1
|
Zhang Z, Wang R, Chen L. Drug Delivery System Targeting Cancer-Associated Fibroblast for Improving Immunotherapy. Int J Nanomedicine 2025; 20:483-503. [PMID: 39816375 PMCID: PMC11734509 DOI: 10.2147/ijn.s500591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/16/2024] [Indexed: 01/18/2025] Open
Abstract
Cancer-associated fibroblasts (CAFs) are a heterogeneous population of non-malignant cells that play a crucial role in the tumor microenvironment, increasingly recognized as key contributors to cancer progression, metastasis, and treatment resistance. So, targeting CAFs has always been considered an important part of cancer immunotherapy. However, targeting CAFs to improve the efficacy of tumor therapy is currently a major challenge. Nanomaterials show their unique advantages in the whole process. At present, nanomaterials have achieved significant accomplishments in medical applications, particularly in the field of cancer-targeted therapy, showing enormous potential. It has been confirmed that nanomaterials can not only directly target CAFs, but also interact with the tumor microenvironment (TME) and immune cells to affect tumorigenesis. As for the cancer treatment, nanomaterials could enhance the therapeutic effect in many ways. Therefore, in this review, we first summarized the current understanding of the complex interactions between CAFs and TME, immune cells, and tumor cells. Next, we discussed common nanomaterials in modern medicine and their respective impacts on the TME, CAFs, and interactions with tumors. Finally, we focus on the application of nano drug delivery system targeting CAFs in cancer therapy.
Collapse
Affiliation(s)
- Zhongsong Zhang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610550, People’s Republic of China
| | - Rong Wang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610550, People’s Republic of China
| | - Long Chen
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, 610550, People’s Republic of China
| |
Collapse
|
2
|
Zhang X, Tang B, Luo J, Yang Y, Weng Q, Fang S, Zhao Z, Tu J, Chen M, Ji J. Cuproptosis, ferroptosis and PANoptosis in tumor immune microenvironment remodeling and immunotherapy: culprits or new hope. Mol Cancer 2024; 23:255. [PMID: 39543600 PMCID: PMC11566504 DOI: 10.1186/s12943-024-02130-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/19/2024] [Indexed: 11/17/2024] Open
Abstract
Normal life requires cell division to produce new cells, but cell death is necessary to maintain balance. Dysregulation of cell death can lead to the survival and proliferation of abnormal cells, promoting tumor development. Unlike apoptosis, necrosis, and autophagy, the newly recognized forms of regulated cell death (RCD) cuproptosis, ferroptosis, and PANoptosis provide novel therapeutic strategies for tumor treatment. Increasing research indicates that the death of tumor and immune cells mediated by these newly discovered forms of cell death can regulate the tumor microenvironment (TME) and influence the effectiveness of tumor immunotherapy. This review primarily elucidates the molecular mechanisms of cuproptosis, ferroptosis, and PANoptosis and their complex effects on tumor cells and the TME. This review also summarizes the exploration of nanoparticle applications in tumor therapy based on in vivo and in vitro evidence derived from the induction or inhibition of these new RCD pathways.
Collapse
Affiliation(s)
- Xiaojie Zhang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China
| | - Bufu Tang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jinhua Luo
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China
| | - Yang Yang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China
- Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
- School of Medcine, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000, China
| | - Qiaoyou Weng
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China
- Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
- School of Medcine, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000, China
| | - Shiji Fang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China
- Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
- School of Medcine, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000, China
| | - Zhongwei Zhao
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China
- Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
- School of Medcine, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000, China
| | - Jianfei Tu
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China.
- Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China.
- School of Medcine, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000, China.
| | - Minjiang Chen
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China.
- Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China.
- School of Medcine, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000, China.
| | - Jiansong Ji
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China.
- Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China.
- School of Medcine, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000, China.
| |
Collapse
|
3
|
Liang Y, Wu J, Yan Y, Wang Y, Zhao H, Wang X, Chang S, Li S. Charge-Reversal Nano-Drug Delivery Systems in the Tumor Microenvironment: Mechanisms, Challenges, and Therapeutic Applications. Int J Mol Sci 2024; 25:9779. [PMID: 39337266 PMCID: PMC11432038 DOI: 10.3390/ijms25189779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/05/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
The charge-reversal nano-drug delivery system (CRNDDS) is a promising system for delivering chemotherapy drugs and has gained widespread application in cancer treatment. In this review, we summarize the recent advancements in CRNDDSs in terms of cancer treatment. We also delve into the charge-reversal mechanism of the CRNDDSs, focusing on the acid-responsive, redox-responsive, and enzyme-responsive mechanisms. This study elucidates how these systems undergo charge transitions in response to specific microenvironmental stimuli commonly found in tumor tissues. Furthermore, this review explores the pivotal role of CRNDDSs in tumor diagnosis and treatment, and their potential limitations. By leveraging the unique physiological characteristics of tumors, such as the acidic pH, specific redox potential, and specific enzyme activity, these systems demonstrate enhanced accumulation and penetration at tumor sites, resulting in improved therapeutic efficacy and diagnostic accuracy. The implications of this review highlight the potential of charge-reversal drug delivery systems as a novel and targeted strategy for cancer therapy and diagnosis.
Collapse
Affiliation(s)
- Yizhu Liang
- Innovation Institute, China Medical University, Shenyang 110122, China
| | - Jiashuai Wu
- Innovation Institute, China Medical University, Shenyang 110122, China
| | - Yutong Yan
- Department of Biochemistry & Molecular Biology, School of Life Sciences, China Medical University, Shenyang 110122, China
| | - Yunduan Wang
- Department of Biomedical Engineering, China Medical University, Shenyang 110122, China
| | - Hongtu Zhao
- Innovation Institute, China Medical University, Shenyang 110122, China
| | - Xiaopeng Wang
- Innovation Institute, China Medical University, Shenyang 110122, China
| | - Shijie Chang
- Department of Biomedical Engineering, China Medical University, Shenyang 110122, China
| | - Shuo Li
- Department of Biochemistry & Molecular Biology, School of Life Sciences, China Medical University, Shenyang 110122, China
| |
Collapse
|
4
|
Wu L, He C, Zhao T, Li T, Xu H, Wen J, Xu X, Gao L. Diagnosis and treatment status of inoperable locally advanced breast cancer and the application value of inorganic nanomaterials. J Nanobiotechnology 2024; 22:366. [PMID: 38918821 PMCID: PMC11197354 DOI: 10.1186/s12951-024-02644-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/16/2024] [Indexed: 06/27/2024] Open
Abstract
Locally advanced breast cancer (LABC) is a heterogeneous group of breast cancer that accounts for 10-30% of breast cancer cases. Despite the ongoing development of current treatment methods, LABC remains a severe and complex public health concern around the world, thus prompting the urgent requirement for innovative diagnosis and treatment strategies. The primary treatment challenges are inoperable clinical status and ineffective local control methods. With the rapid advancement of nanotechnology, inorganic nanoparticles (INPs) exhibit a potential application prospect in diagnosing and treating breast cancer. Due to the unique inherent characteristics of INPs, different functions can be performed via appropriate modifications and constructions, thus making them suitable for different imaging technology strategies and treatment schemes. INPs can improve the efficacy of conventional local radiotherapy treatment. In the face of inoperable LABC, INPs have proposed new local therapeutic methods and fostered the evolution of novel strategies such as photothermal and photodynamic therapy, magnetothermal therapy, sonodynamic therapy, and multifunctional inorganic nanoplatform. This article reviews the advances of INPs in local accurate imaging and breast cancer treatment and offers insights to overcome the existing clinical difficulties in LABC management.
Collapse
Affiliation(s)
- Linxuan Wu
- School of Intelligent Medicine, China Medical University, Shenyang, 110122, China
| | - Chuan He
- Department of Laboratory Medicine, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Tingting Zhao
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Tianqi Li
- School of Intelligent Medicine, China Medical University, Shenyang, 110122, China
| | - Hefeng Xu
- School of Intelligent Medicine, China Medical University, Shenyang, 110122, China
| | - Jian Wen
- Department of Breast Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China.
| | - Xiaoqian Xu
- School of Intelligent Medicine, China Medical University, Shenyang, 110122, China.
| | - Lin Gao
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, 110022, China.
| |
Collapse
|
5
|
Yuan S, Zhou J, Wang J, Ma X, Liu F, Chen S, Fan JX, Yan GP. Advances of Photothermal Agents with Fluorescence Imaging/Enhancement Ability in the Field of Photothermal Therapy and Diagnosis. Mol Pharm 2024; 21:467-480. [PMID: 38266250 DOI: 10.1021/acs.molpharmaceut.3c01073] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Photothermal therapy (PTT) is an effective cancer treatment method. Due to its easy focusing and tunability of the irradiation light, direct and accurate local treatment can be performed in a noninvasive manner by PTT. This treatment strategy requires the use of photothermal agents to convert light energy into heat energy, thereby achieving local heating and triggering biochemical processes to kill tumor cells. As a key factor in PTT, the photothermal conversion ability of photothermal agents directly determines the efficacy of PTT. In addition, photothermal agents generally have photothermal imaging (PTI) and photoacoustic imaging (PAI) functions, which can not only guide the optimization of irradiation conditions but also achieve the integration of disease diagnosis. If the photothermal agents have function of fluorescence imaging (FLI) or fluorescence enhancement, they can not only further improve the accuracy in disease diagnosis but also accurately determine the tumor location through multimodal imaging for corresponding treatment. In this paper, we summarize recent advances in photothermal agents with FLI or fluorescence enhancement functions for PTT and tumor diagnosis. According to the different recognition sites, the application of specific targeting photothermal agents is introduced. Finally, limitations and challenges of photothermal agents with fluorescence imaging/enhancement in the field of PTT and tumor diagnosis are prospected.
Collapse
Affiliation(s)
- Siyi Yuan
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jun Zhou
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Juntong Wang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - XiaoYu Ma
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Fan Liu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Si Chen
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- Key Laboratory of Green Chemical Process Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jin-Xuan Fan
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guo-Ping Yan
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| |
Collapse
|
6
|
Musiol R. Efflux systems as a target for anti-biofilm nanoparticles: perspectives on emerging applications. Expert Opin Ther Targets 2023; 27:953-963. [PMID: 37788168 DOI: 10.1080/14728222.2023.2263910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/24/2023] [Indexed: 10/05/2023]
Abstract
INTRODUCTION Understanding the role of efflux pumps in biofilm resistance provides valuable insights for developing effective therapeutic strategies. Drugs designed for targeting efflux pumps in drug design holds promise for combating biofilm-related infections. Nanoparticles offer unparalleled advantages in designing drugs targeting efflux pumps. AREAS COVERED This review rigorously examines the existing body of knowledge on the prospective targeting of efflux pumps using metal-based nanoparticles. It includes and analyses the pertinent research findings sourced from the PubMed and SciFinder databases. It covers the experimental studies on efflux inhibition by nanoparticles and provides detailed analyses of their mechanisms of action, elucidating their interactions with the efflux system and their influence on biofilm formation and persistence. EXPERT OPINION The potential of nanoparticles to act as potent antibacterial agents through efflux pump inhibition remains tantalizing, although hindered by limited mechanistic understanding. From the burgeoning research landscape nanoparticles emerge as a novel direction for shaping antimicrobial drug design. Notably, beyond their contribution to drug resistance, efflux pumps play a pivotal role in biofilm development. The deliberate disruption of these pumps can effectively reduce biofilm adhesion and maturation. More details however are needed to exploit this potential.
Collapse
Affiliation(s)
- Robert Musiol
- Institute of Chemistry, Faculty of Science and Technology University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
7
|
Shi X, Tian Y, Liu Y, Xiong Z, Zhai S, Chu S, Gao F. Research Progress of Photothermal Nanomaterials in Multimodal Tumor Therapy. Front Oncol 2022; 12:939365. [PMID: 35898892 PMCID: PMC9309268 DOI: 10.3389/fonc.2022.939365] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
The aggressive growth of cancer cells brings extreme challenges to cancer therapy while triggering the exploration of the application of multimodal therapy methods. Multimodal tumor therapy based on photothermal nanomaterials is a new technology to realize tumor cell thermal ablation through near-infrared light irradiation with a specific wavelength, which has the advantages of high efficiency, less adverse reactions, and effective inhibition of tumor metastasis compared with traditional treatment methods such as surgical resection, chemotherapy, and radiotherapy. Photothermal nanomaterials have gained increasing interest due to their potential applications, remarkable properties, and advantages for tumor therapy. In this review, recent advances and the common applications of photothermal nanomaterials in multimodal tumor therapy are summarized, with a focus on the different types of photothermal nanomaterials and their application in multimodal tumor therapy. Moreover, the challenges and future applications have also been speculated.
Collapse
Affiliation(s)
- Xiaolu Shi
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Ye Tian
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yang Liu
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Zhengrong Xiong
- University of Science and Technology of China, Hefei, China
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Shaobo Zhai
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Shunli Chu
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
- *Correspondence: Shunli Chu, ; Fengxiang Gao,
| | - Fengxiang Gao
- University of Science and Technology of China, Hefei, China
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- *Correspondence: Shunli Chu, ; Fengxiang Gao,
| |
Collapse
|
8
|
Niculescu AG, Grumezescu AM. Novel Tumor-Targeting Nanoparticles for Cancer Treatment-A Review. Int J Mol Sci 2022; 23:5253. [PMID: 35563645 PMCID: PMC9101878 DOI: 10.3390/ijms23095253] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 12/04/2022] Open
Abstract
Being one of the leading causes of death and disability worldwide, cancer represents an ongoing interdisciplinary challenge for the scientific community. As currently used treatments may face limitations in terms of both efficiency and adverse effects, continuous research has been directed towards overcoming existing challenges and finding safer specific alternatives. In particular, increasing interest has been gathered around integrating nanotechnology in cancer management and subsequentially developing various tumor-targeting nanoparticles for cancer applications. In this respect, the present paper briefly describes the most used cancer treatments in clinical practice to set a reference framework for recent research findings, further focusing on the novel developments in the field. More specifically, this review elaborates on the top recent studies concerning various nanomaterials (i.e., carbon-based, metal-based, liposomes, cubosomes, lipid-based, polymer-based, micelles, virus-based, exosomes, and cell membrane-coated nanomaterials) that show promising potential in different cancer applications.
Collapse
Affiliation(s)
- Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania;
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania;
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| |
Collapse
|