1
|
Fan M, Li P, Liu B, Gong Y, Luo C, Yang K, Liu X, Fan J, Xue Y. Interface Coordination Engineering of P-Fe 3O 4/Fe@C Derived from an Iron-Based Metal Organic Framework for pH-Universal Water Splitting. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1909. [PMID: 37446424 DOI: 10.3390/nano13131909] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023]
Abstract
Developing electrocatalysts with high energy conversion efficiency is urgently needed. In this work, P-Fe3O4/Fe@C electrodes with rich under-coordinated Fe atom interfaces are constructed for efficient pH-universal water splitting. The introduction of under-coordinated Fe atoms into the P-Fe3O4/Fe@C interface can increase the local charge density and polarize the 3d orbital lone electrons, which promotes water adsorption and activation to release more H*, thus elevating electrocatalytic activity. As a donor-like catalyst, P-Fe3O4/Fe@C displays excellent electrocatalytic performance with overpotentials of 160 mV and 214 mV in acidic and alkaline electrolytes at 10 mA cm-2, in addition to pH-universal long-term stability.
Collapse
Affiliation(s)
- Minmin Fan
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Peixiao Li
- Beijing Smartchip Microelectronics Technology Company Limited, Beijing 102200, China
| | - Baibai Liu
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Yun Gong
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Chengling Luo
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Kun Yang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xinjuan Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jinchen Fan
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuhua Xue
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
2
|
Huang H, Ding M, Zhang Y, Zhang S, Ling Y, Wang W, Zhang S. How organic switches grafting on TiO 2 modifies the surface potentials: theoretical insights. RSC Adv 2023; 13:15148-15156. [PMID: 37213332 PMCID: PMC10193125 DOI: 10.1039/d3ra00537b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/01/2023] [Indexed: 05/23/2023] Open
Abstract
Hybrid organic switch-inorganic semiconductor systems have important applications in both photo-responsive intelligent surfaces and microfluidic devices. In this context, herein, we performed first-principles calculations to investigate a series of organic switches of trans/cis-azobenzene fluoride and pristine/oxidized trimethoxysilane adsorbed on low-index anatase slabs. The trends in the surface-adsorbate interplay were examined in terms of the electronic structures and potential distributions. Consequently, it was found that the cis-azobenzene fluoride (oxidized trimethoxysilane)-terminated anatase surface attains a lower ionization potential than the trans-azobenzene fluoride (pristine trimethoxysilane)-terminated anatase surface due to its smaller induced (larger intrinsic) dipole moment, whose direction points inwards (outwards) from the substrate, which originates from the electron charge redistribution at the interface (polarity of attached hydroxyl groups). By combining the induced polar interaction analysis and the experimental measurements in the literature, we demonstrate that the ionization potential is an important predictor of the surface wetting properties of adsorbed systems. The anisotropic absorbance spectra of anatase grafted with azobenzene fluoride and trimethoxysilane are also related to the photoisomerization and oxidization process under UV irradiation, respectively.
Collapse
Affiliation(s)
- Haiming Huang
- Solid State Physics & Material Research Laboratory, School of Physics and Materials Science, Guangzhou University Guangzhou 510006 China
- Research Center for Advanced Information Materials (CAIM), Huangpu Research and Graduate School of Guangzhou University Guangzhou 510555 China
| | - Mingquan Ding
- Solid State Physics & Material Research Laboratory, School of Physics and Materials Science, Guangzhou University Guangzhou 510006 China
- Research Center for Advanced Information Materials (CAIM), Huangpu Research and Graduate School of Guangzhou University Guangzhou 510555 China
| | - Yu Zhang
- Solid State Physics & Material Research Laboratory, School of Physics and Materials Science, Guangzhou University Guangzhou 510006 China
- Research Center for Advanced Information Materials (CAIM), Huangpu Research and Graduate School of Guangzhou University Guangzhou 510555 China
| | - Shuai Zhang
- Solid State Physics & Material Research Laboratory, School of Physics and Materials Science, Guangzhou University Guangzhou 510006 China
- Research Center for Advanced Information Materials (CAIM), Huangpu Research and Graduate School of Guangzhou University Guangzhou 510555 China
| | - Yiyun Ling
- Solid State Physics & Material Research Laboratory, School of Physics and Materials Science, Guangzhou University Guangzhou 510006 China
| | - Weiliang Wang
- School of Physics, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University Guangzhou 510275 China
| | - Shaolin Zhang
- Solid State Physics & Material Research Laboratory, School of Physics and Materials Science, Guangzhou University Guangzhou 510006 China
- Research Center for Advanced Information Materials (CAIM), Huangpu Research and Graduate School of Guangzhou University Guangzhou 510555 China
| |
Collapse
|
3
|
Zheng F, Guo D, Huang L, Wong LW, Chen X, Wang C, Cai Y, Wang N, Lee C, Lau SP, Ly TH, Ji W, Zhao J. Sub-Nanometer Electron Beam Phase Patterning in 2D Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200702. [PMID: 35723437 PMCID: PMC9376820 DOI: 10.1002/advs.202200702] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/18/2022] [Indexed: 05/17/2023]
Abstract
Phase patterning in polymorphic two-dimensional (2D) materials offers diverse properties that extend beyond what their pristine structures can achieve. If precisely controllable, phase transitions can bring exciting new applications for nanometer-scale devices and ultra-large-scale integrations. Here, the focused electron beam is capable of triggering the phase transition from the semiconducting T'' phase to metallic T' and T phases in 2D rhenium disulfide (ReS2 ) and rhenium diselenide (ReSe2 ) monolayers, rendering ultra-precise phase patterning technique even in sub-nanometer scale is found. Based on knock-on effects and strain analysis, the phase transition mechanism on the created atomic vacancies and the introduced substantial in-plane compressive strain in 2D layers are clarified. This in situ high-resolution scanning transmission electron microscopy (STEM) and in situ electrical characterizations agree well with the density functional theory (DFT) calculation results for the atomic structures, electronic properties, and phase transition mechanisms. Grain boundary engineering and electrical contact engineering in 2D are thus developed based on this patterning technique. The patterning method exhibits great potential in ultra-precise electron beam lithography as a scalable top-down manufacturing method for future atomic-scale devices.
Collapse
Affiliation(s)
- Fangyuan Zheng
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityKowloon999077Hong Kong
- China & Polytechnic University of Hong Kong Shenzhen Research InstituteShenzhen518000China
| | - Deping Guo
- Beijing Key Laboratory of Optoelectronic Functional Materials & Micro‐nano DevicesDepartment of PhysicsRenmin University of ChinaBeijing100872China
| | - Lingli Huang
- Department of Chemistry and Center of Super‐Diamond & Advanced Films (COSDAF)City University of Hong KongKowloon999077Hong Kong
- China & City University of Hong Kong Shenzhen Research InstituteShenzhen518000China
| | - Lok Wing Wong
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityKowloon999077Hong Kong
- China & Polytechnic University of Hong Kong Shenzhen Research InstituteShenzhen518000China
| | - Xin Chen
- Department of Chemistry and Center of Super‐Diamond & Advanced Films (COSDAF)City University of Hong KongKowloon999077Hong Kong
- China & City University of Hong Kong Shenzhen Research InstituteShenzhen518000China
| | - Cong Wang
- Beijing Key Laboratory of Optoelectronic Functional Materials & Micro‐nano DevicesDepartment of PhysicsRenmin University of ChinaBeijing100872China
| | - Yuan Cai
- Department of PhysicsHong Kong University of Science and TechnologyClear water bayHong Kong999077China
| | - Ning Wang
- Department of PhysicsHong Kong University of Science and TechnologyClear water bayHong Kong999077China
| | - Chun‐Sing Lee
- Department of Chemistry and Center of Super‐Diamond & Advanced Films (COSDAF)City University of Hong KongKowloon999077Hong Kong
- China & City University of Hong Kong Shenzhen Research InstituteShenzhen518000China
| | - Shu Ping Lau
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityKowloon999077Hong Kong
- China & Polytechnic University of Hong Kong Shenzhen Research InstituteShenzhen518000China
| | - Thuc Hue Ly
- Department of Chemistry and Center of Super‐Diamond & Advanced Films (COSDAF)City University of Hong KongKowloon999077Hong Kong
- China & City University of Hong Kong Shenzhen Research InstituteShenzhen518000China
| | - Wei Ji
- Beijing Key Laboratory of Optoelectronic Functional Materials & Micro‐nano DevicesDepartment of PhysicsRenmin University of ChinaBeijing100872China
| | - Jiong Zhao
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityKowloon999077Hong Kong
- China & Polytechnic University of Hong Kong Shenzhen Research InstituteShenzhen518000China
| |
Collapse
|
4
|
Huang H, Nassr ABAA, Celorrio V, Gianolio D, Hardacre C, Brett DJL, Russell AE. Contrasting the EXAFS obtained under air and H 2 environments to reveal details of the surface structure of Pt-Sn nanoparticles. Phys Chem Chem Phys 2021; 23:11738-11745. [PMID: 33982041 DOI: 10.1039/d1cp00979f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Understanding the surface structure of bimetallic nanoparticles is crucial for heterogeneous catalysis. Although surface contraction has been established in monometallic systems, less is known for bimetallic systems, especially of nanoparticles. In this work, the bond length contraction on the surface of bimetallic nanoparticles is revealed by XAS in H2 at room temperature on dealloyed Pt-Sn nanoparticles, where most Sn atoms were oxidized and segregated to the surface when measured in air. The average Sn-Pt bond length is found to be ∼0.09 Å shorter than observed in the bulk. To ascertain the effect of the Sn location on the decrease of the average bond length, Pt-Sn samples with lower surface-to-bulk Sn ratios than the dealloyed Pt-Sn were studied. The structural information specifically from the surface was extracted from the averaged XAS results using an improved fitting model combining the data measured in H2 and in air. Two samples prepared so as to ensure the absence of Sn in the bulk were also studied in the same fashion. The bond length of surface Sn-Pt and the corresponding coordination number obtained in this study show a nearly linear correlation, the origin of which is discussed and attributed to the poor overlap between the Sn 5p orbitals and the available orbitals of the Pt surface atoms.
Collapse
Affiliation(s)
- Haoliang Huang
- School of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK.
| | - Abu Bakr Ahmed Amine Nassr
- School of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK. and Fraunhofer Institute for Microstructure of Materials and System, Walter-Hülse-Straße 1, 06120 Halle (Saale), Germany
| | - Verónica Celorrio
- Diamond Light Source Ltd. Diamond House, Harwell Campus, Didcot, OX11 0DE, UK
| | - Diego Gianolio
- Diamond Light Source Ltd. Diamond House, Harwell Campus, Didcot, OX11 0DE, UK
| | - Christopher Hardacre
- School of Natural Sciences, The University of Manchester, The Mill, Manchester, M13 9PL, UK
| | - Dan J L Brett
- Department of Chemical Engineering, University College London (UCL), London, WC1E 7JE, UK
| | - Andrea E Russell
- School of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK.
| |
Collapse
|
5
|
Xu Z, Yan H, Wang Z, Zhang T, Ren Y, Fan T, Liu Y, Guo H. Markedly improved performance of oxide-supported catalysts in hot basic water by three facile ways in synergy. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|