1
|
Pham QN, Milanova V, Tung TT, Losic D, Thierry B, Winter MA. Affinity enrichment of placental extracellular vesicles from minimally processed maternal plasma with magnetic nanowires. Analyst 2025; 150:1908-1919. [PMID: 40172922 DOI: 10.1039/d4an01414f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Affinity based enrichment of cell/tissue specific extracellular vesicles (EVs) with magnetic materials and analysis of their molecular cargo has the potential to improve assay sensitivity/specificity compared to whole plasma analysis. For example, syncytiotrophoblast EVs (STBEVs) shed from the placenta during pregnancy carry placental diagnostic markers relevant to pregnancy complications linked to placental insufficiency such as placental alkaline phosphatase (PLAP), Neprilysin (NEP) and Placental Protein 13 (PP13). However, the need for sample pre-enrichment of EVs from plasma adds significant complexity, time and cost. We report an affinity-based cell/tissue specific EV enrichment direct from plasma based on iron-oxide magnetic nanowires (NWs) coated with reversible-addition-fragmentation-chain-transfer (RAFT) polymers and conjugated with anti-PLAP antibodies. As anticipated the complex protein environment of minimally processed plasma significantly decreased STBEV enrichment yield. However, an optimized RAFT polymeric coating successfully mitigated the detrimental effect of the protein corona, yielding significantly improved STBEV recovery compared to Dynabeads™ in unenriched diluted plasma. Despite the presence of significant soluble PLAP protein, STBEV enrichment could be performed directly from the plasma of pregnant women (including preeclamptic samples) within 1.5 hours, enabling quantification of two placental protein markers PP13 and NEP with known diagnostic relevance to preeclampsia. Direct affinity-enrichment of STBEVs with high performance magnetic materials has the potential to underpin rapid clinical diagnostic assays for preeclampsia and related pregnancy complications.
Collapse
Affiliation(s)
- Quang Nghia Pham
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, Adelaide, South Australia 5095, Australia.
| | - Valentina Milanova
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, Adelaide, South Australia 5095, Australia.
| | - Tran Thanh Tung
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Dusan Losic
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Benjamin Thierry
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, Adelaide, South Australia 5095, Australia.
| | - Marnie A Winter
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, Adelaide, South Australia 5095, Australia.
| |
Collapse
|
2
|
Cousins A, Krishnan S, Krishnan G, Pham N, Milanova V, Nelson M, Shetty A, Ikoma N, Thierry B. Preclinical evaluation of sentinel node localization in the stomach via mannose-labelled magnetic nanoparticles and indocyanine green. Surg Endosc 2023:10.1007/s00464-023-10099-6. [PMID: 37165173 PMCID: PMC10338612 DOI: 10.1007/s00464-023-10099-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/23/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND Gastrectomy with extended (D2) lymphadenectomy is considered standard of care for gastric cancer to provide the best possible outcomes and pathologic staging. However, D2 gastrectomy is a technically demanding operation and reported to be associated with increased complications and mortality. Application of sentinel lymph node (SLN) concept in gastric cancer has the potential to reduce patient morbidity; however, SLN techniques are not established for gastrectomy, in part due to lack of practical tracers. An effective and convenient tracer with enhanced SLN accumulation is critically needed. METHODS Mannose-labelled magnetic tracer 'FerroTrace' and fluorescent dye indocyanine green (ICG) were injected laparoscopically into the stomach submucosa of 8 healthy swine under general anaesthesia. Intraoperative fluorescence imaging was used to highlight draining lymphatic pathways containing ICG, while preoperative T2-weighted MRI and ex vivo magnetometer probe measurements were used to identify nodes containing FerroTrace. Lymphadenectomy was performed either robotically (n = 2) or via laparotomy (n = 6). RESULTS Mixing ICG and FerroTrace ensured concurrence of fluorescent and magnetic signals in SLNs. An initial trial with robotic dissection removed all magnetic LNs (n = 4). In the subsequent laparotomy study that targeted all ICG-LNs based on intraoperative fluorescence imaging, dissection removed an average of 4.7 ± 1.2 fluorescent, and 2.0 ± 1.3 magnetic LNs per animal. Both MRI and magnetometer detected 100% of SLNs (n = 7). FerroTrace demonstrated high specificity to SLNs, which contained 76 ± 30% of total lymphotropic iron, and 88 ± 20 % of the overall magnetometer signal. CONCLUSIONS Through utilisation of this dual tracer approach, SLNs were identified via preoperative MRI, visualised intraoperatively with fluorescence imaging, and confirmed with a magnetometer. This combination pairs the sensitivity of ICG with SLN-specific FerroTrace and can be used for reliable SLN detection in gastric cancer, with potential applications in neoadjuvant therapy.
Collapse
Affiliation(s)
- Aidan Cousins
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Adelaide, SA, 5095, Australia.
| | - Shridhar Krishnan
- Department of Oral and Maxillofacial Surgery, The University of Adelaide, Adelaide, SA, 5000, Australia
| | - Giri Krishnan
- Department of Otolaryngology, Head and Neck Surgery, The University of Adelaide, Adelaide, SA, 5000, Australia
| | - Nguyen Pham
- Key Centre for Polymers and Colloids, School of Chemistry and University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Valentina Milanova
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Adelaide, SA, 5095, Australia
| | - Melanie Nelson
- Ferronova Pty Ltd, MM-Building, Minerals Lane, Mawson Lakes, SA, 5095, Australia
| | - Anil Shetty
- Ferronova Pty Ltd, MM-Building, Minerals Lane, Mawson Lakes, SA, 5095, Australia
| | - Naruhiko Ikoma
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Benjamin Thierry
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Adelaide, SA, 5095, Australia
| |
Collapse
|
3
|
Dmochowska N, Milanova V, Mukkamala R, Chow KK, Pham NTH, Srinivasarao M, Ebert LM, Stait-Gardner T, Le H, Shetty A, Nelson M, Low PS, Thierry B. Nanoparticles Targeted to Fibroblast Activation Protein Outperform PSMA for MRI Delineation of Primary Prostate Tumors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204956. [PMID: 36840671 DOI: 10.1002/smll.202204956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/23/2023] [Indexed: 05/25/2023]
Abstract
Accurate delineation of gross tumor volumes remains a barrier to radiotherapy dose escalation and boost dosing in the treatment of solid tumors, such as prostate cancer. Magnetic resonance imaging (MRI) of tumor targets has the power to enable focal dose boosting, particularly when combined with technological advances such as MRI-linear accelerator. Fibroblast activation protein (FAP) is overexpressed in stromal components of >90% of epithelial carcinomas. Herein, the authors compare targeted MRI of prostate specific membrane antigen (PSMA) with FAP in the delineation of orthotopic prostate tumors. Control, FAP, and PSMA-targeting iron oxide nanoparticles were prepared with modification of a lymphotropic MRI agent (FerroTrace, Ferronova). Mice with orthotopic LNCaP tumors underwent MRI 24 h after intravenous injection of nanoparticles. FAP and PSMA nanoparticles produced contrast enhancement on MRI when compared to control nanoparticles. FAP-targeted MRI increased the proportion of tumor contrast-enhancing black pixels by 13%, compared to PSMA. Analysis of changes in R2 values between healthy prostates and LNCaP tumors indicated an increase in contrast-enhancing pixels in the tumor border of 15% when targeting FAP, compared to PSMA. This study demonstrates the preclinical feasibility of PSMA and FAP-targeted MRI which can enable targeted image-guided focal therapy of localized prostate cancer.
Collapse
Affiliation(s)
- Nicole Dmochowska
- Future Industries Institute, University of South Australia, Adelaide, South Australia, 5095, Australia
| | - Valentina Milanova
- Future Industries Institute, University of South Australia, Adelaide, South Australia, 5095, Australia
| | - Ramesh Mukkamala
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, IN, 47907, USA
| | - Kwok Keung Chow
- Future Industries Institute, University of South Australia, Adelaide, South Australia, 5095, Australia
| | - Nguyen T H Pham
- Key Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Madduri Srinivasarao
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, IN, 47907, USA
| | - Lisa M Ebert
- Centre for Cancer Biology, University of South Australia; SA Pathology; Cancer Clinical Trials Unit, Royal Adelaide Hospital; Adelaide Medical School, University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Timothy Stait-Gardner
- Nanoscale Organisation and Dynamics Group, Western Sydney University, Sydney, New South Wales, 2560, Australia
| | - Hien Le
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, South Australia, 5000, Australia
| | - Anil Shetty
- Ferronova Pty Ltd, Mawson Lakes, South Australia, 5095, Australia
| | - Melanie Nelson
- Ferronova Pty Ltd, Mawson Lakes, South Australia, 5095, Australia
| | - Philip S Low
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, IN, 47907, USA
| | - Benjamin Thierry
- Future Industries Institute, University of South Australia, Adelaide, South Australia, 5095, Australia
| |
Collapse
|
4
|
MRI Contrast Agents in Glycobiology. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238297. [PMID: 36500389 PMCID: PMC9735696 DOI: 10.3390/molecules27238297] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022]
Abstract
Molecular recognition involving glycoprotein-mediated interactions is ubiquitous in both normal and pathological natural processes. Therefore, visualization of these interactions and the extent of expression of the sugars is a challenge in medical diagnosis, monitoring of therapy, and drug design. Here, we review the literature on the development and validation of probes for magnetic resonance imaging using carbohydrates either as targeting vectors or as a target. Lectins are important targeting vectors for carbohydrate end groups, whereas selectins, the asialoglycoprotein receptor, sialic acid end groups, hyaluronic acid, and glycated serum and hemoglobin are interesting carbohydrate targets.
Collapse
|
5
|
Dias AMM, Courteau A, Bellaye PS, Kohli E, Oudot A, Doulain PE, Petitot C, Walker PM, Decréau R, Collin B. Superparamagnetic Iron Oxide Nanoparticles for Immunotherapy of Cancers through Macrophages and Magnetic Hyperthermia. Pharmaceutics 2022; 14:2388. [PMID: 36365207 PMCID: PMC9694944 DOI: 10.3390/pharmaceutics14112388] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 07/30/2023] Open
Abstract
Cancer immunotherapy has tremendous promise, but it has yet to be clinically applied in a wider variety of tumor situations. Many therapeutic combinations are envisaged to improve their effectiveness. In this way, strategies capable of inducing immunogenic cell death (e.g., doxorubicin, radiotherapy, hyperthermia) and the reprogramming of the immunosuppressive tumor microenvironment (TME) (e.g., M2-to-M1-like macrophages repolarization of tumor-associated macrophages (TAMs)) are particularly appealing to enhance the efficacy of approved immunotherapies (e.g., immune checkpoint inhibitors, ICIs). Due to their modular construction and versatility, iron oxide-based nanomedicines such as superparamagnetic iron oxide nanoparticles (SPIONs) can combine these different approaches in a single agent. SPIONs have already shown their safety and biocompatibility and possess both drug-delivery (e.g., chemotherapy, ICIs) and magnetic capabilities (e.g., magnetic hyperthermia (MHT), magnetic resonance imaging). In this review, we will discuss the multiple applications of SPIONs in cancer immunotherapy, focusing on their theranostic properties to target TAMs and to generate MHT. The first section of this review will briefly describe immune targets for NPs. The following sections will deal with the overall properties of SPIONs (including MHT). The last section is dedicated to the SPION-induced immune response through its effects on TAMs and MHT.
Collapse
Affiliation(s)
- Alexandre M. M. Dias
- Centre George-François Leclerc, Service de Médecine Nucléaire, Plateforme d’Imagerie et de Radiothérapie Précliniques, 1 rue du Professeur Marion, 21079 Dijon, France
| | - Alan Courteau
- Centre George-François Leclerc, Service de Médecine Nucléaire, Plateforme d’Imagerie et de Radiothérapie Précliniques, 1 rue du Professeur Marion, 21079 Dijon, France
- ImViA Laboratory, EA 7535, University of Burgundy, 21000 Dijon, France
| | - Pierre-Simon Bellaye
- Centre George-François Leclerc, Service de Médecine Nucléaire, Plateforme d’Imagerie et de Radiothérapie Précliniques, 1 rue du Professeur Marion, 21079 Dijon, France
- UMR INSERM/uB/AGROSUP 1231, Labex LipSTIC, Faculty of Health Sciences, Université de Bourgogne Franche-Comté, 21079 Dijon, France
| | - Evelyne Kohli
- UMR INSERM/uB/AGROSUP 1231, Labex LipSTIC, Faculty of Health Sciences, Université de Bourgogne Franche-Comté, 21079 Dijon, France
- University Hospital Centre François Mitterrand, 21000 Dijon, France
| | - Alexandra Oudot
- Centre George-François Leclerc, Service de Médecine Nucléaire, Plateforme d’Imagerie et de Radiothérapie Précliniques, 1 rue du Professeur Marion, 21079 Dijon, France
| | | | - Camille Petitot
- Centre George-François Leclerc, Service de Médecine Nucléaire, Plateforme d’Imagerie et de Radiothérapie Précliniques, 1 rue du Professeur Marion, 21079 Dijon, France
| | - Paul-Michael Walker
- Centre George-François Leclerc, Service de Médecine Nucléaire, Plateforme d’Imagerie et de Radiothérapie Précliniques, 1 rue du Professeur Marion, 21079 Dijon, France
- ImViA Laboratory, EA 7535, University of Burgundy, 21000 Dijon, France
- University Hospital Centre François Mitterrand, 21000 Dijon, France
| | - Richard Decréau
- Institut de Chimie Moléculaire de l’Université de Bourgogne, UMR CNRS/uB 6302, Université de Bourgogne Franche-Comté, 21079 Dijon, France
| | - Bertrand Collin
- Centre George-François Leclerc, Service de Médecine Nucléaire, Plateforme d’Imagerie et de Radiothérapie Précliniques, 1 rue du Professeur Marion, 21079 Dijon, France
- Institut de Chimie Moléculaire de l’Université de Bourgogne, UMR CNRS/uB 6302, Université de Bourgogne Franche-Comté, 21079 Dijon, France
| |
Collapse
|