1
|
Chen J, Zhang X, Lv X, Yi S, Fang D. Cellulose-enhanced MoS 2 bifunctional hydrogel for efficient methylene blue degradation, human body sensing, and recyclability. Int J Biol Macromol 2025; 301:140348. [PMID: 39875041 DOI: 10.1016/j.ijbiomac.2025.140348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 01/30/2025]
Abstract
In this study, the dispersion behavior of MoS₂ in ionic liquids (ILs) with varying alkyl chain lengths was the primary focus of investigation, followed by the design of a novel PAM/SMA/CMC/PDA@MoS2 hydrogel. By optimizing the concentrations of CMC and PDA@MoS2, a bifunctional hydrogel with both sensing and catalytic functions was successfully developed. Mechanical tests revealed that the PAM/SMA/CMC0.06/0.09PDA@MoS2 hydrogel exhibited exceptional mechanical properties, with stress (505.24 kPa), strain (2333.34 %), elastic modulus (20.17 kPa), and toughness (3990.97 kJ/m3). Furthermore, the hydrogel demonstrated superior sensing performance, characterized by high sensitivity (GF = 7.67) and a rapid response time (148 ms) across a wide strain range. These properties enable precise monitoring of physiological movements, coupled with long-term cyclic stability, positioning it as a versatile material for sensors and electrodes. Subsequently, in situ stabilized silver nanoparticles (Ag NPs) were used as a template for the catalytic degradation of methylene blue (MB) using discarded human motion monitoring hydrogels. The degradation followed first-order kinetics (k = 0.54 min-1 at 25 °C) with 85 % efficiency sustained over 10 cycles, demonstrating significant stability and recyclability. This strategy integrates sensor recycling with Ag NPs based dye degradation, addressing environmental concerns and highlighting its potential in sustainable applications.
Collapse
Affiliation(s)
- Junzheng Chen
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
| | - Xikun Zhang
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
| | - Xue Lv
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China.
| | - Shurui Yi
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
| | - Di Fang
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
| |
Collapse
|
2
|
Homdi TA, Fagieh TM, Akhtar K, Bakhsh EM, Alhemadan AH, Khan SB. Metal nanoparticles decorated mint-cellulose acetate composite as an efficient catalyst for the reduction of methyl orange. Int J Biol Macromol 2024; 268:131558. [PMID: 38614166 DOI: 10.1016/j.ijbiomac.2024.131558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/16/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Water contamination caused by toxic compounds has emerged as one of the most severe challenges worldwide. Biomass-based nanocomposites offer a sustainable and renewable alternative to conventional materials. In this study, a nanocomposite of mint and cellulose acetate (Mint-CA) was prepared and employed as a supportive material for Cu nanoparticles (CuNPs) and Ag nanoparticles (AgNPs). The selectivity of CuNPs@mint-CA and AgNPs@mint-CA was assessed by comparing their performance in the reduction reaction of various dyes solutions. AgNPs@mint-CA exhibited superior catalytic performance, with a removal of 95.2 % for methyl orange (MO) compared to 68 % with CuNPs@mint-CA. The absorption spectra of MO exhibited a distinct peak at 464 nm. The reduction reaction of MO by AgNPs@mint-CA followed pseudo-first-order-kinetic with a rate constant of k = 0.0063 min-1 (R2 = 0.928). The highest removal of MO was achieved under the following conditions: a catalyst weight of 40 mg, an initial MO concentration of 0.07 mM, the addition of 0.5 mL of 0.1 M NaBH4, and a temperature of 25 °C. Furthermore, the AgNPs@mint-CA catalyst exhibited exceptional reducibility even after five use cycles, highlighting its potential for efficiently removing MO.
Collapse
Affiliation(s)
- Tahani A Homdi
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Taghreed M Fagieh
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Kalsoom Akhtar
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.
| | - Esraa M Bakhsh
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Abeer H Alhemadan
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Sher Bahadar Khan
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| |
Collapse
|
3
|
Jakhrani MA, Bhatti MA, Tahira A, Shah AA, Dawi EA, Vigolo B, Nafady A, Saleem LM, Haj Ismail AAK, Ibupoto ZH. Biogenic Preparation of ZnO Nanostructures Using Leafy Spinach Extract for High-Performance Photodegradation of Methylene Blue under the Illumination of Natural Sunlight. Molecules 2023; 28:molecules28062773. [PMID: 36985746 PMCID: PMC10054875 DOI: 10.3390/molecules28062773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 03/22/2023] Open
Abstract
To cope with environmental pollution caused by toxic emissions into water streams, high-performance photocatalysts based on ZnO semiconductor materials are urgently needed. In this study, ZnO nanostructures are synthesized using leafy spinach extract using a biogenic approach. By using phytochemicals contained in spinach, ZnO nanorods are transformed into large clusters assembled with nanosheets with visible porous structures. Through X-ray diffraction, it has been demonstrated that leafy spinach extract prepared with ZnO is hexagonal in structure. Surface properties of ZnO were altered by using 10 mL, 20 mL, 30 mL, and 40 mL quantities of leafy spinach extract. The size of ZnO crystallites is typically 14 nanometers. In the presence of sunlight, ZnO nanostructures mineralized methylene blue. Studies investigated photocatalyst doses, dye concentrations, pH effects on dye solutions, and scavengers. The ZnO nanostructures prepared with 40 mL of leafy spinach extract outperformed the degradation efficiency of 99.9% for the MB since hydroxyl radicals were primarily responsible for degradation. During degradation, first-order kinetics were observed. Leafy spinach extract could be used to develop novel photocatalysts for the production of solar hydrogen and environmental hydrogen.
Collapse
Affiliation(s)
| | - Muhammad Ali Bhatti
- Institute of Environmental Sciences, University of Sindh, Jamshoro 76080, Pakistan
| | - Aneela Tahira
- Institute of Chemistry, Shah Abdul Latif University, Khairpur Mirs 66111, Pakistan
| | - Aqeel Ahmed Shah
- Department of Metallurgy, NED University of Engineering and Technology, Karachi 75270, Pakistan
| | - Elmuez A. Dawi
- Nonlinear Dynamics Research Centre (NDRC), Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Correspondence: (E.A.D.); (Z.H.I.)
| | - Brigitte Vigolo
- Institute Jean Lamour, Université de Lorraine, CNRS, Institut Jean Lamour (IJL), F-54000 Nancy, France
| | - Ayman Nafady
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Lama M. Saleem
- Biomolecular Science, Earth and Life Science, Amsterdam University, Kruislaan 404, 1098 SM Amsterdam, The Netherlands
| | - Abd Al Karim Haj Ismail
- Nonlinear Dynamics Research Centre (NDRC), Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Zafar Hussain Ibupoto
- Institute of Chemistry, University of Sindh, Jamshoro 76080, Pakistan
- Correspondence: (E.A.D.); (Z.H.I.)
| |
Collapse
|
4
|
Bhosale A, Kadam J, Gade T, Sonawane K, Garadkar K. Efficient photodegradation of methyl orange and bactericidal activity of Ag doped ZnO nanoparticles. J INDIAN CHEM SOC 2023. [DOI: 10.1016/j.jics.2023.100920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
5
|
Qiao Z, Guo P, Yang D, Pei Z, Wang M, Liu J, Wang Q. Evaluation of acute toxicity response to the algae Chlorella pyrenoidosa of biosynthetic silver nanoparticles catalysts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:10955-10968. [PMID: 36087185 DOI: 10.1007/s11356-022-22879-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Biosynthetic of silver nanoparticles (AgNPs) by using fungi has attracted much attention due to its high catalytic efficiency and environmentally friendly characteristic. However, a few studies have focused on the ecological toxicity effects of biogenic AgNPs on algae. Here, we first investigated the catalytic reduction of 4-nitrophenol (4-NP) by WZ07-AgNPs biosynthesized by Letendraea sp. WZ07. WZ07-AgNPs had significant catalytic activity with 97.08% degradation of 4-NP in 3.5 min. Then, the toxic effects of WZ07-AgNPs and commercial-AgNPs were compared by Chlorella pyrenoidosa growth, chlorophyll content, protein content, physiological, and biochemical indexes. The results demonstrated that the algal cell biomass of C. pyrenoidosa was differentially inhibited after exposure to different concentrations of AgNPs, which showed concentration dependence and time dependence. The 96h-EC50 values of WZ07-AgNPs and commercial-AgNPs on C. pyrenoidosa were 15.99 mg/mL and 12.69 mg/mL, respectively. With the increase concentration of AgNPs, the chlorophyll content was gradually decreased, the protein content was first increased and then decreased, the activities of superoxide dismutase (SOD) and catalase (CAT) were decreased, and the level of malondialdehyde (MDA) was increased significantly of C. pyrenoidosa. In general, AgNPs affect the growth of algae to some extent. However, compared with commercial-AgNPs, WZ07-AgNPs is less toxic to C. pyrenoidosa, which could be used as a potential and an eco-friendly catalyst. This study provides a basis for the safe application of biosynthetic AgNPs.
Collapse
Affiliation(s)
- Zipeng Qiao
- Department of Bioengineering and Technology, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, 361021, People's Republic of China
| | - Peiyong Guo
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, 361021, People's Republic of China
- Institute of Environmental and Resources Technology, Huaqiao University, Xiamen, 361021, People's Republic of China
| | - Daomao Yang
- Department of Bioengineering and Technology, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, 361021, People's Republic of China
| | - Zhenqiao Pei
- Department of Bioengineering and Technology, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, 361021, People's Republic of China
| | - Mingyuan Wang
- Department of Bioengineering and Technology, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, 361021, People's Republic of China
| | - Jianfu Liu
- Department of Bioengineering and Technology, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, 361021, People's Republic of China
| | - Qizhi Wang
- Department of Bioengineering and Technology, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, 361021, People's Republic of China.
| |
Collapse
|
6
|
Naz S, Bibi G, Jamil S, UrRehman S, Bibi S, Ali S, Khan T, Rauf Khan S, Janjua MRSA. Preparation of manganese-doped tin oxide nanoparticles for catalytic reduction of organic dyes. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Das TK, Das NC. Advances on catalytic reduction of 4-nitrophenol by nanostructured materials as benchmark reaction. INTERNATIONAL NANO LETTERS 2022. [DOI: 10.1007/s40089-021-00362-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Thermal stability, paramagnetic properties, morphology and antioxidant activity of iron oxide nanoparticles synthesized by chemical and green methods. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Khan M, Ware P, Shimpi N. Synthesis of ZnO nanoparticles using peels of Passiflora foetida and study of its activity as an efficient catalyst for the degradation of hazardous organic dye. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04436-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
AbstractCreating a sustainable and effective approach to handling organic contaminants from industrial waste is an ongoing problem. In the present study, ZnO nanoparticles (ZnO NPs) were synthesized under a controlled ultrasound cavitation technique using the extract of Passiflora foetida fruit peels, which act as a reducing (i.e., reduction of metal salt) and stabilizing agent. The formation of monodispersed and hexagonal morphology (average size approximately 58 nm with BET surface area 30.83m2/g). The synthesized ZnO NPs were characterized by a various technique such as UV–visible spectroscopy, X-ray diffraction (XRD), Fourier-transform infrared (FTIR), Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), Transmission electron microscopy (TEM), Thermogravimetric analysis (TGA) and Dynamic light scattering (DLS). Further, the XRD pattern confirmed the hexagonal wurtzite structure of synthesized ZnONPs. The ZnO NPs exhibit excellent degradation efficiency towards organic pollutant dyes, i.e., Methylene blue (MB) (93.25% removal) and Rhodamine B (91.06% removal) in 70 min, under natural sunlight with apparent rate constant 0.0337 min−1 (R2 = 0.9749) and 0.0347 min−1 (R2 = 0.9026) respectively.Zeta potential study shows the presence of a negative charge on the surface of ZnO NPs. The use of green synthesized ZnO NPs is a good choice for wastewater treatment, given their high reusability and photocatalytic efficiency, along with adaptability to green synthesis.
Collapse
|
10
|
Ultrasonic-assisted biosynthesis of ZnO nanoparticles using Sonneratia alba leaf extract and investigation of its photocatalytic and biological activities. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02036-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
Ceballos RL, von Bilderling C, Guz L, Bernal C, Famá L. Effect of greenly synthetized silver nanoparticles on the properties of active starch films obtained by extrusion and compression molding. Carbohydr Polym 2021; 261:117871. [PMID: 33766358 DOI: 10.1016/j.carbpol.2021.117871] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022]
Abstract
Replacing packaging plastics with biodegradable active materials is an emerging concern. In this context, thermoplastic starch (TPS) films and nanocomposites containing different concentrations of silver nanoparticles synthetized with starch and yerba mate (TPS-AgNP1: 0.006 wt.% and TPS-AgNP2: 0.015 wt.%) were developed by extrusion and compression molding. Spherical AgNP of 20-130 nm were obtained after the green synthesis and excellent adhesion between AgNP and the matrix was observed. Consequently, both composites exhibited higher stiffness and tensile strength values than TPS, indicating a reinforcing effect of AgNP. TPS-AgNP1 showed the highest strain at break and toughness values, and TPS-AgNP2 presented the lowest moisture content and ability to delay E. coli growth. Additionally, all materials disintegrated after 4 weeks of burial and resulted thermally stable up to 240 °C. This investigation provides a convenient and inexpensive way to develop starch-based nanocomposites with improved properties which appear to be promising as active packaging materials.
Collapse
Affiliation(s)
- Rocío L Ceballos
- Laboratorio de Polímeros y Materiales Compuestos (LP&MC), Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires e Instituto de Física de Buenos Aires (IFIBA-CONICET), Intendente Güiraldes 2160 (C1428EGA), Pabellón 1, Ciudad Universitaria, Buenos Aires, Argentina.
| | - Catalina von Bilderling
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA, CONICET-UNLP), Diagonal 113, Casco Urbano, B1900, La Plata, Provincia de Buenos Aires, Argentina; Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160 (C1428EGA), Pabellón 1, Ciudad Universitaria, Buenos Aires, Argentina.
| | - Lucas Guz
- Laboratorio de Polímeros y Materiales Compuestos (LP&MC), Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires e Instituto de Física de Buenos Aires (IFIBA-CONICET), Intendente Güiraldes 2160 (C1428EGA), Pabellón 1, Ciudad Universitaria, Buenos Aires, Argentina; Instituto de Investigación e Ingeniería Ambiental (IIIA), CONICET, Universidad Nacional de San Martín, 25 de Mayo y Francia (1650), San Martín, Provincia de Buenos Aires, Argentina.
| | - Celina Bernal
- Instituto de Tecnología en Polímeros y Nanotecnología (ITPN, UBA-CONICET), Facultad de Ingeniería, Universidad de Buenos Aires, Av. Las Heras 2214 (1127), Buenos Aires, Argentina.
| | - Lucía Famá
- Laboratorio de Polímeros y Materiales Compuestos (LP&MC), Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires e Instituto de Física de Buenos Aires (IFIBA-CONICET), Intendente Güiraldes 2160 (C1428EGA), Pabellón 1, Ciudad Universitaria, Buenos Aires, Argentina.
| |
Collapse
|
12
|
Green and facile fabrication of silver nanoparticles using Konjac Glucomannan by photocatalytic strategy. Carbohydr Polym 2020; 245:116576. [DOI: 10.1016/j.carbpol.2020.116576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/22/2020] [Accepted: 06/03/2020] [Indexed: 12/19/2022]
|
13
|
Polydopamine assisted synthesis of ultrafine silver nanoparticles for heterogeneous catalysis and water remediation. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.nanoso.2020.100489] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
14
|
Effect of biosynthesis of ZnO nanoparticles via Cucurbita seed extract on Culex tritaeniorhynchus mosquito larvae with its biological applications. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 200:111650. [DOI: 10.1016/j.jphotobiol.2019.111650] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/03/2019] [Accepted: 10/10/2019] [Indexed: 11/21/2022]
|
15
|
Extremely concentrated silver nanoparticles stabilized in aqueous solution by Bovine Serum Albumin (BSA). ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.nanoso.2019.100349] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Antioxidant flavone functionalized fluorescent and biocompatible metal nanoparticles: Exploring their efficacy as cell imaging agents. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.nanoso.2019.100278] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
17
|
Microwave-assisted solid-state synthesis of Au nanoparticles, size-selective speciation, and their self-assembly into 2D-superlattice. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.nanoso.2019.01.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|