperthermia performance. J Biomed Mater Res B Appl Biomater 2023; 111:795-804. [PMID: 36382676 DOI: 10.1002/jbm.b.35190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/20/2022] [Accepted: 10/22/2022] [Indexed: 11/17/2022]
Abstract
Recent studies have highlighted the development prospects of magnetic hyperthermia in cancer therapy. A few studies on the application of Fe3 O4 nanospheres for the magnetic hyperthermia of gynecological malignancies have achieved certain efficacy, but there was no visible progress currently. In this work, Fe3 O4 nanospheres modified with polyetherimide (PEI) and folic acid (FA) were synthesized using a hydrothermal method for possible utility in biocompatible and active tumor-targeting magnetic induction hyperthermia. The PEI- and FA-coated Fe3 O4 nanospheres showed high crystallinity, well-dispersed spherical structures and ideal Ms value. As a result, the designed Fe3 O4 @ PEI@FA nanospheres achieved higher specific absorption rate (SAR) values at 360 kHz and 308 Oe, as well as excellent biocompatibility in Hela, SKOV3, HEC-1-A and NIH3T3 cells. These nanospheres can be used as an optimal heating agent for the magnetic hyperthermia treatment of gynecological cancers.
Collapse
Affiliation(s)
- Qinganzi Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.,Department of Obstetrics and Gynecology, the First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gynecological Oncology Gansu Province, Lanzhou, China
| | - Yuemei Cheng
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.,Department of Obstetrics and Gynecology, the First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gynecological Oncology Gansu Province, Lanzhou, China
| | - Wenhua Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.,Department of Obstetrics and Gynecology, the First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gynecological Oncology Gansu Province, Lanzhou, China
| | - Xiaolin Tang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.,Key Laboratory for Gynecological Oncology Gansu Province, Lanzhou, China.,The Third People's Hospital of Gansu Province, Lanzhou, China
| | - Yongxiu Yang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.,Department of Obstetrics and Gynecology, the First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gynecological Oncology Gansu Province, Lanzhou, China
| |
Collapse
|
10
|
Demin AM, Vakhrushev AV, Valova MS, Korolyova MA, Uimin MA, Minin AS, Pozdina VA, Byzov IV, Tumashov AA, Chistyakov KA, Levit GL, Krasnov VP, Charushin VN. Effect of the Silica-Magnetite Nanocomposite Coating Functionalization on the Doxorubicin Sorption/Desorption. Pharmaceutics 2022; 14:2271. [PMID: 36365090 PMCID: PMC9694706 DOI: 10.3390/pharmaceutics14112271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 08/13/2023] Open
Abstract
A series of new composite materials based on Fe3O4 magnetic nanoparticles coated with SiO2 (or aminated SiO2) were synthesized. It has been shown that the use of N-(phosphonomethyl)iminodiacetic acid (PMIDA) to stabilize nanoparticles before silanization ensures the increased content of a SiO2 phase in the Fe3O4@SiO2 nanocomposites (NCs) in comparison with materials obtained under similar conditions, but without PMIDA. It has been demonstrated for the first time that the presence of PMIDA on the surface of NCs increases the level of Dox loading due to specific binding, while surface modification with 3-aminopropylsilane, on the contrary, significantly reduces the sorption capacity of materials. These regularities were in accordance with the results of quantum chemical calculations. It has been shown that the energies of Dox binding to the functional groups of NCs are in good agreement with the experimental data on the Dox sorption on these NCs. The mechanisms of Dox binding to the surface of NCs were proposed: simultaneous coordination of Dox on the PMIDA molecule and silanol groups at the NC surface leads to a synergistic effect in Dox binding. The synthesized NCs exhibited pH-dependent Dox release, as well as dose-dependent cytotoxicity in in vitro experiments. The cytotoxic effects of the studied materials correspond to their calculated IC50 values. NCs with a SiO2 shell obtained using PMIDA exhibited the highest effect. At the same time, the presence of PMIDA in NCs makes it possible to increase the Dox loading, as well as to reduce its desorption rate, which may be useful in the design of drug delivery vehicles with a prolonged action. We believe that the data obtained can be further used to develop stimuli-responsive materials for targeted cancer chemotherapy.
Collapse
Affiliation(s)
- Alexander M. Demin
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), Ekaterinburg 620108, Russia
| | - Alexander V. Vakhrushev
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), Ekaterinburg 620108, Russia
| | - Marina S. Valova
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), Ekaterinburg 620108, Russia
| | - Marina A. Korolyova
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), Ekaterinburg 620108, Russia
| | - Mikhail A. Uimin
- Mikheev Institute of Metal Physics, Russian Academy of Sciences (Ural Branch), Ekaterinburg 620990, Russia
| | - Artem S. Minin
- Mikheev Institute of Metal Physics, Russian Academy of Sciences (Ural Branch), Ekaterinburg 620990, Russia
| | - Varvara A. Pozdina
- Institute of Immunology and Physiology, Russian Academy of Sciences (Ural Branch), Ekaterinburg 620049, Russia
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620002, Russia
| | - Iliya V. Byzov
- Mikheev Institute of Metal Physics, Russian Academy of Sciences (Ural Branch), Ekaterinburg 620990, Russia
| | - Andrey A. Tumashov
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), Ekaterinburg 620108, Russia
| | - Konstantin A. Chistyakov
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), Ekaterinburg 620108, Russia
| | - Galina L. Levit
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), Ekaterinburg 620108, Russia
| | - Victor P. Krasnov
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), Ekaterinburg 620108, Russia
| | - Valery N. Charushin
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), Ekaterinburg 620108, Russia
- Institute of Chemical Engineering, Ural Federal University, Ekaterinburg 620002, Russia
| |
Collapse
|
11
|
Demin AM, Vakhrushev AV, Pershina AG, Valova MS, Efimova LV, Syomchina AA, Uimin MA, Minin AS, Levit GL, Krasnov VP, Charushin VN. Magnetic-Responsive Doxorubicin-Containing Materials Based on Fe 3O 4 Nanoparticles with a SiO 2/PEG Shell and Study of Their Effects on Cancer Cell Lines. Int J Mol Sci 2022; 23:ijms23169093. [PMID: 36012356 PMCID: PMC9409415 DOI: 10.3390/ijms23169093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/05/2022] [Accepted: 08/11/2022] [Indexed: 12/31/2022] Open
Abstract
Novel nanocomposite materials based on Fe3O4 magnetic nanoparticles (MNPs) coated with silica and covalently modified by [(3-triethoxysilyl)propyl]succinic acid–polyethylene glycol (PEG 3000) conjugate, which provides a high level of doxorubicin (Dox) loading, were obtained. The efficiency of Dox desorption from the surface of nanomaterials under the action of an alternating magnetic field (AMF) in acidic and neutral media was evaluated. Their high cytotoxicity against tumor cells, as well as the drug release upon application of AMF, which leads to an increase in the cytotoxic effect, was demonstrated.
Collapse
Affiliation(s)
- Alexander M. Demin
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), 620108 Ekaterinburg, Russia
- Correspondence: (A.M.D.); (V.N.C.)
| | - Alexander V. Vakhrushev
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), 620108 Ekaterinburg, Russia
| | - Alexandra G. Pershina
- Center of Bioscience and Bioengineering, Siberian State Medical University, 634050 Tomsk, Russia
- Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Marina S. Valova
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), 620108 Ekaterinburg, Russia
| | - Lina V. Efimova
- Center of Bioscience and Bioengineering, Siberian State Medical University, 634050 Tomsk, Russia
| | | | - Mikhail A. Uimin
- Mikheev Institute of Metal Physics, Russian Academy of Sciences (Ural Branch), 620990 Ekaterinburg, Russia
| | - Artem S. Minin
- Mikheev Institute of Metal Physics, Russian Academy of Sciences (Ural Branch), 620990 Ekaterinburg, Russia
| | - Galina L. Levit
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), 620108 Ekaterinburg, Russia
| | - Victor P. Krasnov
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), 620108 Ekaterinburg, Russia
| | - Valery N. Charushin
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), 620108 Ekaterinburg, Russia
- Institute of Chemical Engineering, Ural Federal University, 620002 Ekaterinburg, Russia
- Correspondence: (A.M.D.); (V.N.C.)
| |
Collapse
|
12
|
Kohzadi S, Najmoddin N, Baharifar H, Shabani M. Functionalized SPION immobilized on graphene-oxide: Anticancer and antiviral study. DIAMOND AND RELATED MATERIALS 2022; 127:109149. [PMID: 35677893 PMCID: PMC9163046 DOI: 10.1016/j.diamond.2022.109149] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/23/2022] [Accepted: 05/29/2022] [Indexed: 05/14/2023]
Abstract
The progressive and fatal outbreak of some diseases such as cancer and coronavirus necessitates using advanced materials to bring such devastating illnesses under control. In this study, graphene oxide (GO) is decorated by superparamagnetic iron oxide nanoparticles (SPION) (GO/SPION) as well as polyethylene glycol functionalized SPION (GO/SPION@PEG), and chitosan functionalized SPION (GO/SPION@CS). Field emission scanning electron microscopic (FESEM) images show the formation of high density uniformly distributed SPION nanoparticles on the surface of GO sheets. The structural and chemical composition of nanostructures is confirmed by X-ray diffraction and Fourier transform infrared spectroscopy. The saturation magnetization of GO/SPION, GO/SPION@PEG and GO- SPION@CS are found to be 20, 19 and 8 emu/g using vibrating sample magnetometer. Specific absorption rate (SAR) values of 305, 283, and 199 W/g and corresponding intrinsic loss power (ILP) values of 9.4, 8.7, and 6.2 nHm2kg-1 are achieved for GO/SPION, GO/SPION@PEG and GO/SPION@CS, respectively. The In vitro cytotoxicity assay indicates higher than 70% cell viability for all nanostructures at 100, 300, and 500 ppm after 24 and 72 h. Additionally, cancerous cell (EJ138 human bladder carcinoma) ablation is observed using functionalized GO/SPION under applied magnetic field. More than 50% cancerous cell death has been achieved for GO/SPION@PEG at 300 ppm concentration. Furthermore, Surrogate virus neutralization test is applied to investigate neutralizing property of the synthesized nanostructures through analysis of SARS-CoV-2 receptor-binding domain and human angiotensin-converting enzyme 2 binding. The highest level of SARS-CoV-2 virus inhibition is related to GO/SPION@CS (86%) due to the synergistic exploitation of GO and chitosan. Thus, GO/SPION and GO/SPION@PEG with higher SAR and ILP values could be beneficial for cancer treatment, while GO/SPION@CS with higher virus suppression has potential to use against coronaviruses. Thus, the developed nanocomposites have a potential in the efficient treatment of cancer and coronavirus.
Collapse
Affiliation(s)
- Shaghayegh Kohzadi
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Najmeh Najmoddin
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hadi Baharifar
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mahdi Shabani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Macrophages Loaded with Fe Nanoparticles for Enhanced Photothermal Ablation of Tumors. J Funct Biomater 2022; 13:jfb13030094. [PMID: 35893461 PMCID: PMC9326737 DOI: 10.3390/jfb13030094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/05/2022] [Accepted: 07/12/2022] [Indexed: 02/06/2023] Open
Abstract
Magnetic iron nanoparticle-based theranostics agents have attracted much attention due to their good magnetism and biocompatibility. However, efficiently enriching tumors with iron nanoparticles to enhance the treatment effect remains a pressing challenge. Herein, based on the targeting and high phagocytosis of macrophages, an Fe nanoparticle-loaded macrophage delivery system was designed and constructed to efficiently deliver iron nanoparticles to tumors. Hydrophilic Fe@Fe3O4 nanoparticles with a core-shell structure were synthesized by pyrolysis and ligand exchange strategy. Subsequently, they were loaded into macrophages (RAW264.7 cells) using a co-incubation method. After loading into RAW264.7, the photothermal performance of Fe@Fe3O4 nanoparticles were significantly enhanced. In addition, Fe@Fe3O4 nanoparticles loaded into the macrophage RAW264.7 (Fe@Fe3O4@RAW) exhibited a good T2-weighted MRI contrast effect and clear tumor imaging in vivo due to the tumor targeting tendency of macrophages. More importantly, after being intravenously injected with Fe@Fe3O4@RAW and subjected to laser irradiation, the tumor growth was effectively inhibited, indicating that macrophage loading could enhance the tumor photothermal ablation ability of Fe@Fe3O4. The macrophage mediated delivery strategy for Fe@Fe3O4 nanoparticles was able to enhance the treatment effect, and has great potential in tumor theranostics.
Collapse
|
14
|
Karmakar AK, Hasan MS, Sreemani A, Das Jayanta A, Hasan MM, Tithe NA, Biswas P. A review on the current progress of layered double hydroxide application in biomedical sectors. THE EUROPEAN PHYSICAL JOURNAL PLUS 2022; 137:801. [DOI: 10.1140/epjp/s13360-022-02993-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/22/2022] [Indexed: 01/06/2025]
|
15
|
Wang B, Moyano A, Duque JM, Sánchez L, García-Santos G, Flórez LJG, Serrano-Pertierra E, Blanco-López MDC. Nanozyme-Based Lateral Flow Immunoassay (LFIA) for Extracellular Vesicle Detection. BIOSENSORS 2022; 12:bios12070490. [PMID: 35884293 PMCID: PMC9313400 DOI: 10.3390/bios12070490] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/26/2022]
Abstract
Extracellular vesicles (EVs) are biological nanoparticles of great interest as novel sources of biomarkers and as drug delivery systems for personalized therapies. The research in the field and clinical applications require rapid quantification. In this study, we have developed a novel lateral flow immunoassay (LFIA) system based on Fe3O4 nanozymes for extracellular vesicle (EV) detection. Iron oxide superparamagnetic nanoparticles (Fe3O4 MNPs) have been reported as peroxidase-like mimetic systems and competent colorimetric labels. The peroxidase-like capabilities of MNPs coated with fatty acids of different chain lengths (oleic acid, myristic acid, and lauric acid) were evaluated in solution with H2O2 and 3,3,5,5-tetramethylbenzidine (TMB) as well as on strips by biotin–neutravidin affinity assay. As a result, MNPs coated with oleic acid were applied as colorimetric labels and applied to detect plasma-derived EVs in LFIAs via their nanozyme effects. The visual signals of test lines were significantly enhanced, and the limit of detection (LOD) was reduced from 5.73 × 107 EVs/μL to 2.49 × 107 EVs/μL. Our work demonstrated the potential of these MNPs as reporter labels and as nanozyme probes for the development of a simple tool to detect EVs, which have proven to be useful biomarkers in a wide variety of diseases.
Collapse
Affiliation(s)
- Baihui Wang
- Department of Physical and Analytical Chemistry, Institute of Biotechnology of Asturias, University of Oviedo, c/Julián Clavería 8, 33006 Oviedo, Spain; (B.W.); (A.M.)
| | - Amanda Moyano
- Department of Physical and Analytical Chemistry, Institute of Biotechnology of Asturias, University of Oviedo, c/Julián Clavería 8, 33006 Oviedo, Spain; (B.W.); (A.M.)
| | - José María Duque
- Hospital Universitario San Agustín, 33401 Avilés, Spain; (J.M.D.); (L.S.)
- Department of Medicine, University of Oviedo, 33006 Oviedo, Spain
| | - Luis Sánchez
- Hospital Universitario San Agustín, 33401 Avilés, Spain; (J.M.D.); (L.S.)
| | - Guillermo García-Santos
- Department of General and Digestive Surgery, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain; (G.G.-S.); (L.J.G.F.)
| | - Luis J. García Flórez
- Department of General and Digestive Surgery, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain; (G.G.-S.); (L.J.G.F.)
- Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
- Department of Surgery, University of Oviedo, 33006 Oviedo, Spain
| | - Esther Serrano-Pertierra
- Department of Physical and Analytical Chemistry, Institute of Biotechnology of Asturias, University of Oviedo, c/Julián Clavería 8, 33006 Oviedo, Spain; (B.W.); (A.M.)
- Correspondence: (E.S.-P.); (M.d.C.B.-L.)
| | - María del Carmen Blanco-López
- Department of Physical and Analytical Chemistry, Institute of Biotechnology of Asturias, University of Oviedo, c/Julián Clavería 8, 33006 Oviedo, Spain; (B.W.); (A.M.)
- Correspondence: (E.S.-P.); (M.d.C.B.-L.)
| |
Collapse
|
16
|
Joshi R, Sweidan K, Jha D, Kerkis I, Scheffler K, Engelmann J. Evaluation of crotamine based probes as intracellular targeted contrast agents for magnetic resonance imaging. Bioorg Med Chem 2022; 69:116863. [PMID: 35752142 DOI: 10.1016/j.bmc.2022.116863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/02/2022]
Abstract
Crotamine is a lysine and cysteine rich 42 amino acids long bio-active polypeptide, isolated from the venom of a South American rattlesnake, that can also be used as cell penetrating peptide. A facile synthetic scheme for coupling cargo molecules like fluorophores (carboxyfluorescein) or MRI probes (Gd-DO3A-based macrocycle) is presented. The toxicity, cellular internalization and steady-state accumulation after long-term incubation for 18 h, as well as magnetic resonance relaxivities and cellular relaxation rates of crotamine based probes were evaluated and compared to its shorter synthetic fragment CyLoP-1. The longitudinal relaxivity (r1) of the conjugates of CyLoP-1 and crotamine is significantly lower in medium than in water indicating to the lower contrast enhancement efficacy of DO3A-based probes in biological samples. Carboxyfluorescein labeled crotamine did not exhibit toxicity up to a concentration of 2.5 µM. CyLoP-1 accumulated about four times better within the cells compared to crotamine. Fluorescence microscopy suggests different predominant uptake mechanisms for crotamine and CyLoP-1 in 3T3 cells. While crotamine is predominantly localized in vesicular structures (most likely endosomes and lysosomes) within the cell, CyLoP-1 is mainly homogeneously distributed in the cytosol. The cellular relaxation rate (R1, cell) of the crotamine based probe was not significantly increased whereas the corresponding CyLoP-1-derivative showed a slightly elevated R1, cell. This study indicates the potential of crotamine and in particular the shorter fragment CyLoP-1 to be useful for an efficient transmembrane delivery of agents directed to intracellular (cytosolic) targets. However, the applicability of the conjugates synthesized here as contrast agents in MR imaging is limited. Further improvement is needed to prepare more efficient probes for MRI applications, i.e., by replacing the DO3A- with a DOTA-based chelate.
Collapse
Affiliation(s)
- Rajendra Joshi
- Department of Chemical Science and Engineering, School of Engineering, Kathmandu University, Dhulikhel, Nepal.
| | - Kamal Sweidan
- Department of Chemistry, The University of Jordan, Amman 11942, Jordan
| | - Deepti Jha
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Irina Kerkis
- Laboratory of Genetics Butantan Institute São Paulo, Brazil
| | - Klaus Scheffler
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany; Department of Biomedical Magnetic Resonance, University of Tübingen, Germany
| | - Joern Engelmann
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| |
Collapse
|
17
|
Kang W, Tian Y, Zhao Y, Yin X, Teng Z. Applications of nanocomposites based on zeolitic imidazolate framework-8 in photodynamic and synergistic anti-tumor therapy. RSC Adv 2022; 12:16927-16941. [PMID: 35754870 PMCID: PMC9178442 DOI: 10.1039/d2ra01102f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/06/2022] [Indexed: 11/21/2022] Open
Abstract
Due to the limitations resulting from hypoxia and the self-aggregation of photosensitizers, photodynamic therapy (PDT) has not been applied clinically to treat most types of solid tumors. Zeolitic imidazolate framework-8 (ZIF-8) is a common metal-organic framework that has ultra-high porosity, an adjustable structure, good biocompatibility, and pH-induced biodegradability. In this review, we summarize the applications of ZIF-8 and its derivatives in PDT. This review is divided into two parts. In the first part, we summarize progress in the application of ZIF-8 to enhance PDT and realize theranostics. We discuss the use of ZIF-8 to avoid the self-aggregation of photosensitizers, alleviate hypoxia, increase the PDT penetration depth, and combine PDT with multi-modal imaging. In the second part, we summarize how ZIF-8 can achieve synergistic PDT with other anti-tumor therapies, including chemotherapy, photothermal therapy, chemodynamic therapy, starvation therapy, protein therapy, gene therapy, and immunotherapy. Finally, we highlight the challenges that must be overcome for ZIF-8 to be widely applied in PDT. To the best of our knowledge, this is the first review of ZIF-8-based nanoplatforms for PDT.
Collapse
Affiliation(s)
- Wen Kang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University Nanjing 210006 P. R. China
| | - Ying Tian
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine Nanjing 210029 P. R. China
| | - Ying Zhao
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University Nanjing 210006 P. R. China
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University Nanjing 210006 P. R. China
| | - Zhaogang Teng
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications Nanjing 210046 P. R. China
| |
Collapse
|
18
|
Lachowicz D, Stroud J, Hankiewicz JH, Gassen R, Kmita A, Stepień J, Celinski Z, Sikora M, Zukrowski J, Gajewska M, Przybylski M. One-Step Preparation of Highly Stable Copper-Zinc Ferrite Nanoparticles in Water Suitable for MRI Thermometry. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:4001-4018. [PMID: 35573108 PMCID: PMC9097161 DOI: 10.1021/acs.chemmater.2c00079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/01/2022] [Indexed: 05/03/2023]
Abstract
Superparamagnetic ferrite nanoparticles coated with a polymer layer are widely used for biomedical applications. The objective of this work is to design nanoparticles as a magnetic resonance imaging (MRI) temperature-sensitive contrast agent. Copper-zinc ferrite nanoparticles coated with a poly(ethylene glycol) (PEG) layer are synthesized using a one-step thermal decomposition method in a polymer matrix. The resulting nanoparticles are stable in water and biocompatible. Using Mössbauer spectroscopy and magnetometry, it was determined that the grown nanoparticles exhibit superparamagnetic properties. Embedding these particles into an agarose gel resulted in significant modification of water proton relaxation times T 1, T 2, and T 2* determined by nuclear magnetic resonance measurements. The results of the spin-echo T 2-weighted MR images of an aqueous phantom with embedded Cu0.08Zn0.54Fe2.38O4 nanoparticles in the presence of a strong temperature gradient show a strong correlation between the temperature and the image intensity. The presented results support the hypothesis that CuZn ferrite nanoparticles can be used as a contrast agent for MRI thermometry.
Collapse
Affiliation(s)
- Dorota Lachowicz
- Academic
Centre for Materials and Nanotechnology, AGH University of Science
and Technology, 30-059 Krakow, Poland
| | - John Stroud
- Center
for the Biofrontiers Institute, University of Colorado Colorado Springs, 1420 Austin Bluffs Pkway, Colorado Springs, Colorado 80918, United States
| | - Janusz H. Hankiewicz
- Center
for the Biofrontiers Institute, University of Colorado Colorado Springs, 1420 Austin Bluffs Pkway, Colorado Springs, Colorado 80918, United States
| | - River Gassen
- Center
for the Biofrontiers Institute, University of Colorado Colorado Springs, 1420 Austin Bluffs Pkway, Colorado Springs, Colorado 80918, United States
| | - Angelika Kmita
- Academic
Centre for Materials and Nanotechnology, AGH University of Science
and Technology, 30-059 Krakow, Poland
| | - Joanna Stepień
- Academic
Centre for Materials and Nanotechnology, AGH University of Science
and Technology, 30-059 Krakow, Poland
| | - Zbigniew Celinski
- Center
for the Biofrontiers Institute, University of Colorado Colorado Springs, 1420 Austin Bluffs Pkway, Colorado Springs, Colorado 80918, United States
| | - Marcin Sikora
- Academic
Centre for Materials and Nanotechnology, AGH University of Science
and Technology, 30-059 Krakow, Poland
| | - Jan Zukrowski
- Academic
Centre for Materials and Nanotechnology, AGH University of Science
and Technology, 30-059 Krakow, Poland
| | - Marta Gajewska
- Academic
Centre for Materials and Nanotechnology, AGH University of Science
and Technology, 30-059 Krakow, Poland
| | - Marek Przybylski
- Academic
Centre for Materials and Nanotechnology, AGH University of Science
and Technology, 30-059 Krakow, Poland
- Faculty
of Physics and Applied Computer Science, AGH University of Science
and Technology, 30-059 Krakow, Poland
| |
Collapse
|
19
|
Niculescu AG, Grumezescu AM. Novel Tumor-Targeting Nanoparticles for Cancer Treatment-A Review. Int J Mol Sci 2022; 23:5253. [PMID: 35563645 PMCID: PMC9101878 DOI: 10.3390/ijms23095253] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 12/04/2022] Open
Abstract
Being one of the leading causes of death and disability worldwide, cancer represents an ongoing interdisciplinary challenge for the scientific community. As currently used treatments may face limitations in terms of both efficiency and adverse effects, continuous research has been directed towards overcoming existing challenges and finding safer specific alternatives. In particular, increasing interest has been gathered around integrating nanotechnology in cancer management and subsequentially developing various tumor-targeting nanoparticles for cancer applications. In this respect, the present paper briefly describes the most used cancer treatments in clinical practice to set a reference framework for recent research findings, further focusing on the novel developments in the field. More specifically, this review elaborates on the top recent studies concerning various nanomaterials (i.e., carbon-based, metal-based, liposomes, cubosomes, lipid-based, polymer-based, micelles, virus-based, exosomes, and cell membrane-coated nanomaterials) that show promising potential in different cancer applications.
Collapse
Affiliation(s)
- Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania;
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania;
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| |
Collapse
|
20
|
A Modified PEG-Fe3O4 Magnetic Nanoparticles Conjugated with D( +)Glucosamine (DG): MRI Contrast Agent. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02253-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Zhong X, Di Z, Xu Y, Liang Q, Feng K, Zhang Y, Di L, Wang R. Mineral medicine: from traditional drugs to multifunctional delivery systems. Chin Med 2022; 17:21. [PMID: 35144660 PMCID: PMC8830990 DOI: 10.1186/s13020-022-00577-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/28/2022] [Indexed: 11/10/2022] Open
Abstract
Mineral drugs are an important constituent of traditional Chinese medicine (TCM). Taking minerals that contain heavy metals as drugs is a very national characteristic part of TCM. However, the safety and scientific nature of mineral drugs are controversial owing to their heavy metals and strong toxicity. In 2000, the Food and Drug Administration (FDA) authorized arsenic trioxide (ATO) as first-line therapy for acute promyelocytic leukemia. This makes the development and utilization of mineral drugs become a research hotspot. The development of nanomedicine has found a great prospect of mineral drugs in nano-delivery carriers. And that will hold promise to address the numerous biological barriers facing mineral drug formulations. However, the studies on mineral drugs in the delivery system are few at present. There is also a lack of a detailed description of mineral drug delivery systems. In this review, the advanced strategies of mineral drug delivery systems in tumor therapy are summarized. In addition, the therapeutic advantages and research progress of novel mineral drug delivery systems are also discussed. Here, we hope that this will provide a useful reference for the design and application of new mineral drug delivery systems.
Collapse
Affiliation(s)
- Xiaoqing Zhong
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Zhenning Di
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Yuanxin Xu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Qifan Liang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Kuanhan Feng
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Yuting Zhang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Liuqing Di
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China. .,Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China.
| | - Ruoning Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China. .,Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China.
| |
Collapse
|
22
|
Galarreta-Rodriguez I, Marcano L, Castellanos-Rubio I, Gil de Muro I, García I, Olivi L, Fernández-Gubieda ML, Castellanos-Rubio A, Lezama L, de Larramendi IR, Insausti M. Towards the design of contrast-enhanced agents: systematic Ga 3+ doping on magnetite nanoparticles. Dalton Trans 2022; 51:2517-2530. [PMID: 35060578 DOI: 10.1039/d1dt03029a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The main objective of the preparation of the Fe3-xGaxO4 (0.14 ≤ x ≤ 1.35) system was to further the knowledge of the magnetic response of Ga3+-doped magnetite for application as MRI contrast agents. With this purpose, monodisperse nanoparticles between 7 and 10 nm with different amounts of gallium were prepared from an optimized protocol based on thermal decomposition of metallo-organic precursors. Thorough characterization of the sample was conducted in order to understand the influence of gallium doping on the structural, morphological and magnetic properties of the Fe3-xGaxO4 system. X-ray diffraction and X-ray absorption near-edge structure measurements have proved the progressive incorporation of Ga in the spinel structure, with different occupations in both tetrahedral and octahedral sites. Magnetization measurements as a function of field temperature have shown a clear dependence of magnetic saturation on the gallium content, reaching an Ms value of 110 Am2 kg-1 at 5 K for x = 0.14 (significantly higher than bulk magnetite) and considerably decreasing for amounts above x = 0.57 of gallium. For this reason, nanoparticles with moderate Ga quantities were water-transferred by coating them with the amphiphilic polymer PMAO to further analyse their biomedical potential. Cytotoxicity assays have demonstrated that Fe3-xGaxO4@PMAO formulations with x ≤ 0.57, which are the ones with better magnetic response, are not toxic for cells. Finally, the effect of gallium doping on relaxivities has been analysed by measuring longitudinal (T1-1) and transverse (T1-1) proton relaxation rates at 1.4 T revealing that nanoparticles with x = 0.14 Ga3+ content present remarkable T2 contrast and the nanoparticles with x = 0.26 have great potential to act as dual T1-T2 contrast agents.
Collapse
Affiliation(s)
- Itziar Galarreta-Rodriguez
- Dpto. Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, UPV/EHU, Sarriena s/n, 48940 Leioa, Spain.
| | - Lourdes Marcano
- Dpto. Electricidad y Electrónica, Facultad de Ciencia y Tecnología, UPV/EHU, Sarriena s/n, 48940 Leioa, Spain
- Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, 12489 Berlin, Germany
| | - Idoia Castellanos-Rubio
- Dpto. Electricidad y Electrónica, Facultad de Ciencia y Tecnología, UPV/EHU, Sarriena s/n, 48940 Leioa, Spain
| | - Izaskun Gil de Muro
- Dpto. Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, UPV/EHU, Sarriena s/n, 48940 Leioa, Spain.
| | - Isabel García
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014, Donostia San Sebastián, Spain
- Centro de Investigación Biomédica en Red, Biomateriales, Bioingeniería y Nanomedicina (CIBER-BBN), Spain
| | - Luca Olivi
- Elettra Synchrotron Trieste, 34149 Basovizza, Italy
| | - M L Fernández-Gubieda
- Dpto. Electricidad y Electrónica, Facultad de Ciencia y Tecnología, UPV/EHU, Sarriena s/n, 48940 Leioa, Spain
| | - Ainara Castellanos-Rubio
- Dpto. Genética, Antropología Física y Fisiología Animal, Facultad de Medicina, UPV/EHU, Leioa, Spain
| | - Luis Lezama
- Dpto. Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, UPV/EHU, Sarriena s/n, 48940 Leioa, Spain.
| | - Idoia Ruiz de Larramendi
- Dpto. Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, UPV/EHU, Sarriena s/n, 48940 Leioa, Spain.
| | - Maite Insausti
- Dpto. Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, UPV/EHU, Sarriena s/n, 48940 Leioa, Spain.
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| |
Collapse
|
23
|
Wang K, Xu X, Li Y, Rong M, Wang L, Lu L, Wang J, Zhao F, Sun B, Jiang Y. Preparation Fe3O4@chitosan-graphene quantum dots nanocomposites for fluorescence and magnetic resonance imaging. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.139060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Luengo Morato Y, Ovejero Paredes K, Lozano Chamizo L, Marciello M, Filice M. Recent Advances in Multimodal Molecular Imaging of Cancer Mediated by Hybrid Magnetic Nanoparticles. Polymers (Basel) 2021; 13:2989. [PMID: 34503029 PMCID: PMC8434540 DOI: 10.3390/polym13172989] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer is the second leading cause of death in the world, which is why it is so important to make an early and very precise diagnosis to obtain a good prognosis. Thanks to the combination of several imaging modalities in the form of the multimodal molecular imaging (MI) strategy, a great advance has been made in early diagnosis, in more targeted and personalized therapy, and in the prediction of the results that will be obtained once the anticancer treatment is applied. In this context, magnetic nanoparticles have been positioned as strong candidates for diagnostic agents as they provide very good imaging performance. Furthermore, thanks to their high versatility, when combined with other molecular agents (for example, fluorescent molecules or radioisotopes), they highlight the advantages of several imaging techniques at the same time. These hybrid nanosystems can be also used as multifunctional and/or theranostic systems as they can provide images of the tumor area while they administer drugs and act as therapeutic agents. Therefore, in this review, we selected and identified more than 160 recent articles and reviews and offer a broad overview of the most important concepts that support the synthesis and application of multifunctional magnetic nanoparticles as molecular agents in advanced cancer detection based on the multimodal molecular imaging approach.
Collapse
Affiliation(s)
- Yurena Luengo Morato
- Nanobiotechnology for Life Sciences Lab, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal, 28040 Madrid, Spain; (Y.L.M.); (K.O.P.); (L.L.C.)
| | - Karina Ovejero Paredes
- Nanobiotechnology for Life Sciences Lab, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal, 28040 Madrid, Spain; (Y.L.M.); (K.O.P.); (L.L.C.)
- Microscopy and Dynamic Imaging Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC F.S.P.), Calle Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Laura Lozano Chamizo
- Nanobiotechnology for Life Sciences Lab, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal, 28040 Madrid, Spain; (Y.L.M.); (K.O.P.); (L.L.C.)
| | - Marzia Marciello
- Nanobiotechnology for Life Sciences Lab, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal, 28040 Madrid, Spain; (Y.L.M.); (K.O.P.); (L.L.C.)
| | - Marco Filice
- Nanobiotechnology for Life Sciences Lab, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal, 28040 Madrid, Spain; (Y.L.M.); (K.O.P.); (L.L.C.)
- Microscopy and Dynamic Imaging Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC F.S.P.), Calle Melchor Fernández Almagro 3, 28029 Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| |
Collapse
|
25
|
|