1
|
Grosso A, Borrelli E, Sacchi M, Calzetti G, Ceruti P, Neri G, Marchetti M, Pinna A, Kostin V, Reibaldi M, Borsello T, Vizzeri G. Neuroprotection beyond intraocular pressure: game changer or quiet addiction. Graefes Arch Clin Exp Ophthalmol 2025:10.1007/s00417-025-06816-7. [PMID: 40188286 DOI: 10.1007/s00417-025-06816-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/23/2025] [Accepted: 03/24/2025] [Indexed: 04/07/2025] Open
Abstract
The topic of neuroprotection in glaucoma and age-related macular degeneration (AMD) is well disseminated in the literature. However, the problem is providing ophthalmologists with clear, evidence-based messages to draw on. This review examines the landscape of neuroprotective therapies for glaucoma and AMD. While promising neuroprotective agents, such as citicoline and nicotinamide, have been explored for their potential to mitigate neurodegeneration in glaucoma, robust clinical evidence validating their efficacy remains limited and there is a need for further large-scale, long-term studies to substantiate the neuroprotective effects of these agents. Maintaining low intraocular pressure plays a vital role in preventing neuronal death in glaucoma. AMD has traditionally been considered a disease affecting the outer retinal layers; however, growing evidence suggests that the inner layers are also involved. Neuroprotection is an emerging area of research, with strategies focusing on alleviating oxidative stress, inflammation and apoptosis. A reassessment of clinical endpoints and methodologies in neuroprotection research is critical to better evaluate the efficacy of these therapies in glaucoma and AMD.
Collapse
Affiliation(s)
- A Grosso
- Centre for Macular Research, Via Roma, San Mauro Torinese, Italy.
| | - E Borrelli
- Department of Surgical Sciences, University of Turin, Turin, Italy
- Department of Ophthalmology, "City of Health and Science" Hospital, Turin, Italy
| | - M Sacchi
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
- Ophthalmology Unit, Azienda Ospedaliero-Universitaria Di Sassari, Sassari, Italy
| | - G Calzetti
- Vista Vision Eye Clinic, Brescia, Italy
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
| | - P Ceruti
- "Mater Salutis" Legnago and "Fracastoro" San Bonifacio (AULSS 9 Scaligera) Hospitals, Legnago, Italy
| | - G Neri
- Department of Surgical Sciences, University of Turin, Turin, Italy
- Department of Ophthalmology, "City of Health and Science" Hospital, Turin, Italy
| | - M Marchetti
- Ophthalmology Unit, Azienda Ospedaliero-Universitaria Di Sassari, Sassari, Italy
| | - A Pinna
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
- Ophthalmology Unit, Azienda Ospedaliero-Universitaria Di Sassari, Sassari, Italy
| | - V Kostin
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Faculty of Medicine, University of Basel, Basel, Switzerland
| | - M Reibaldi
- Department of Surgical Sciences, University of Turin, Turin, Italy
- Department of Ophthalmology, "City of Health and Science" Hospital, Turin, Italy
| | - T Borsello
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
- IRCCS-Istituto Di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | - G Vizzeri
- Department of Ophthalmology and Visual Sciences, The University of Texas Medical Branch, Galvelson, TX, USA
| |
Collapse
|
2
|
Matamoros JA, Rubio-Casado S, Fernández-Albarral JA, Martínez-López MA, Salobrar-García E, Marco EM, Paleo-García V, de Hoz R, López-Cuenca I, Elvira-Hurtado L, Sánchez-Puebla L, Ramírez JM, Salazar JJ, López-Gallardo M, Ramírez AI. Neuroprotective Effect of the Combination of Citicoline and CoQ10 in a Mouse Model of Ocular Hypertension. Antioxidants (Basel) 2024; 14:4. [PMID: 39857338 PMCID: PMC11761561 DOI: 10.3390/antiox14010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/19/2024] [Accepted: 12/21/2024] [Indexed: 01/27/2025] Open
Abstract
Glaucoma is a neurodegenerative disease characterized by the loss of retinal ganglion cells (RGCs), with intraocular pressure (IOP) being its primary risk factor. Despite controlling IOP, the neurodegenerative process often continues. Therefore, substances with neuroprotective, antioxidant, and anti-inflammatory properties could protect against RGC death. This study investigated the neuroprotective effects on RGCs and visual pathway neurons of a compound consisting of citicoline and coenzyme Q10 (CoQ10) in a mouse model of unilateral, laser-induced ocular hypertension (OHT). Four groups of mice were used: vehicle group (n = 6), citicoline + CoQ10 group (n = 6), laser-vehicle group (n = 6), and laser-citicoline + CoQ10 group (n = 6). The citicoline + CoQ10 was administered orally once a day starting 15 days before laser treatment, continuing until sacrifice (7 days post-laser). Retinas, the dorsolateral geniculate nucleus (dLGN), the superior colliculus (SC), and the visual cortex (V1) were analyzed. The citicoline + CoQ10 compound used in the laser-citicoline + CoQ10 group demonstrated (1) an ocular hypotensive effect only at 24 h post-laser; (2) prevention of Brn3a+ RGC death in OHT eyes; and (3) no changes in NeuN+ neurons in the dLGN. This study demonstrates that the oral administration of the citicoline + CoQ10 combination may exert a neuroprotective effect against RGC death in an established rodent model of OHT.
Collapse
Affiliation(s)
- José A. Matamoros
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.); (J.J.S.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Sara Rubio-Casado
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.); (J.J.S.)
- Department of Immunology, Ophthalmology and ORL, Faculty of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - José A. Fernández-Albarral
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.); (J.J.S.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Miguel A. Martínez-López
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.); (J.J.S.)
- Department of Immunology, Ophthalmology and ORL, Faculty of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Elena Salobrar-García
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.); (J.J.S.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Eva M. Marco
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.); (J.J.S.)
- Department of Genetics, Microbiology and Physiology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain
| | - Victor Paleo-García
- Department of Physiology, Faculty of Medicine, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Rosa de Hoz
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.); (J.J.S.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Inés López-Cuenca
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.); (J.J.S.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Lorena Elvira-Hurtado
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.); (J.J.S.)
| | - Lidia Sánchez-Puebla
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.); (J.J.S.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
- Department of Immunology, Ophthalmology and ORL, Faculty of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - José M. Ramírez
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.); (J.J.S.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
- Department of Immunology, Ophthalmology and ORL, Faculty of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Juan J. Salazar
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.); (J.J.S.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Meritxell López-Gallardo
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.); (J.J.S.)
- Department of Physiology, Faculty of Medicine, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Ana I. Ramírez
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.); (J.J.S.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
3
|
Chang K, Cheng M, Tang H, Lin C, Chen C. Dysregulation of choline metabolism and therapeutic potential of citicoline in Huntington's disease. Aging Cell 2024; 23:e14302. [PMID: 39143698 PMCID: PMC11561662 DOI: 10.1111/acel.14302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024] Open
Abstract
Huntington's disease (HD) is associated with dysregulated choline metabolism, but the underlying mechanisms remain unclear. This study investigated the expression of key enzymes in this pathway in R6/2 HD mice and human HD postmortem brain tissues. We further explored the therapeutic potential of modulating choline metabolism for HD. Both R6/2 mice and HD patients exhibited reduced expression of glycerophosphocholine phosphodiesterase 1 (GPCPD1), a key enzyme in choline metabolism, in the striatum and cortex. The striatum of R6/2 mice also showed decreased choline and phosphorylcholine, and increased glycerophosphocholine, suggesting disruption in choline metabolism due to GPCPD1 deficiency. Treatment with citicoline significantly improved motor performance, upregulated anti-apoptotic Bcl2 expression, and reduced oxidative stress marker malondialdehyde in both brain regions. Metabolomic analysis revealed partial restoration of disrupted metabolic patterns in the striatum and cortex following citicoline treatment. These findings strongly suggest the role of GPCPD1 deficiency in choline metabolism dysregulation in HD. The therapeutic potential of citicoline in R6/2 mice highlights the choline metabolic pathway as a promising target for future HD therapies.
Collapse
Affiliation(s)
- Kuo‐Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital‐Linkou Medical CenterChang Gung University School of MedicineTaoyuanTaiwan
| | - Mei‐Ling Cheng
- Department of Biomedical SciencesChang Gung UniversityTaoyuanTaiwan
- Metabolomics Core Laboratory, Healthy Aging Research CenterChang Gung UniversityTaoyuanTaiwan
- Clinical Metabolomics Core Core LaboratoryChang Gung Memorial Hospital at LinkouTaoyuanTaiwan
| | - Hsiang‐Yu Tang
- Metabolomics Core Laboratory, Healthy Aging Research CenterChang Gung UniversityTaoyuanTaiwan
| | - Chung‐Yin Lin
- Department of Neurology, Chang Gung Memorial Hospital‐Linkou Medical CenterChang Gung University School of MedicineTaoyuanTaiwan
- Institute for Radiological ResearchChang Gung UniversityTaoyuanTaiwan
| | - Chiung‐Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital‐Linkou Medical CenterChang Gung University School of MedicineTaoyuanTaiwan
| |
Collapse
|
4
|
Cavalu S, Saber S, Ramadan A, Elmorsy EA, Hamad RS, Abdel-Reheim MA, Youssef ME. Unveiling citicoline's mechanisms and clinical relevance in the treatment of neuroinflammatory disorders. FASEB J 2024; 38:e70030. [PMID: 39221499 DOI: 10.1096/fj.202400823r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/07/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Citicoline, a compound produced naturally in small amounts in the human body, assumes a pivotal role in phosphatidylcholine synthesis, a dynamic constituent of membranes of neurons. Across diverse models of brain injury and neurodegeneration, citicoline has demonstrated its potential through neuroprotective and anti-inflammatory effects. This review aims to elucidate citicoline's anti-inflammatory mechanism and its clinical implications in conditions such as ischemic stroke, head trauma, glaucoma, and age-associated memory impairment. Citicoline's anti-inflammatory prowess is rooted in its ability to stabilize cellular membranes, thereby curbing the excessive release of glutamate-a pro-inflammatory neurotransmitter. Moreover, it actively diminishes free radicals and inflammatory cytokines productions, which could otherwise harm neurons and incite neuroinflammation. It also exhibits the potential to modulate microglia activity, the brain's resident immune cells, and hinder the activation of NF-κB, a transcription factor governing inflammatory genes. Clinical trials have subjected citicoline to rigorous scrutiny in patients grappling with acute ischemic stroke, head trauma, glaucoma, and age-related memory impairment. While findings from these trials are mixed, numerous studies suggest that citicoline could confer improvements in neurological function, disability reduction, expedited recovery, and cognitive decline prevention within these cohorts. Additionally, citicoline boasts a favorable safety profile and high tolerability. In summary, citicoline stands as a promising agent, wielding both neuroprotective and anti-inflammatory potential across a spectrum of neurological conditions. However, further research is imperative to delineate the optimal dosage, treatment duration, and underlying mechanisms. Moreover, identifying specific patient subgroups most likely to reap the benefits of citicoline as a new therapy remains a critical avenue for exploration.
Collapse
Affiliation(s)
- Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Asmaa Ramadan
- Department of Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Elsayed A Elmorsy
- Department of Pharmacology and Therapeutics, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Rabab S Hamad
- Biological Sciences Department, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
- Central Laboratory, Theodor Bilharz Research Institute, Giza, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, Egypt
| | - Mahmoud E Youssef
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| |
Collapse
|
5
|
Chen J, Bao J, Jiang X, Yu W, Han Y, Zhang X, Zhang Y, Deng G. Astragaloside IV protects brain cells from ischemia-reperfusion injury by inhibiting ryanodine receptor expression and reducing the expression of P-Src and P-GRK2. Sci Rep 2024; 14:17497. [PMID: 39080440 PMCID: PMC11289356 DOI: 10.1038/s41598-024-68462-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 07/24/2024] [Indexed: 08/02/2024] Open
Abstract
Astragaloside IV, a prime active component of Astragalus membranaceus, has potential as a neuroprotectant. We aimed to identify the active ingredients in A. membranaceus and assess if Astragaloside IV can improve cerebral ischemia-reperfusion injury (CIRI) cell apoptosis by reducing P-Src and P-GRK2 via ryanodine receptor (RyR) expression inhibition. We used bioinformatics analysis to examine the effects of A. membranaceus on ischemic stroke. We studied brain samples from middle cerebral artery occlusion (MCAO) mice treated with normal saline, Astragaloside IV, and sham mice for pathology and Western blot tests. We also tested PC12 cells in vitro with or without Astragaloside IV or GSK180736A using Western blotting and fluorescence assays. Our bioinformatics analysis suggested a possible association between A. membranaceus, calcium ion pathways, and apoptosis pathways. Western blot data indicated Astragaloside IV significantly decreased RyR, p-Src, and downstream phosphorylated GRK2, PLC, CaMKII, and IP3R levels in MCAO mice brains. Astragaloside IV also considerably inhibited pro-apoptotic and oxidative stress-associated proteins' expression while boosting anti-apoptotic protein expression. The results suggest Astragaloside IV can inhibit RyR expression, subsequently reducing brain cell apoptosis.
Collapse
Affiliation(s)
- Juan Chen
- College of Basic Medicine, Hebei University of Chinese Medicine, No.3 Xingyuan Road, Shijiazhuang, 050200, Hebei, China
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, 518034, Guangdong, China
| | - Jun Bao
- College of Basic Medicine, Hebei University of Chinese Medicine, No.3 Xingyuan Road, Shijiazhuang, 050200, Hebei, China
| | - Xiujuan Jiang
- College of Basic Medicine, Hebei University of Chinese Medicine, No.3 Xingyuan Road, Shijiazhuang, 050200, Hebei, China
| | - Wentao Yu
- College of Basic Medicine, Hebei University of Chinese Medicine, No.3 Xingyuan Road, Shijiazhuang, 050200, Hebei, China
| | - Yunpeng Han
- College of Basic Medicine, Hebei University of Chinese Medicine, No.3 Xingyuan Road, Shijiazhuang, 050200, Hebei, China
| | - Xia Zhang
- College of Basic Medicine, Hebei University of Chinese Medicine, No.3 Xingyuan Road, Shijiazhuang, 050200, Hebei, China
| | - Ying Zhang
- College of Nursing, Hebei University of Chinese Medicine, No.3 Xingyuan Road, Shijiazhuang, 050200, Hebei, China.
- Hebei Key Laboratory of Health Care with Traditional Chinese Medicine, Shijiazhuang, 050200, Hebei, China.
| | - Guoxing Deng
- College of Basic Medicine, Hebei University of Chinese Medicine, No.3 Xingyuan Road, Shijiazhuang, 050200, Hebei, China.
| |
Collapse
|
6
|
Ferrari S, Mulè S, Galla R, Brovero A, Genovese G, Molinari C, Uberti F. Effects of Nutraceutical Compositions Containing Rhizoma Gastrodiae or Lipoic Acid in an In Vitro Induced Neuropathic Pain Model. Int J Mol Sci 2024; 25:2376. [PMID: 38397054 PMCID: PMC10889561 DOI: 10.3390/ijms25042376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Peripheral neuropathy is caused by a malfunction in the axons and myelin sheaths of peripheral nerves and motor and sensory neurons. In this context, nonpharmacological treatments with antioxidant potential have attracted much attention due to the issues that some conventional pharmaceutical therapy can generate. Most of these treatments contain lipoic acid, but issues have emerged regarding its use. Considering this, the present study evaluated the beneficial effects of nutraceuticals based on Gastrodiae elata dry extract 10:1 or lipoic acid in combination with other substances (such as citicholine, B vitamins, and acetyl L-carnitine). METHOD To assess the combination's absorption and biodistribution and exclude cytotoxicity, its bioavailability was first examined in a 3D intestinal barrier model that replicated oral ingestion. Subsequently, a 3D model of nerve tissue was constructed to investigate the impacts of the new combination on the significant pathways dysregulated in peripheral neuropathy. RESULTS Our findings show that the novel combination outperformed in initial pain relief response and in recovering the mechanism of nerve healing following Schwann cell injury by successfully crossing the gut barrier and reaching the target site. CONCLUSION This article describes a potential alternative nutraceutical approach supporting the effectiveness of combinations with Gastrodiae elata extract in decreasing neuropathy and regulating pain pathways.
Collapse
Affiliation(s)
- Sara Ferrari
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy; (S.F.); (S.M.); (R.G.); (G.G.)
| | - Simone Mulè
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy; (S.F.); (S.M.); (R.G.); (G.G.)
| | - Rebecca Galla
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy; (S.F.); (S.M.); (R.G.); (G.G.)
- Noivita Srls, Spin-Off, Via Alfieri 3, 28100 Novara, Italy
| | - Arianna Brovero
- Dipartimento di Scienze Cliniche e Biologiche, Università Degli Studi di Torino, 10043 Torino, Italy;
| | - Giulia Genovese
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy; (S.F.); (S.M.); (R.G.); (G.G.)
| | - Claudio Molinari
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica, University of Piemonte Orientale, 13100 Vercelli, Italy;
| | - Francesca Uberti
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy; (S.F.); (S.M.); (R.G.); (G.G.)
| |
Collapse
|
7
|
Gareri P, Cotroneo AM, Montella R, Gaglianone M, Putignano S. Citicoline: A Cholinergic Precursor with a Pivotal Role in Dementia and Alzheimer's Disease. J Alzheimers Dis 2024; 100:725-733. [PMID: 38905051 PMCID: PMC11307077 DOI: 10.3233/jad-240497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2024] [Indexed: 06/23/2024]
Abstract
Background Citicoline is a naturally occurring compound with pleiotropic effects on neuronal function and cognitive processes. Objective Based on previous studies, which shed light on the positive effects of citicoline 1 g when combined with acetylcholinesterase inhibitors (AChEIs) and/or memantine, we further investigated the benefits of citicoline in combination therapy in Alzheimer's disease and mixed dementia. Methods We integrated the datasets of CITIMEM and CITIDEMAGE, increasing the overall sample size to enhance statistical power. We analyzed data from these two investigator-initiated studies involving 295 patients. The primary outcome was the assessment over time of the effects of combined treatment versus memantine given alone or AChEI plus memantine on cognitive functions assessed by Mini-Mental State Examination (MMSE). The secondary outcomes were the influence of combined treatment on daily life functions, mood, and behavioral symptoms assessed by activities of daily life (ADL) and instrumental ADL, Geriatric Depression Scale, and Neuropsychiatric Inventory Scale. One-hundred-forty-three patients were treated with memantine and/or AChEI (control group), and 152 patients were treated with memantine and/or AChEI plus citicoline 1 g/day orally (Citicoline group). Results A significant difference in MMSE score was found in the average between the two groups of treatment at 6 and 12 months. Conclusions This study confirmed the effectiveness of combined citicoline treatment in patients with mixed dementia and Alzheimer's disease, with a significant effect on the increase of MMSE score over time. The treated group also showed a significant reduction in the Geriatric Depression Scale and a significant increase in the instrumental ADL scale.
Collapse
Affiliation(s)
- Pietro Gareri
- Unit of Frailty, Center of Cognitive Impairment and Dementia, Catanzaro Lido, ASP Catanzaro, Catanzaro Lido, Italy
| | | | | | | | | |
Collapse
|
8
|
Goel D, Shangari S, Mittal M, Bhat A. Endogenous defense mechanism-based neuroprotection in large-vessel acute ischemic stroke: A hope for future. Brain Circ 2024; 10:51-59. [PMID: 38655439 PMCID: PMC11034449 DOI: 10.4103/bc.bc_56_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Stroke is a leading cause of morbidity and mortality worldwide and a leading cause of disability. None of the neuroprotective agents have been approved internationally except edaravone in Japanese guidelines in acute ischemic stroke. We here discuss that there are two types of endogenous defense mechanisms (EDMs) after acute stroke for neuromodulation and neuroregeneration, and if both can be activated simultaneously, then we can have better recovery in stroke. AIMS AND OBJECTIVES We aimed to study the effect of combination of neuroprotection therapies acting on the two wings of EDM in acute large-vessel middle cerebral artery (LMCA) ischemic stroke. METHODS Sixty patients of LMCA stroke were enrolled and randomized within 72 h into two groups of 30 patients each. The control group received standard medical care without any neuroprotective agents while the intervention group received standard medical care combined with oral citicoline with vinpocetine for 3 months with initial 1 week intravenous and edaravone and cerebrolysin injection, started within 72 h of onset of stroke. Patients were assessed on the basis of the National Institutes of Health Stroke Scale, Fugl-Meyer Assessment Score, Glasgow Coma Scale, and Mini-Mental Status Examination at admission, discharge, and after 90 days. RESULTS The intervention group showed significant and early improvements in motor as well as cognitive recovery. CONCLUSION Combination therapy for neuroprotection which is acting on two pathways of EDM can be useful in functional recovery after acute ischemic stroke.
Collapse
Affiliation(s)
- Deepak Goel
- Department of Neurology, Swami Rama Himalayan University, Dehradun, Uttarakhand, India
| | - Sushant Shangari
- Department of Neurology, Swami Rama Himalayan University, Dehradun, Uttarakhand, India
| | - Manish Mittal
- Department of Neurology, Swami Rama Himalayan University, Dehradun, Uttarakhand, India
| | - Ashwani Bhat
- Department of Neurology, Swami Rama Himalayan University, Dehradun, Uttarakhand, India
| |
Collapse
|
9
|
Gudi V, Grieb P, Linker RA, Skripuletz T. CDP-choline to promote remyelination in multiple sclerosis: the need for a clinical trial. Neural Regen Res 2023; 18:2599-2605. [PMID: 37449595 DOI: 10.4103/1673-5374.373671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
Multiple sclerosis is a multifactorial chronic inflammatory disease of the central nervous system that leads to demyelination and neuronal cell death, resulting in functional disability. Remyelination is the natural repair process of demyelination, but it is often incomplete or fails in multiple sclerosis. Available therapies reduce the inflammatory state and prevent clinical relapses. However, therapeutic approaches to increase myelin repair in humans are not yet available. The substance cytidine-5'-diphosphocholine, CDP-choline, is ubiquitously present in eukaryotic cells and plays a crucial role in the synthesis of cellular phospholipids. Regenerative properties have been shown in various animal models of diseases of the central nervous system. We have already shown that the compound CDP-choline improves myelin regeneration in two animal models of multiple sclerosis. However, the results from the animal models have not yet been studied in patients with multiple sclerosis. In this review, we summarise the beneficial effects of CDP-choline on biolipid metabolism and turnover with regard to inflammatory and regenerative processes. We also explain changes in phospholipid and sphingolipid homeostasis in multiple sclerosis and suggest a possible therapeutic link to CDP-choline.
Collapse
Affiliation(s)
- Viktoria Gudi
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Paweł Grieb
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Ralf A Linker
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | | |
Collapse
|
10
|
Al-kuraishy HM, Al-Buhadily AK, Al-Gareeb AI, Alorabi M, Hadi Al-Harcan NA, El-Bouseary MM, Batiha GES. Citicoline and COVID-19: vis-à-vis conjectured. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:1463-1475. [PMID: 36063198 PMCID: PMC9442587 DOI: 10.1007/s00210-022-02284-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/23/2022] [Indexed: 11/29/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is a current pandemic disease caused by a novel severe acute respiratory syndrome coronavirus virus respiratory type 2 (SARS-CoV-2). SARS-CoV-2 infection is linked with various neurological manifestations due to cytokine-induced disruption of the blood brain barrier (BBB), neuroinflammation, and peripheral neuronal injury, or due to direct SARS-CoV-2 neurotropism. Of note, many repurposed agents were included in different therapeutic protocols in the management of COVID-19. These agents did not produce an effective therapeutic eradication of SARS-CoV-2, and continuing searching for novel anti-SARS-CoV-2 agents is a type of challenge nowadays. Therefore, this study aimed to review the potential anti-inflammatory and antioxidant effects of citicoline in the management of COVID-19.
Collapse
Affiliation(s)
- Hayder M. Al-kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriya University, Baghdad, Iraq
| | - Ali K. Al-Buhadily
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriya University, Baghdad, Iraq
| | - Ali I. Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriya University, Baghdad, Iraq
| | - Mohammed Alorabi
- Department of Biotechnology, College of Sciences, Taif University, P.O. Box 11099, Taif, 21944 Saudi Arabia
| | - Nasser A. Hadi Al-Harcan
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Rasheed University College, Baghdad, Iraq
| | - Maisra M. El-Bouseary
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, AlBeheira, Damanhour, 22511 Egypt
| |
Collapse
|
11
|
Liu Y, Yang G, Cui W, Zhang Y, Liang X. Regulatory mechanisms of tetramethylpyrazine on central nervous system diseases: A review. Front Pharmacol 2022; 13:948600. [PMID: 36133805 PMCID: PMC9483103 DOI: 10.3389/fphar.2022.948600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Central nervous system (CNS) diseases can lead to motor, sensory, speech, cognitive dysfunction, and sometimes even death. These diseases are recognized to cause a substantial socio-economic impact on a global scale. Tetramethylpyrazine (TMP) is one of the main active ingredients extracted from the Chinese herbal medicine Ligusticum striatum DC. (Chuan Xiong). Many in vivo and in vitro studies have demonstrated that TMP has a certain role in the treatment of CNS diseases through inhibiting calcium ion overload and glutamate excitotoxicity, anti-oxidative/nitrification stress, mitigating inflammatory response, anti-apoptosis, protecting the integrity of the blood-brain barrier (BBB) and facilitating synaptic plasticity. In this review, we summarize the roles and mechanisms of action of TMP on ischemic cerebrovascular disease, spinal cord injury, Parkinson’s disease, Alzheimer’s disease, cognitive impairments, migraine, and depression. Our review will provide new insights into the clinical applications of TMP and the development of novel therapeutics.
Collapse
Affiliation(s)
- Yue Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guang Yang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenqiang Cui
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yunling Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yunling Zhang, ; Xiao Liang,
| | - Xiao Liang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yunling Zhang, ; Xiao Liang,
| |
Collapse
|
12
|
Effects of Citicoline on Structural/Functional Consequences of Focal Ischemia of the Rat Brain. NEUROPHYSIOLOGY+ 2022. [DOI: 10.1007/s11062-022-09918-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Bekhet MA, Ali AA, Kharshoum RM, El-Ela FIA, Salem HF. Intranasal Niosomal in situ Gel as a Novel Strategy for Improving Citicoline Efficacy and Brain Delivery in Treatment of Epilepsy: In vitro and ex vivo characterization and in vivo pharmacodynamics investigation. J Pharm Sci 2022; 111:2258-2269. [DOI: 10.1016/j.xphs.2022.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 12/13/2022]
|
14
|
Sharif-Alhosein M, Khormali M, Mohammadi F, Amouzade M, Baigi V. Citicoline for traumatic brain injuries: A systematic review and implications for future research. ARCHIVES OF TRAUMA RESEARCH 2022. [DOI: 10.4103/atr.atr_51_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Citicoline and COVID-19-Related Cognitive and Other Neurologic Complications. Brain Sci 2021; 12:brainsci12010059. [PMID: 35053804 PMCID: PMC8782421 DOI: 10.3390/brainsci12010059] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 02/07/2023] Open
Abstract
With growing concerns about COVID-19’s hyperinflammatory condition and its potentially damaging impact on the neurovascular system, there is a need to consider potential treatment options for managing short- and long-term effects on neurological complications, especially cognitive function. While maintaining adequate structure and function of phospholipid in brain cells, citicoline, identical to the natural metabolite phospholipid phosphatidylcholine precursor, can contribute to a variety of neurological diseases and hypothetically toward post-COVID-19 cognitive effects. In this review, we comprehensively describe in detail the potential citicoline mechanisms as adjunctive therapy and prevention of COVID-19-related cognitive decline and other neurologic complications through citicoline properties of anti-inflammation, anti-viral, neuroprotection, neurorestorative, and acetylcholine neurotransmitter synthesis, and provide a recommendation for future clinical trials.
Collapse
|
16
|
Gareri P, Veronese N, Cotroneo AM. An Overview of Combination Treatment with Citicoline in Dementia. Rev Recent Clin Trials 2021; 17:4-8. [PMID: 34939548 DOI: 10.2174/1574887117666211221170344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/01/2021] [Accepted: 11/15/2021] [Indexed: 11/22/2022]
Abstract
INTRODUCTION The present article reports an overview of the studies about combination treatment with citicoline of Alzheimer's (AD) and mixed dementia (MD). METHODS A Medline search was carried out by using the keywords Alzheimer's dementia, mixed dementia, older people, treatment with citicoline, memantine, and acetylcholinesterase inhibitors (AchEIs). RESULTS Six studies were found to match the combination treatment of citicoline with AcheIs and/or memantine. The CITIRIVAD and CITICHOLINAGE studies were the first to report the potential benefits of adding citicoline to acetylcholinesterase inhibitors (AchEIs). Then, we added citicoline to memantine in the CITIMEM study, and finally, we demonstrated benefits in terms of delay in cognitive worsening with the triple therapy (citicoline + AchEIs + memantine). Other authors also reinforced our hypothesis through two further studies. CONCLUSIONS Open, prospective studies are advised to confirm the utility of combination therapy with citicoline for the treatment of AD and MD.
Collapse
Affiliation(s)
- Pietro Gareri
- Center for Cognitive Disorders and Dementia - Catanzaro Lido, ASP Catanzaro; Catanzaro. Italy
| | - Nicola Veronese
- Geriatric Unit, Department of Internal Medicine and Geriatrics, University of Palermo, Palermo. Italy
| | | |
Collapse
|
17
|
Regenerative Effects of CDP-Choline: A Dose-Dependent Study in the Toxic Cuprizone Model of De- and Remyelination. Pharmaceuticals (Basel) 2021; 14:ph14111156. [PMID: 34832936 PMCID: PMC8623145 DOI: 10.3390/ph14111156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 12/20/2022] Open
Abstract
Inflammatory attacks and demyelination in the central nervous system (CNS) are the key factors responsible for the damage of neurons in multiple sclerosis (MS). Remyelination is the natural regenerating process after demyelination that also provides neuroprotection but is often incomplete or fails in MS. Currently available therapeutics are affecting the immune system, but there is no substance that might enhance remyelination. Cytidine-S-diphosphate choline (CDP-choline), a precursor of the biomembrane component phospholipid phosphatidylcholine was shown to improve remyelination in two animal models of demyelination. However, the doses used in previous animal studies were high (500 mg/kg), and it is not clear if lower doses, which could be applied in human trials, might exert the same beneficial effect on remyelination. The aim of this study was to confirm previous results and to determine the potential regenerative effects of lower doses of CDP-choline (100 and 50 mg/kg). The effects of CDP-choline were investigated in the toxic cuprizone-induced mouse model of de- and remyelination. We found that even low doses of CDP-choline effectively enhanced early remyelination. The beneficial effects on myelin regeneration were accompanied by higher numbers of oligodendrocytes. In conclusion, CDP-choline could become a promising regenerative substance for patients with multiple sclerosis and should be tested in a clinical trial.
Collapse
|
18
|
Salamah A, Mehrez M, Faheem A, El Amrousy D. Efficacy of Citicoline as a Neuroprotector in children with post cardiac arrest: a randomized controlled clinical trial. Eur J Pediatr 2021; 180:1249-1255. [PMID: 33169240 DOI: 10.1007/s00431-020-03871-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 02/08/2023]
Abstract
Brain hypoxia after cardiac arrest leads to damage of the neuronal cell membrane. Citicoline is necessary for the synthesis of cell membrane. We planned to assess the neuroprotective effect of citicoline in children after cardiac arrest. This randomized controlled trial was carried out at pediatric intensive care units (PICU) and surgical ICU at Tanta university hospital on 80 consecutive children surviving in-hospital cardiac arrest who were subdivided into two groups. Group I (citicoline group) included 40 children with post-cardiac arrest who received citicoline 10 mg /kg /12 h IV for 6 weeks plus other supportive measures and group II (control group) included 40 children with post-cardiac arrest who were managed with only supportive measures. All patients were evaluated for Glasgow coma score (GCS), modified Rankin scale (mRS) for children, seizures frequency, type and duration, and serum neuron-specific enolase (NSE) before and 3 months after the treatment. GCS and mRS significantly improved in citicholine group compared to the control group. Seizure frequency and duration, mortality, PICU and hospital stay significantly decreased in citicholine group compared to the control group. Serum NSE levels significantly decreased in citicholine group only. No side effects were recorded.Conclusion: Citicoline is a promising neuroprotective drug in children with post-cardiac arrest.Trial Registration: The study was registered at Pan African Clinical Trials Registry (PACTR) www.pactr.samrc.ac.za with trial number PACTR201907742119058. What is known? • Post-resuscitation brain injury is one of the major complications that can lead to death or disability. • CDP-choline has been studied for acute ischemic stroke in several adult studies because of its reparative effect. What is new? • Our study was the first in pediatrics that assessed the neuroprotective effect of CDP-choline on the brain in children after cardiac arrest. • We found that Citicoline is a promising neuroprotective drug in children with post-cardiac arrest.
Collapse
Affiliation(s)
- Abeer Salamah
- Pediatric Department, Kafr Elsheikh University, Kafr Elsheikh, Egypt
| | | | - Amany Faheem
- Anesthesiology and Surgical ICU Department, Tanta University, Tanta, Egypt
| | | |
Collapse
|
19
|
Resilience of network activity in preconditioned neurons exposed to 'stroke-in-a-dish' insults. Neurochem Int 2021; 146:105035. [PMID: 33798645 DOI: 10.1016/j.neuint.2021.105035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 11/22/2022]
Abstract
Exposing cultured cortical neurons to stimulatory agents - the K+ channel blocker 4-aminopyridine (4-ap), and the GABAA receptor antagonist bicuculline (bic) - for 48 h induces down-regulated synaptic scaling, and preconditions neurons to withstand subsequent otherwise lethal 'stroke-in-a-dish' insults; however, the degree to which usual neuronal function remains is unknown. As a result, multi-electrode array and patch-clamp electrophysiological techniques were employed to characterize hallmarks of spontaneous synaptic activity over a 12-day preconditioning/insult experiment. Spiking frequency increased 8-fold immediately upon 4-ap/bic treatment but declined within the 48 h treatment window to sub-baseline levels that persisted long after washout. Preconditioning resulted in key markers of network activity - spiking frequency, bursting and avalanches - being impervious to an insult. Surprisingly, preconditioning resulted in higher peak NMDA mEPSC amplitudes, resulting in a decrease in the ratio of AMPA:NMDA mEPSC currents, suggesting a relative increase in synaptic NMDA receptors. An investigation of a broad mRNA panel of excitatory and inhibitory signaling mediators indicated preconditioning rapidly up-regulated GABA synthesis (GAD67) and BDNF, followed by up-regulation of neuronal activity-regulated pentraxin and down-regulation of presynaptic glutamate release (VGLUT1). Preconditioning also enhanced surface expression of GLT-1, which persisted following an insult. Overall, preconditioning resulted in a reduced spiking frequency which was impervious to subsequent exposure to 'stroke-in-a-dish' insults, a phenotype initiated predominantly by up-regulation of inhibitory neurotransmission, a lower neuronal postsynaptic AMPA: NMDA receptor ratio, and trafficking of GLT-1 to astrocyte plasma membranes.
Collapse
|
20
|
Gareri P, Cotroneo AM, Orsitto G, Putignano S. The Importance of Citicoline in Combined Treatment in Dementia: What did the Citimem Study Teach us? Rev Recent Clin Trials 2020; 16:126-130. [PMID: 33243132 DOI: 10.2174/1574887115999201126205538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/08/2020] [Accepted: 09/25/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Citicoline is a drug used both in degenerative and in vascular cognitive decline; memantine is a drug used for the treatment of mild to moderate Alzheimer's disease (AD). Our hypothesis is that their combined use could have enhanced action in patients having AD and mixed dementia (MD). We report the main tips from a recent study on the use of these drugs, the CITIMEM study. METHODS The study was retrospective and was performed on 126 patients aged 65 years old or older affected with AD or MD (mean age 80.7 ± 5.2 years old) who had been visited between 2015 and 2017 in four different centers for dementia all over Italy. Neuropsychological and functional tests were administered at baseline (T0), after 6 (T1), and 12 months (T2). The effects of combined treatment versus memantine alone on cognitive functions assessed by Mini-Mental State Examination (MMSE) and the possible onset of side effects or adverse events, as well as the influence on daily life functions and behavioral symptoms, were investigated. RESULTS Patients undergoing combined treatment showed a significant increase in MMSE vs. memantine alone, both at T1 (p=0.003) and T2 (p =0.000). CONCLUSION The CITIMEM study confirms our hypothesis that the combined administration of memantine plus citicoline is safe and more effective than memantine alone on cognition in patients suffering from AD or MD.
Collapse
Affiliation(s)
- Pietro Gareri
- Center for Cognitive Disorders and Dementia, Catanzaro Lido, ASP Catanzaro, Catanzaro, Italy
| | - Antonino Maria Cotroneo
- Department of Elderly Health Care, Birago di Vische Hospital and Botticelli Territorial Geriatrics - ASL TO 2, Turin, Italy
| | - Giuseppe Orsitto
- U.O.C. Internal Medicine Ward, P.O. Bari Sud "Di Venere", Bari - Azienda Sanitaria Locale di Bari, Italy
| | | |
Collapse
|
21
|
Jasielski P, Piędel F, Piwek M, Rocka A, Petit V, Rejdak K. Application of Citicoline in Neurological Disorders: A Systematic Review. Nutrients 2020; 12:E3113. [PMID: 33053828 PMCID: PMC7601330 DOI: 10.3390/nu12103113] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/19/2022] Open
Abstract
Citicoline is a chemical compound involved in the synthesis of cell membranes. It also has other, not yet explained functions. Research on the use of citicoline is conducted in neurology, ophthalmology, and psychiatry. Citicoline is widely available as a dietary supplement. It is often used to enhance cognitive functions. In our article, accessible databases were searched for articles regarding citicoline use in neurological diseases. This article has a systemic review form. After rejecting non-eligible reports, 47 remaining articles were reviewed. The review found that citicoline has been proven to be a useful compound in preventing dementia progression. It also enhances cognitive functions among healthy individuals and improves prognosis after stroke. In an animal model of nerve damage and neuropathy, citicoline stimulated regeneration and lessened pain. Among patients who underwent brain trauma, citicoline has an unclear clinical effect. Citicoline has a wide range of effects and could be an essential substance in the treatment of many neurological diseases. Its positive impact on learning and cognitive functions among the healthy population is also worth noting.
Collapse
Affiliation(s)
- Patryk Jasielski
- Department of Neurology, Medical University of Lublin, 20-059 Lublin, Poland; (F.P.); (M.P.); (A.R.); (V.P.); (K.R.)
| | | | | | | | | | | |
Collapse
|
22
|
Gupta V, Bader ZE, Aakriti, Kumar A. Possible Pharmacodynamic Interaction of Azelnidipine with Citicoline Against Ischemic Brain Injury: Behavioral, Biochemical and Histological Alterations. Ann Neurosci 2020; 27:9-17. [PMID: 32982094 PMCID: PMC7499829 DOI: 10.1177/0972753120932475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Currently, no drug has been approved for the management of postischemic neuronal damage. Existing studies show that calcium channel blockers have neuroprotective properties, while citicoline is involved in maintaining neuronal integrity. PURPOSE This study was envisaged to investigate the effect of azelnidipine (novel calcium channel blocker) alone and in combination with citicoline (phosphatidyl-choline analogue) against ischemic brain damage in Wistar rats. METHODS Previously standardized bilateral common carotid artery occlusion model was used to induce cerebral ischemic injury in Wistar rats. Pretreatment with azelnidipine (1.5 mg/Kg and 3 mg/Kg; p.o.) or citicoline (250 mg/Kg; i.p.) was done every 24 h starting 7 days before the bilateral common carotid artery occlusion surgery. Pharmacological assessments (behavioral, biochemical, mitochondrial, molecular, and histological) were done after 48 h of the reperfusion period. RESULTS Azelnidipine and citicoline were found to protect the brain from progressive neuronal damage as seen by improved sensorimotor behavior (locomotion, rota rod, and beam balance performance) and reduced oxidative stress (decreased malondialdehyde (MDA), nitrite, increased glutathione (GSH), superoxide dismutase (SOD)). Impairment of mitochondrial enzyme system and increase in the infarct area were found to be arrested by individual treatments with azelnidipine and citicoline. These effects were further potentiated synergistically as the combination of citicoline and azelnidipine was found to decrease glutamate levels, caspase-3 activity and histological alterations as compared to their individual effects. CONCLUSION Azelnidipine and citicoline synergistically decrease excitotoxic and oxidative damage against ischemic brain injury in Wistar rats and, therefore, propose a clinically relevant combination for the prevention of postischemic neuronal damage.
Collapse
Affiliation(s)
- Varun Gupta
- Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Study, Panjab University, Chandigarh, India
| | - Zein Eddin Bader
- Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Study, Panjab University, Chandigarh, India.,Palestine-Korea Biotechnology Centre, Palestine Polytechnic University, Hebron, Palestine
| | - Aakriti
- Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Study, Panjab University, Chandigarh, India
| | - Anil Kumar
- Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Study, Panjab University, Chandigarh, India
| |
Collapse
|
23
|
Forster YM, Green JL, Khatiwada A, Liberato JL, Narayana Reddy PA, Salvino JM, Bienz S, Bigler L, dos Santos WF, Karklin Fontana AC. Elucidation of the Structure and Synthesis of Neuroprotective Low Molecular Mass Components of the Parawixia bistriata Spider Venom. ACS Chem Neurosci 2020; 11:1573-1596. [PMID: 32343555 DOI: 10.1021/acschemneuro.0c00007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The South American social spider Parawixia bistriata produces a venom containing complex organic compounds with intriguing biological activities. The crude venom leads to paralysis in termites and stimulates l-glutamate uptake and inhibits GABA uptake in rat brain synaptosomes. Glutamate is the major neurotransmitter at the insect neuromuscular junction and at the mammalian central nervous system, suggesting a modulation of the glutamatergic system by the venom. Parawixin1, 2, and 10 (Pwx1, 2 and 10) are HPLC fractions that demonstrate this bioactivity. Pwx1 stimulates l-glutamate uptake through the main transporter in the brain, EAAT2, and is neuroprotective in in vivo glaucoma models. Pxw2 inhibits GABA and glycine uptake in synaptosomes and inhibits seizures and neurodegeneration, and Pwx10 increases l-glutamate uptake in synaptosomes and is neuroprotective and anticonvulsant, shown in in vivo epilepsy models. Herein, we investigated the low molecular mass compounds in this venom and have found over 20 small compounds and 36 unique acylpolyamines with and without amino acid linkers. The active substances in fractions Pwx1 and Pwx2 require further investigation. We elucidated and confirmed the structure of the active acylpolyamine in Pwx10. Both fraction Pwx10 and the synthesized component enhance the activity of transporters EAAT1 and EAAT2, and, importantly, offer in vitro neuroprotection against excitotoxicity in primary cultures. These data suggest that compounds with this mechanism could be developed into therapies for disorders in which l-glutamate excitotoxicity is involved.
Collapse
Affiliation(s)
- Yvonne M. Forster
- Department of Chemistry, University of Zurich, Zurich, CH 8057, Switzerland
| | - Jennifer Leigh Green
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Apeksha Khatiwada
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - José Luiz Liberato
- Department of Biology, University of São Paulo, Ribeirão Preto, SP 14040-900, Brazil
| | | | - Joseph M. Salvino
- The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Stefan Bienz
- Department of Chemistry, University of Zurich, Zurich, CH 8057, Switzerland
| | - Laurent Bigler
- Department of Chemistry, University of Zurich, Zurich, CH 8057, Switzerland
| | | | - Andréia Cristina Karklin Fontana
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| |
Collapse
|
24
|
iTRAQ-based proteomic analysis after mesenchymal stem cell line transplantation for ischemic stroke. Brain Res 2020; 1742:146900. [PMID: 32445714 DOI: 10.1016/j.brainres.2020.146900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 05/01/2020] [Accepted: 05/18/2020] [Indexed: 02/01/2023]
Abstract
Transplantation with mesenchymal stem cells (MSCs) has been reported to promote functional recovery in animal models of ischemic stroke. However, the molecular mechanisms underlying the therapeutic effects of MSC transplantation have been only partially elucidated. The purpose of this study was to comprehensively identify changes in brain proteins in rats treated with MSCs for ischemic stroke, and to explore the multi-target mechanisms of MSCs using a proteomics-based strategy. Twenty-eight proteins were found to be differentially expressed following B10 MSC transplantation in adult male Wistar rats, as assessed using isobaric tagging for relative and absolute protein quantification (iTRAQ). Subsequent bioinformatic analysis revealed that these proteins were mainly associated with energy metabolism, glutamate excitotoxicity, oxidative stress, and brain structural and functional plasticity. Immunohistochemical staining revealed decreased expression of EAAT1 in the phosphate-buffered saline group as opposed to normal levels in the B10 transplantation group. Furthermore, ATP levels were also significantly higher in the B10 transplantation group, thus supporting the iTRAQ results. Our results suggest that the therapeutic effects of B10 transplantation might arise from the modulation of the acute ischemic cascade via multiple molecular pathways. Thus, our findings provide valuable clues to elucidate the mechanisms underlying the therapeutic effects of MSC transplantation in ischemic stroke.
Collapse
|
25
|
Gareri P, Cotroneo AM, Orsitto G, Putignano S. The CITIMEM study: A pilot study. Optimizing pharmacological treatment in dementia. Arch Gerontol Geriatr 2020; 89:104073. [PMID: 32447126 DOI: 10.1016/j.archger.2020.104073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/15/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Citicoline can have beneficial effects both in degenerative and in vascular cognitive decline; it works through an increase in acetylcholine intrasynaptic levels and promoting phospholipid synthesis, (chiefly phosphatidylcholine), cellular function, and neuronal repair. Memantine is an N-methyl-D-aspartate (NMDA) receptor antagonist used for the treatment of mild to moderate Alzheimer's disease (AD). When co-administered they could have a synergistic action in patients affected with AD and mixed dementia (MD) too. SCOPE The aim of the present study was to show the effectiveness of oral citicoline plus memantine in patients affected with AD and MD. PATIENTS AND METHODS This was a retrospective study between 2015 and 2017 on 126 patients aged 65 years old or older affected with AD or MD (mean age 80.7 ± 5.2 years old). The study involved four different centers for dementia all over Italy. Diagnosis of AD was made according to clinical symptoms, neuropsychological tests and brain imaging. Diagnosis of MD was made when symptoms typical of AD such as memory loss were associated to symptoms due to cerebrovascular deficits, i.e., impaired judgement, ability to make decisions, plan or organize, and brain imaging. 58 patients were treated with memantine (group A), 68 patients with memantine plus citicoline 1 g/day given orally (group B). In both groups memantine dosage was 10-20 mg/day according to its tolerability. 24 patients of group A and 29 patients of group B were affected with MD. Cognitive functions were assessed by MMSE, daily life functions by ADL and IADL, behavioral symptoms by NPI, comorbidities by CIRS, and mood by GDS-short form. Tests were administered at baseline (T0), after 6 (T1), and 12 months (T2). The primary outcomes were the effects of combined treatment versus memantine alone on cognitive functions assessed by MMSE. The secondary outcomes were the possible side effects or adverse events of combination therapy versus memantine alone, influence on daily life functions and behavioral symptoms. RESULTS AND CONCLUSIONS Patients treated with citicoline plus memantine showed an increase in MMSE between T0 and T1 (16.6 ± 2.9 vs 17.4 ± 2.7) and between T1 and T2 (17.4 ± 2.7 vs 17.7 ± 2.8). The difference in MMSE score was significant when comparing the two groups, both at T1 (p = 0.003) and T2 (p = 0.000). Since it is important to maximize the pharmacological means in AD and MD, the present study encourages the role of combined administration of memantine plus citicoline in disease management and in slowing down the progression of disease.
Collapse
Affiliation(s)
- Pietro Gareri
- Center for Cognitive Disorders and Dementia - Catanzaro Lido, ASP Catanzaro, Catanzaro, Italy.
| | - Antonino Maria Cotroneo
- Department of Elderly Health Care - Birago di Vische Hospital and Botticelli Territorial Geriatrics - ASL TO 2, Turin, Italy.
| | - Giuseppe Orsitto
- U.O.C. Internal Medicine Ward, P.O. Bari Sud "Di Venere", Bari, Azienda Sanitaria Locale di Bari, Italy.
| | | |
Collapse
|
26
|
Citicoline affects serum angiostatin and neurospecific protein levels in patients with atrial fibrillation and ischemic stroke. UKRAINIAN BIOCHEMICAL JOURNAL 2019. [DOI: 10.15407/ubj91.05.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
27
|
Faiq MA, Wollstein G, Schuman JS, Chan KC. Cholinergic nervous system and glaucoma: From basic science to clinical applications. Prog Retin Eye Res 2019; 72:100767. [PMID: 31242454 PMCID: PMC6739176 DOI: 10.1016/j.preteyeres.2019.06.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 02/08/2023]
Abstract
The cholinergic system has a crucial role to play in visual function. Although cholinergic drugs have been a focus of attention as glaucoma medications for reducing eye pressure, little is known about the potential modality for neuronal survival and/or enhancement in visual impairments. Citicoline, a naturally occurring compound and FDA approved dietary supplement, is a nootropic agent that is recently demonstrated to be effective in ameliorating ischemic stroke, traumatic brain injury, Parkinson's disease, Alzheimer's disease, cerebrovascular diseases, memory disorders and attention-deficit/hyperactivity disorder in both humans and animal models. The mechanisms of its action appear to be multifarious including (i) preservation of cardiolipin, sphingomyelin, and arachidonic acid contents of phosphatidylcholine and phosphatidylethanolamine, (ii) restoration of phosphatidylcholine, (iii) stimulation of glutathione synthesis, (iv) lowering glutamate concentrations and preventing glutamate excitotoxicity, (v) rescuing mitochondrial function thereby preventing oxidative damage and onset of neuronal apoptosis, (vi) synthesis of myelin leading to improvement in neuronal membrane integrity, (vii) improving acetylcholine synthesis and thereby reducing the effects of mental stress and (viii) preventing endothelial dysfunction. Such effects have vouched for citicoline as a neuroprotective, neurorestorative and neuroregenerative agent. Retinal ganglion cells are neurons with long myelinated axons which provide a strong rationale for citicoline use in visual pathway disorders. Since glaucoma is a form of neurodegeneration involving retinal ganglion cells, citicoline may help ameliorate glaucomatous damages in multiple facets. Additionally, trans-synaptic degeneration has been identified in humans and experimental models of glaucoma suggesting the cholinergic system as a new brain target for glaucoma management and therapy.
Collapse
Affiliation(s)
- Muneeb A Faiq
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, United States
| | - Gadi Wollstein
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, United States
| | - Joel S Schuman
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, United States
| | - Kevin C Chan
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, United States; Department of Radiology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, United States; Center for Neural Science, Faculty of Arts and Science, New York University, New York, NY, United States.
| |
Collapse
|
28
|
Palma-Tortosa S, Hurtado O, Pradillo JM, Ferreras-Martín R, García-Yébenes I, García-Culebras A, Moraga A, Moro MÁ, Lizasoain I. Toll-like receptor 4 regulates subventricular zone proliferation and neuroblast migration after experimental stroke. Brain Behav Immun 2019; 80:573-582. [PMID: 31059808 DOI: 10.1016/j.bbi.2019.05.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 10/26/2022] Open
Abstract
Ischemic stroke is one of the leading causes of death and disability with an urgent need for innovative therapies, especially targeting the chronic phase. New evidence has emerged showing that Toll-Like Receptor 4 (TLR4), a key mediator of brain damage after stroke, may be involved in brain repair by neurogenesis modulation. The aim of this study is to analyze the role of TLR4 in the different stages of neurogenesis initiated in the subventricular zone (SVZ) over time after stroke in mice. Wildtype and TLR4-deficient mice underwent experimental ischemia, and neural stem/progenitor cells (NSPCs) proliferation and migration were analyzed by using FACS analysis, fluorescence densitometry, RT-qPCR and in vitro assays. Our results show that both groups, wildtype and knock-out animals, present a similar pattern of bilateral cell proliferation at the SVZ, with a decrease in NSPCs proliferation in the acute phase of stroke. We also show that TLR4 activation, very likely mediated by ligands such as HMGB1 released to CSF after stroke, is necessary to keep an increased proliferation of NSCs as well as to promote differentiation from type C cells into neuroblasts promoting their migration. TLR4 activation was also implicated in earlier expression of SDF-1α and faster recovery of BDNF expression after stroke. These results support TLR4 as an important therapeutic target in the modulation of neurogenesis after stroke.
Collapse
Affiliation(s)
- Sara Palma-Tortosa
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense Madrid and Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Olivia Hurtado
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense Madrid and Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Jesús Miguel Pradillo
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense Madrid and Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain.
| | - Raquel Ferreras-Martín
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense Madrid and Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Isaac García-Yébenes
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense Madrid and Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Alicia García-Culebras
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense Madrid and Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Ana Moraga
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense Madrid and Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - María Ángeles Moro
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense Madrid and Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Ignacio Lizasoain
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense Madrid and Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain.
| |
Collapse
|
29
|
MacDonald K, Krishnan A, Cervenka E, Hu G, Guadagno E, Trakadis Y. Biomarkers for major depressive and bipolar disorders using metabolomics: A systematic review. Am J Med Genet B Neuropsychiatr Genet 2019; 180:122-137. [PMID: 30411484 DOI: 10.1002/ajmg.b.32680] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/10/2018] [Accepted: 08/15/2018] [Indexed: 12/21/2022]
Abstract
Major depressive disorder (MDD) and bipolar disorder (BD) lack robust biomarkers useful for screening purposes in a clinical setting. A systematic review of the literature was conducted on metabolomic studies of patients with MDD or BD through the use of analytical platforms such as in vivo brain imaging, mass spectrometry, and nuclear magnetic resonance. Our search identified a total of 7,590 articles, of which 266 articles remained for full-text revision. Overall, 249 metabolites were found to be dysregulated with 122 of these metabolites being reported in two or more of the studies included. A list of biomarkers for MDD and BD established from metabolites found to be abnormal, along with the number of studies supporting each metabolite and a comparison of which biological fluids they were reported in, is provided. Metabolic pathways that may be important in the pathophysiology of MDD and BD were identified and predominantly center on glutamatergic metabolism, energy metabolism, and neurotransmission. Using online drug registries, we also illustrate how metabolomics can facilitate the discovery of novel candidate drug targets.
Collapse
Affiliation(s)
- Kellie MacDonald
- Department of Human Genetics, McGill University, Montreal, Quebec
| | - Ankur Krishnan
- Department of Human Genetics, McGill University, Montreal, Quebec
| | - Emily Cervenka
- Department of Human Genetics, McGill University, Montreal, Quebec
| | - Grace Hu
- Department of Human Genetics, McGill University, Montreal, Quebec
| | - Elena Guadagno
- McConnell Resource Centre, McGill University Health Centre, Montreal, Quebec
| | - Yannis Trakadis
- Department of Human Genetics, McGill University, Montreal, Quebec.,Department of Medical Genetics, McGill University Health Centre, Montreal, Quebec
| |
Collapse
|
30
|
Kang S, Choi DS. Possible Benefit and Validity of Supplements for Alcohol Use Disorder. Alcohol Clin Exp Res 2019; 43:780-782. [PMID: 30802317 DOI: 10.1111/acer.13990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 02/20/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Seungwoo Kang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine Rochester, Rochester, Minnesota
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine Rochester, Rochester, Minnesota.,Department of Psychiatry and Psychology, Mayo Clinic College of Medicine Rochester, Rochester, Minnesota
| |
Collapse
|
31
|
Brown ES, Van Enkevort E, Kulikova A, Escalante C, Nakamura A, Ivleva EI, Holmes T. A Randomized, Double-Blind, Placebo-Controlled Trial of Citicoline in Patients with Alcohol Use Disorder. Alcohol Clin Exp Res 2018; 43:317-323. [PMID: 30457668 DOI: 10.1111/acer.13928] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/13/2018] [Indexed: 11/28/2022]
Abstract
BACKGROUND Alcohol use disorder is a major societal and individual burden that exacerbates health outcomes, decreases quality of life, and negatively affects U.S. healthcare spending. Although pharmacological treatments are available for alcohol use disorder, many of them are limited by small effect sizes and used infrequently. Citicoline is a widely available over-the-counter supplement with a favorable side effect profile. It acts through cholinergic pathways and phospholipid metabolism. The current report examines the effect of oral citicoline on alcohol use, craving, depressive symptoms, and cognitive outcomes in individuals with alcohol use disorder. METHODS A 12-week, randomized, double-blind, parallel-group, placebo-controlled, pilot study of citicoline (titrated to 2,000 mg/d) in 62 adults (age 18 to 75) with alcohol use disorder was conducted. Alcohol use, such as number of drinking days, amount used, and number of heavy drinking days, was assessed using the Timeline Followback method and liver enzymes, while alcohol craving was measured using the Penn Alcohol Craving Scale. A neurocognitive battery (e.g., Rey Auditory Verbal Learning Test) and depressive symptoms scale (e.g., Inventory of Depressive Symptomatology Self-Report) scores were also collected. Data were analyzed using a random regression analysis. RESULTS The primary outcome analysis was conducted in the intent-to-treat sample and consisted of 55 participants (78.2% men and 21.8% women, mean age of 46.47 ± 9.15 years). In the assessment period, the drinking days, on average, represented 77% of the assessed days. Significant between-group differences were not observed on alcohol use, craving, and cognitive or depressive symptom measures. Citicoline was well tolerated. CONCLUSIONS This proof-of-concept study observed that citicoline was well tolerated, but was not associated with a reduction in alcohol use or other outcomes, as compared to placebo. The favorable effects reported with citicoline for cocaine use, cognitive disorders, and other conditions do not appear to extend to alcohol use disorder.
Collapse
Affiliation(s)
- E Sherwood Brown
- Department of Psychiatry(ESB, EVE, AK, CE, AN, EII, TH), The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Erin Van Enkevort
- Department of Psychiatry(ESB, EVE, AK, CE, AN, EII, TH), The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Alexandra Kulikova
- Department of Psychiatry(ESB, EVE, AK, CE, AN, EII, TH), The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Chastity Escalante
- Department of Psychiatry(ESB, EVE, AK, CE, AN, EII, TH), The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Alyson Nakamura
- Department of Psychiatry(ESB, EVE, AK, CE, AN, EII, TH), The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Elena I Ivleva
- Department of Psychiatry(ESB, EVE, AK, CE, AN, EII, TH), The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Traci Holmes
- Department of Psychiatry(ESB, EVE, AK, CE, AN, EII, TH), The University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
32
|
Shavlovskaya OA. [The assessment of the efficacy of citicoline in the early and recovery stages of stroke]. Zh Nevrol Psikhiatr Im S S Korsakova 2018. [PMID: 28635796 DOI: 10.17116/jnevro20161166193-97] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The review presents data on the evaluation of the efficacy of citicoline in ischemic stroke. It presents research findings about the effect of citicoline to reduce infarct volume in animal models of cerebral ischemia. Long-term treatment of CDP-choline initiated 24 hours after stroke contributes to the increased plasticity of neurons in intact brain areas (functionally associated with the damaged areas) and accelerated functional recovery. The oral administration of citicoline within the first 24 hours after the onset of symptoms in moderate and severe stroke increases the probability of complete recovery in 3 months. A neuroprotective effect of citicoline in acute and early restorative stages of stroke accompanied by cognitive impairment was shown. According to the results of clinical trials of the dosage regimen, citicoline administered in the dose of 1000 mg/day for 8 weeks accelerates the regression of hemiplegia; the intravenous injection in the dose of 750 mg/day for 10 days, starting with the first 48 hours of stroke onset symptoms, promotes the recovery of motor and cognitive functions; the intravenous injection in the dose of 1 g within 14 days improves the recovery of consciousness, general condition and functional status.
Collapse
|
33
|
Parisi V, Oddone F, Ziccardi L, Roberti G, Coppola G, Manni G. Citicoline and Retinal Ganglion Cells: Effects on Morphology and Function. Curr Neuropharmacol 2018; 16:919-932. [PMID: 28676014 PMCID: PMC6120106 DOI: 10.2174/1570159x15666170703111729] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/07/2017] [Accepted: 06/22/2017] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Retinal ganglion cells (RGCs) are the nervous retinal elements which connect the visual receptors to the brain forming the nervous visual system. Functional and/or morphological involvement of RGCs occurs in several ocular and neurological disorders and therefore these cells are targeted in neuroprotective strategies. Cytidine 5-diphosphocholine or Citicoline is an endogenous compound that acts in the biosynthesis of phospholipids of cell membranes and increases neurotransmitters' levels in the Central Nervous System. Experimental studies suggested the neuromodulator effect and the protective role of Citicoline on RGCs. This review aims to present evidence of the effects of Citicoline in experimental models of RGCs degeneration and in human neurodegenerative disorders involving RGCs. METHODS All published papers containing experimental or clinical studies about the effects of Citicoline on RGCs morphology and function were reviewed. RESULTS In rodent retinal cultures and animal models, Citicoline induces antiapoptotic effects, increases the dopamine retinal level, and counteracts retinal nerve fibers layer thinning. Human studies in neurodegenerative visual pathologies such as glaucoma or non-arteritic ischemic neuropathy showed a reduction of the RGCs impairment after Citicoline administration. By reducing the RGCs' dysfunction, a better neural conduction along the post-retinal visual pathways with an improvement of the visual field defects was observed. CONCLUSION Citicoline, with a solid history of experimental and clinical studies, could be considered a very promising molecule for neuroprotective strategies in those pathologies (i.e. Glaucoma) in which morpho-functional changes of RGCc occurs.
Collapse
Affiliation(s)
- Vincenzo Parisi
- IRCCS-Fondazione GB Bietti, Via Livenza, 3, 00198 Rome, Italy
| | | | - Lucia Ziccardi
- IRCCS-Fondazione GB Bietti, Via Livenza, 3, 00198 Rome, Italy
| | - Gloria Roberti
- IRCCS-Fondazione GB Bietti, Via Livenza, 3, 00198 Rome, Italy
| | | | - Gianluca Manni
- IRCCS-Fondazione GB Bietti, Via Livenza, 3, 00198 Rome, Italy.,DSCMT, Università di Roma Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| |
Collapse
|
34
|
Kim JH, Choi BY, Kho AR, Lee SH, Jeong JH, Hong DK, Lee SH, Sohn M, Ryu OH, Choi MG, Suh SW. Acetylcholine precursor, citicoline (cytidine 5'-diphosphocholine), reduces hypoglycaemia-induced neuronal death in rats. J Neuroendocrinol 2018; 30. [PMID: 29247563 DOI: 10.1111/jne.12567] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 11/23/2017] [Accepted: 12/11/2017] [Indexed: 01/21/2023]
Abstract
Citicoline (cytidine 5'-diphosphocholine) is an important precursor for the synthesis of neuronal plasma membrane phospholipids, mainly phosphatidylcholine. The administration of citicoline serves as a choline donor for the synthesis of acetylcholine. Citicoline has been shown to reduce the neuronal injury in animal models with cerebral ischaemia and in clinical trials of stroke patients. Citicoline is currently being investigated in a multicentre clinical trial. However, citicoline has not yet been examined the context of hypoglycaemia-induced neuronal death. To clarify the therapeutic impact of citicoline in hypoglycaemia-induced neuronal death, we used a rat model with insulin-induced hypoglycaemia. Acute hypoglycaemia was induced by i.p. injection of regular insulin (10 U kg-1 ) after overnight fasting, after which iso-electricity was maintained for 30 minutes. Citicoline injections (500 mg/kg, i.p.) were started immediately after glucose reperfusion. We found that post-treatment of citicoline resulted in significantly reduced neuronal death, oxidative injury and microglial activation in the hippocampus compared to vehicle-treated control groups at 7 days after induced hypoglycaemia. Citicoline administration after hypoglycaemia decreased immunoglobulin leakage via blood-brain barrier disruption in the hippocampus compared to the vehicle group. Citicoline increased choline acetyltransferase expression for phosphatidylcholine synthesis after hypoglycaemia. Altogether, the present findings suggest that neuronal membrane stabilisation by citicoline administration can save neurones from the degeneration process after hypoglycaemia, as seen in several studies of ischaemia. Therefore, the results suggest that citicoline may have therapeutic potential to reduce hypoglycaemia-induced neuronal death.
Collapse
Affiliation(s)
- J H Kim
- Department of Physiology, Hallym University, College of Medicine, Chuncheon, Korea
| | - B Y Choi
- Department of Physiology, Hallym University, College of Medicine, Chuncheon, Korea
| | - A R Kho
- Department of Physiology, Hallym University, College of Medicine, Chuncheon, Korea
| | - S H Lee
- Department of Physiology, Hallym University, College of Medicine, Chuncheon, Korea
| | - J H Jeong
- Department of Medical Life Science, College of Medicine, Hallym University, Chuncheon, Korea
| | - D K Hong
- Department of Physiology, Hallym University, College of Medicine, Chuncheon, Korea
| | - S H Lee
- Department of Physiology, Hallym University, College of Medicine, Chuncheon, Korea
| | - M Sohn
- Department of Nursing, Inha University, Incheon, Korea
| | - O H Ryu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hallym University, College of Medicine, Chuncheon, Korea
| | - M-G Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hallym University, College of Medicine, Chuncheon, Korea
| | - S W Suh
- Department of Physiology, Hallym University, College of Medicine, Chuncheon, Korea
| |
Collapse
|
35
|
Ayuso MI, Martínez-Alonso E, Chioua M, Escobar-Peso A, Gonzalo-Gobernado R, Montaner J, Marco-Contelles J, Alcázar A. Quinolinyl Nitrone RP19 Induces Neuroprotection after Transient Brain Ischemia. ACS Chem Neurosci 2017; 8:2202-2213. [PMID: 28731692 DOI: 10.1021/acschemneuro.7b00126] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
There is a need to develop additional effective therapies for ischemic stroke. Nitrones, which were first developed as reactive oxygen species (ROS)-trapping compounds, have been proposed as neuroprotective agents for ischemic stroke, a ROS-related disorder. The previous reported ROS-trapping compound, quinolyl nitrone RP19, is here being assayed to induce neuroprotection to ischemia-reperfusion injury in three experimental ischemia models: (i) oxygen-glucose deprivation (OGD) on primary neuronal cultures; (ii) transient global cerebral ischemia in four-vessel occlusion model; and (iii) transient focal cerebral ischemia in middle cerebral artery occlusion (tMCAO) model. RP19 (50 μM) induced long-term neuroprotection at 5 days of recovery after OGD in primary neuronal cultures, evaluated by cell viability assay, and decreased both ROS formation and lipid peroxidation upon recovery after OGD. Furthermore, treatment of animals with RP19 at the onset of reperfusion after either global or focal ischemia, at the dose range that was demonstrated to be neuroprotective in neuronal cultures, decreased neuronal death and apoptosis induction, reduced the size of infarct, and improved the neurological deficit scores after 48 h or 5 days of reperfusion after ischemia. The molecule proposed, quinolyl nitrone RP19, induced substantial neuroprotection on experimental ischemia in neuronal cells, and against ischemic injury following transient brain ischemia in treated animals. This molecule may have potential therapeutic interest in ischemic stroke and to reduce the reoxygenation-induced injury after induced reperfusion.
Collapse
Affiliation(s)
- Maria I. Ayuso
- Department of Investigation, Hospital Ramón y Cajal, IRYCIS, Madrid 28034, Spain
- Neurovascular Research Laboratory, Institut
de Recerca Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
- Neurovascular
Research Group, Instituto de Biomedicina de Sevilla, Hospital Virgen del Rocío, Sevilla 41013, Spain
| | - Emma Martínez-Alonso
- Department of Investigation, Hospital Ramón y Cajal, IRYCIS, Madrid 28034, Spain
| | - Mourad Chioua
- Laboratory of Medicinal Chemistry, Institute of General Organic Chemistry (CSIC), Madrid 28006, Spain
| | - Alejandro Escobar-Peso
- Department of Investigation, Hospital Ramón y Cajal, IRYCIS, Madrid 28034, Spain
- Laboratory of Medicinal Chemistry, Institute of General Organic Chemistry (CSIC), Madrid 28006, Spain
| | - Rafael Gonzalo-Gobernado
- Neurovascular
Research Group, Instituto de Biomedicina de Sevilla, Hospital Virgen del Rocío, Sevilla 41013, Spain
| | - Joan Montaner
- Neurovascular Research Laboratory, Institut
de Recerca Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
- Neurovascular
Research Group, Instituto de Biomedicina de Sevilla, Hospital Virgen del Rocío, Sevilla 41013, Spain
| | - José Marco-Contelles
- Laboratory of Medicinal Chemistry, Institute of General Organic Chemistry (CSIC), Madrid 28006, Spain
| | - Alberto Alcázar
- Department of Investigation, Hospital Ramón y Cajal, IRYCIS, Madrid 28034, Spain
| |
Collapse
|
36
|
Gareri P, Castagna A, Cotroneo AM, Putignano D, Conforti R, Santamaria F, Marino S, Putignano S. The Citicholinage Study: Citicoline Plus Cholinesterase Inhibitors in Aged Patients Affected with Alzheimer's Disease Study. J Alzheimers Dis 2017; 56:557-565. [PMID: 28035929 DOI: 10.3233/jad-160808] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Citicoline can have beneficial effects both in degenerative and in vascular cognitive decline in a variety of ways (apoptosis inhibition, neuroplasticity potentiation, phospholipid, and acetylcholine (ACh) synthesis). Acetylcholinesterase inhibitors (AChEIs) have been used for treatment of Alzheimer's disease (AD). When co-administered with cholinergic precursors, they are able to increase the intrasynaptic levels of ACh more than when the single drugs given alone. OBJECTIVE The aim of the present study was to show the effectiveness of oral citicoline plus AChEIs in patients affected with AD. METHODS This was a retrospective multi-centric case-control study, involving seven Centers for Cognitive Impairment and Dementia in Italy, on 448 consecutive patients aged 65 years old or older affected with AD. 197 patients were treated with an AChEI while 251 were treated with an AchEI + citicoline 1000 mg/day given orally. Cognitive functions were assessed by MMSE, daily life functions by ADL and IADL, behavioral symptoms by NPI, comorbidities by CIRS, and mood by GDS-short form. Tests were administered at baseline (T0), after 3 (T1), and 9 months (T2). The primary outcomes were effects of combined administration versus AChEIs given alone on cognitive functions assessed by MMSE. The secondary outcomes were possible side effects or adverse events of combination therapy versus AChEIs alone. RESULTS Patients treated with citicoline plus an AChEI showed a statistically significant increase in MMSE between T0 and T1 (16.88±3.38 versus 17.62±3.64; p = 0.000) and between T1 and T2 (17.62±3.64 versus 17.89±3.54; p = 0.000). CONCLUSION The present study encourages the role of combined administration in disease management by slowing disease progression.
Collapse
Affiliation(s)
- Pietro Gareri
- Center for Cognitive Disorders and Dementia - Distretto Socio-Sanitario Catanzaro Lido - ASP Catanzaro, Catanzaro, Italy
| | - Alberto Castagna
- Center for Cognitive Disorders and Dementia - Distretto Socio-Sanitario Catanzaro Lido - ASP Catanzaro, Catanzaro, Italy
| | - Antonino Maria Cotroneo
- Director Department of Elderly Health Care - Birago di Vische Hospital and Botticelli Territorial Geriatrics - ASL TO 2, Turin, Italy
| | | | - Raffaele Conforti
- Scientific Responsible Nursing Home San Giuseppe - Monte Compatri, Rome, Italy
| | | | - Saverio Marino
- Operative Unit Elderly Care, District 53 Castellammare di Stabia ASL NA3 Sud, Italy
| | - Salvatore Putignano
- Operative Unit Elderly Care, District 30, ASL Napoli Centro - Associazione Geriatri Extraospedalieri (AGE) President, Naples, Italy
| |
Collapse
|
37
|
Agarwal S, Patel BM. Is aura around citicoline fading? A systemic review. Indian J Pharmacol 2017; 49:4-9. [PMID: 28458415 PMCID: PMC5351236 DOI: 10.4103/0253-7613.201037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/08/2016] [Indexed: 11/04/2022] Open
Abstract
Stroke and traumatic brain injury (TBI) are the critical public health and socioeconomic problems throughout the world. At present, citicoline is used as a coadjuvant for the management of acute ischemic stroke (AIS) and TBI in various countries. This systemic review analyzes the beneficial role of citicoline in AIS and TBI. This systemic review is based on "PubMed" and "Science Direct" search results for citicoline role in stroke and TBI. In this systemic review, we included 12 human trials. A meta-analysis was performed on the basis of neurological evaluation, functional evaluation and Glasgow outcome scale, domestic adaptation evaluation outcomes, and cognitive outcome individually. In neurological evaluation, domestic adaptation evaluation, and cognitive outcomes, there was no significant difference in both the citicoline and placebo groups (odds ratio [OR] = 1.04 [0.9-1.2, P = 0.583]; OR = 1.1 [0.94-1.27, P = 0.209]; OR = 0.953 [0.75-1.2, P = 0.691]). In evaluation of functional outcomes, there was significant difference in both groups and OR was 1.18 (1.04-1.34, P = 0.01). Functional outcomes were significantly improved by citicoline, but the positive role of this drug in neurological recovery, domestic adaptation, and cognitive outcomes is still a topic of discussion for future.
Collapse
Affiliation(s)
- Saurabh Agarwal
- Department of Pharmacology, Nirma University, Ahmedabad, Gujarat, India
| | - Bhoomika M. Patel
- Department of Pharmacology, Nirma University, Ahmedabad, Gujarat, India
| |
Collapse
|
38
|
Anticonvulsant Effects of Combined Treatment with Citicoline and Valproate on the Model of Acute Generalized Convulsions Induced by Pentylenetetrazole in Wistar Rats. Bull Exp Biol Med 2016; 160:429-31. [PMID: 26902360 DOI: 10.1007/s10517-016-3188-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
We studied anticonvulsant effects of combined treatment with citicoline, a nootropic substance with neuroregenerative and neuroprotective activities, and valproate, an antiepileptic agent widely used in the treatment of epilepsy, on the model of pentylenetetrazole-induced (75 mg/kg, intraperitoneally) acute generalized convulsions in male Wistar rats. Combined treatment with citicoline and valproate in minimum effective doses (70 and 300 mg/kg, respectively) potentiated the anticonvulsant properties of both agents.
Collapse
|
39
|
Wahyudi R, Hasmono D, Fitrina R, Armal K. INJECTED CITICOLINE IMPROVES IMPAIRMENT AND DISABILITY DURING ACUTE PHASE TREATMENT IN ISCHEMIC STROKE PATIENTS. FOLIA MEDICA INDONESIANA 2016. [DOI: 10.20473/fmi.v51i4.2854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Treatment strategy of ischemic stroke is to reduce the extent of the damage and rescue neurons from death in the early days of ischemic events. Recombinant Tissue-Plasminogen Activator (r-TPA) is the only recommended therapy, but their use is very limited. Citicoline is a neuroprotectant with a therapeutic effect on several stages of the ischemic cascade. However, its use is still being debated. The purpose of this study was to analyze the use of supplementation citicoline injection in patients with acute ischemic stroke in relations to differences in changes in the level of interference (impairment), rate limitation (disability) and the level of obstruction (handicap) between the group receiving supplementation of citicoline injection 2x500 mg iv and the group without supplementation during acute phase treatment. This study was a prospective cohort study using experimental design in patients with acute ischemic stroke who met the inclusion and exclusion criteria with or without supplementation citicoline between January - April 2015 in the National Stroke Hospital, Bukittinggi. Rate of interference was assessed with NIHSS, level of limitations with Barthel Index, and level of obstruction with modified Rankin Scale. Assessment was done 2 times, before and after the treatment. Statistical methods used in this study were Wilcoxon signed rank test, paired T-test and Mann-Whitney test. This study was conducted on 50 subjects divided into 2 groups, a control group without supplementation and group treated with injected citicoline of 2x500 mg iv. Demographic and baseline characteristics did not differ between groups. There were differences in level of interference changes. Mean decrease in control group was 0.96 ± 1.74 NIHSS, while that in treatment group was 2.84 ± 1.46 NIHSS (p <0.05). There were differences in changes in the level of limitations. Mean increase of Barthel Index in control group 9.60 ± 11.17 and in treatment group 20.40 ± 13.99 (p <0.05). However, changes in the level obstacle showed no difference. In conclusion, citicoline injection supplementation in patients with ischemic stroke during acute phase treatment showed improvement differences in changes in the level of distraction (impairment) and the rate limitations (disability), but showed no difference in changes in the level of obstruction (handycaps).
Collapse
|
40
|
Abdolmaleki A, Moghimi A, Ghayour MB, Rassouli MB. Evaluation of neuroprotective, anticonvulsant, sedative and anxiolytic activity of citicoline in rats. Eur J Pharmacol 2016; 789:275-279. [PMID: 27475676 DOI: 10.1016/j.ejphar.2016.07.048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 07/20/2016] [Accepted: 07/27/2016] [Indexed: 10/21/2022]
Abstract
Citicoline (cytidine-5'-diphosphocholine) is a neuroprotective agent that is administered following ischemic and traumatic brain injuries. There is little information about the antiseizure and anxiolytic effects of citicoline, which are therefore addressed in the present study. For evaluating the anticonvulsant effect of citicoline in the pentylentetrazole seizure model, a single intraperitoneal dose of citicoline was administered at 50, 100 or 150mg/kg. Sedative and anxiolytic effects of citicoline were examined via elevated plus maze and pentobarbital induced sleep tests. Results show that citicoline at the doses of 100 and 150mg/kg significantly delayed the latent period compared with the control (P<0.05). Citicoline at the doses of 100 and 150mg/kg significantly decreased total locomotion compared with the control (P<0.05). Additionally, citicoline at the doses of 100 and 150mg/kg significantly increased both percentage of entry and time spent in the open arms in the elevated plus maze test (P<0.05). The pentobarbital induced sleep test showed that citicoline significantly reduced the latency to sleep (P<0.05). Our results suggest that acute administration of citicoline has anticonvulsant activity and sedative effect.
Collapse
Affiliation(s)
- Arash Abdolmaleki
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ali Moghimi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad B Ghayour
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Morteza B Rassouli
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
41
|
Abdel-Zaher AO, Hamdy MM, Abdel-Rahman MS, Abd El-Hamid DH. Protective effect of citicoline against aluminum-induced cognitive impairments in rats. Toxicol Ind Health 2016; 33:308-317. [PMID: 27178312 DOI: 10.1177/0748233716641869] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The potential protective effect of citicoline on aluminum chloride-induced cognitive deficits was investigated in rats. In a Morris water maze, administration of aluminum chloride to rats for 90 days resulted in increased escape latency to reach the platform and decreased swimming speed in acquisition trials. Similarly, in probe trials, the time required to reach the hidden platform was increased and the time spent in the target quadrant was reduced. Also, administration of aluminum chloride to rats for 90 days increased the reference and working memory errors and time required to end the task in the radial arm maze. In addition, this treatment decreased the step-through latency in the passive avoidance test. Concurrently, treatment of rats with aluminum chloride for 90 days increased hippocampal glutamate, malondialdehyde, and nitrite levels and decreased intracellular reduced glutathione level. In the citicoline-treated group, aluminum chloride-induced learning and memory impairments as assessed by the Morris water maze, radial arm maze, and passive avoidance tests were inhibited. At the same time, treatment of rats with citicoline prevented the biochemical alterations induced by aluminum chloride in the hippocampus. It can be concluded that elevation of hippocampal glutamate level with consequent oxidative stress and nitric oxide (NO) overproduction may play an important role in aluminum-induced cognitive impairments. Also, our results suggest, for the first time, that citicoline can protect against the development of these cognitive deficits through inhibition of aluminum-induced elevation of glutamate level, oxidative stress, and NO overproduction in the hippocampus.
Collapse
Affiliation(s)
- Ahmed O Abdel-Zaher
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Mostafa M Hamdy
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | | | - Doaa H Abd El-Hamid
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
42
|
da Silva Fiorin F, de Oliveira Ferreira AP, Ribeiro LR, Silva LFA, de Castro MRT, da Silva LRH, da Silveira MEP, Zemolin APP, Dobrachinski F, Marchesan de Oliveira S, Franco JL, Soares FA, Furian AF, Oliveira MS, Fighera MR, Freire Royes LF. The Impact of Previous Physical Training on Redox Signaling after Traumatic Brain Injury in Rats: A Behavioral and Neurochemical Approach. J Neurotrauma 2016; 33:1317-30. [PMID: 26651029 DOI: 10.1089/neu.2015.4068] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Throughout the world, traumatic brain injury (TBI) is one of the major causes of disability, which can include deficits in motor function and memory, as well as acquired epilepsy. Although some studies have shown the beneficial effects of physical exercise after TBI, the prophylactic effects are poorly understood. In the current study, we demonstrated that TBI induced by fluid percussion injury (FPI) in adult male Wistar rats caused early motor impairment (24 h), learning deficit (15 days), spontaneous epileptiform events (SEE), and hilar cell loss in the hippocampus (35 days) after TBI. The hippocampal alterations in the redox status, which were characterized by dichlorofluorescein diacetate oxidation and superoxide dismutase (SOD) activity inhibition, led to the impairment of protein function (Na(+), K(+)-adenosine triphosphatase [ATPase] activity inhibition) and glutamate uptake inhibition 24 h after neuronal injury. The molecular adaptations elicited by previous swim training protected against the glutamate uptake inhibition, oxidative stress, and inhibition of selected targets for free radicals (e.g., Na(+), K(+)-ATPase) 24 h after neuronal injury. Our data indicate that this protocol of exercise protected against FPI-induced motor impairment, learning deficits, and SEE. In addition, the enhancement of the hippocampal phosphorylated nuclear factor erythroid 2-related factor (P-Nrf2)/Nrf2, heat shock protein 70, and brain-derived neurotrophic factor immune content in the trained injured rats suggests that protein expression modulation associated with an antioxidant defense elicited by previous physical exercise can prevent toxicity induced by TBI, which is characterized by cell loss in the dentate gyrus hilus at 35 days after TBI. Therefore, this report suggests that previous physical exercise can decrease lesion progression in this model of brain damage.
Collapse
Affiliation(s)
- Fernando da Silva Fiorin
- 1 Laboratório de Bioquímica do Exercício, Universidade Federal de Santa Maria , Santa Maria, Brazil
| | | | - Leandro R Ribeiro
- 1 Laboratório de Bioquímica do Exercício, Universidade Federal de Santa Maria , Santa Maria, Brazil
| | - Luiz F A Silva
- 1 Laboratório de Bioquímica do Exercício, Universidade Federal de Santa Maria , Santa Maria, Brazil
| | - Mauro R T de Castro
- 1 Laboratório de Bioquímica do Exercício, Universidade Federal de Santa Maria , Santa Maria, Brazil
| | - Luís R H da Silva
- 1 Laboratório de Bioquímica do Exercício, Universidade Federal de Santa Maria , Santa Maria, Brazil
| | - Mauro E P da Silveira
- 1 Laboratório de Bioquímica do Exercício, Universidade Federal de Santa Maria , Santa Maria, Brazil
| | - Ana P P Zemolin
- 2 Programa de Pós-Graduação em Ciências Biológicas, Bioquímica Toxicológica, Universidade Federal de Santa Maria , Santa Maria, Brazil
| | - Fernando Dobrachinski
- 2 Programa de Pós-Graduação em Ciências Biológicas, Bioquímica Toxicológica, Universidade Federal de Santa Maria , Santa Maria, Brazil
| | - Sara Marchesan de Oliveira
- 2 Programa de Pós-Graduação em Ciências Biológicas, Bioquímica Toxicológica, Universidade Federal de Santa Maria , Santa Maria, Brazil
| | - Jeferson L Franco
- 2 Programa de Pós-Graduação em Ciências Biológicas, Bioquímica Toxicológica, Universidade Federal de Santa Maria , Santa Maria, Brazil
| | - Félix A Soares
- 2 Programa de Pós-Graduação em Ciências Biológicas, Bioquímica Toxicológica, Universidade Federal de Santa Maria , Santa Maria, Brazil
| | - Ana F Furian
- 3 Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria , Santa Maria, Brazil
| | - Mauro S Oliveira
- 3 Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria , Santa Maria, Brazil
| | - Michele R Fighera
- 1 Laboratório de Bioquímica do Exercício, Universidade Federal de Santa Maria , Santa Maria, Brazil .,2 Programa de Pós-Graduação em Ciências Biológicas, Bioquímica Toxicológica, Universidade Federal de Santa Maria , Santa Maria, Brazil .,3 Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria , Santa Maria, Brazil
| | - Luiz F Freire Royes
- 1 Laboratório de Bioquímica do Exercício, Universidade Federal de Santa Maria , Santa Maria, Brazil .,2 Programa de Pós-Graduação em Ciências Biológicas, Bioquímica Toxicológica, Universidade Federal de Santa Maria , Santa Maria, Brazil .,3 Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria , Santa Maria, Brazil
| |
Collapse
|
43
|
Hernández-Jiménez M, Martínez-López D, Gabandé-Rodríguez E, Martín-Segura A, Lizasoain I, Ledesma MD, Dotti CG, Moro MA. Seladin-1/DHCR24 Is Neuroprotective by Associating EAAT2 Glutamate Transporter to Lipid Rafts in Experimental Stroke. Stroke 2016; 47:206-13. [DOI: 10.1161/strokeaha.115.010810] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/20/2015] [Indexed: 01/10/2023]
Abstract
Background and Purpose—
3β-Hydroxysteroid-Δ24 reductase (DHCR24) or selective alzheimer disease indicator 1 (seladin-1), an enzyme of cholesterol biosynthetic pathway, has been implicated in neuroprotection, oxidative stress, and inflammation. However, its role in ischemic stroke remains unexplored. The aim of this study was to characterize the effect of seladin-1/DHCR24 using an experimental stroke model in mice.
Methods—
Dhcr24
+/−
and wild-type (WT) mice were subjected to permanent middle cerebral artery occlusion. In another set of experiments, WT mice were treated intraperitoneally either with vehicle or U18666A (seladin-1/DHCR24 inhibitor, 10 mg/kg) 30 minutes after middle cerebral artery occlusion. Brains were removed 48 h after middle cerebral artery occlusion for infarct volume determination. For protein expression determination, peri-infarct region was obtained 24 h after ischemia, and Western blot or cytometric bead array was performed.
Results—
Dhcr24
+/
−
mice displayed larger infarct volumes after middle cerebral artery occlusion than their WT littermates. Treatment of WT mice with the seladin-1/DHCR24 inhibitor U18666A also increased ischemic lesion. Inflammation-related mediators were increased after ischemia in
Dhcr24
+/
−
mice compared with WT counterparts. Consistent with a role of cholesterol in proper function of glutamate transporter EAAT2 in membrane lipid rafts, we found a decreased association of EAAT2 with lipid rafts after ischemia when DHCR24 is genetically deleted or pharmacologically inhibited. Accordingly, treatment with U18666A decreases [
3
H]-glutamate uptake in cultured astrocytes.
Conclusions—
These results support the idea that lipid raft integrity, ensured by seladin-1/DHCR24, plays a crucial protective role in the ischemic brain by guaranteeing EAAT2-mediated uptake of glutamate excess.
Collapse
Affiliation(s)
- Macarena Hernández-Jiménez
- From the Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense and Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain (M.H.-J., D.M.-L., I.L., M.A.M.); and Centro de Biología Molecular Severo Ochoa, CSIC, Madrid, Spain (E.G.-R., A.M.-S., M.D.L., C.G.D.)
| | - Diego Martínez-López
- From the Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense and Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain (M.H.-J., D.M.-L., I.L., M.A.M.); and Centro de Biología Molecular Severo Ochoa, CSIC, Madrid, Spain (E.G.-R., A.M.-S., M.D.L., C.G.D.)
| | - Enrique Gabandé-Rodríguez
- From the Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense and Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain (M.H.-J., D.M.-L., I.L., M.A.M.); and Centro de Biología Molecular Severo Ochoa, CSIC, Madrid, Spain (E.G.-R., A.M.-S., M.D.L., C.G.D.)
| | - Adrian Martín-Segura
- From the Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense and Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain (M.H.-J., D.M.-L., I.L., M.A.M.); and Centro de Biología Molecular Severo Ochoa, CSIC, Madrid, Spain (E.G.-R., A.M.-S., M.D.L., C.G.D.)
| | - Ignacio Lizasoain
- From the Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense and Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain (M.H.-J., D.M.-L., I.L., M.A.M.); and Centro de Biología Molecular Severo Ochoa, CSIC, Madrid, Spain (E.G.-R., A.M.-S., M.D.L., C.G.D.)
| | - María D. Ledesma
- From the Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense and Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain (M.H.-J., D.M.-L., I.L., M.A.M.); and Centro de Biología Molecular Severo Ochoa, CSIC, Madrid, Spain (E.G.-R., A.M.-S., M.D.L., C.G.D.)
| | - Carlos G. Dotti
- From the Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense and Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain (M.H.-J., D.M.-L., I.L., M.A.M.); and Centro de Biología Molecular Severo Ochoa, CSIC, Madrid, Spain (E.G.-R., A.M.-S., M.D.L., C.G.D.)
| | - María A. Moro
- From the Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense and Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain (M.H.-J., D.M.-L., I.L., M.A.M.); and Centro de Biología Molecular Severo Ochoa, CSIC, Madrid, Spain (E.G.-R., A.M.-S., M.D.L., C.G.D.)
| |
Collapse
|
44
|
Martynov MY, Gusev EI. Current knowledge on the neuroprotective and neuroregenerative properties of citicoline in acute ischemic stroke. J Exp Pharmacol 2015; 7:17-28. [PMID: 27186142 PMCID: PMC4863531 DOI: 10.2147/jep.s63544] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Ischemic stroke is one of the leading causes of long-lasting disability and death. Two main strategies have been proposed for the treatment of ischemic stroke: restoration of blood flow by thrombolysis or mechanical thrombus extraction during the first few hours of ischemic stroke, which is one of the most effective treatments and leads to a better functional and clinical outcome. The other direction of treatment, which is potentially applicable to most of the patients with ischemic stroke, is neuroprotection. Initially, neuroprotection was mainly targeted at protecting gray matter, but during the past few years there has been a transition from a neuron-oriented approach toward salvaging the whole neurovascular unit using multimodal drugs. Citicoline is a multimodal drug that exhibits neuroprotective and neuroregenerative effects in a variety of experimental and clinical disorders of the central nervous system, including acute and chronic cerebral ischemia, intracerebral hemorrhage, and global cerebral hypoxia. Citicoline has a prolonged therapeutic window and is active at various temporal and biochemical stages of the ischemic cascade. In acute ischemic stroke, citicoline provides neuroprotection by attenuating glutamate exitotoxicity, oxidative stress, apoptosis, and blood–brain barrier dysfunction. In the subacute and chronic phases of ischemic stroke, citicoline exhibits neuroregenerative effects and activates neurogenesis, synaptogenesis, and angiogenesis and enhances neurotransmitter metabolism. Acute and long-term treatment with citicoline is safe and in most clinical studies is effective and improves functional outcome.
Collapse
Affiliation(s)
- Mikhail Yu Martynov
- Department of Neurology, Neurosurgery and Medical Genetics, Russian National Research Medical University, Moscow, Russia
| | - Eugeny I Gusev
- Department of Neurology, Neurosurgery and Medical Genetics, Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
45
|
Concise Review: Are Stimulated Somatic Cells Truly Reprogrammed into an ES/iPS-Like Pluripotent State? Better Understanding by Ischemia-Induced Multipotent Stem Cells in a Mouse Model of Cerebral Infarction. Stem Cells Int 2015; 2015:630693. [PMID: 25945100 PMCID: PMC4402558 DOI: 10.1155/2015/630693] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 03/22/2015] [Indexed: 02/07/2023] Open
Abstract
Following the discovery of pluripotent stem (PS) cells such as embryonic stem (ES) and induced pluripotent stem (iPS) cells, there has been a great hope that injured tissues can be repaired by transplantation of ES/iPS-derived various specific types of cells such as neural stem cells (NSCs). Although PS cells can be induced by ectopic expression of Yamanaka's factors, it is known that several stimuli such as ischemia/hypoxia can increase the stemness of somatic cells via reprogramming. This suggests that endogenous somatic cells acquire stemness during natural regenerative processes following injury. In this study, we describe whether somatic cells are converted into pluripotent stem cells by pathological stimuli without ectopic expression of reprogramming factors based on the findings of ischemia-induced multipotent stem cells in a mouse model of cerebral infarction.
Collapse
|
46
|
Neuroprotection for ischaemic stroke: Current status and challenges. Pharmacol Ther 2015; 146:23-34. [DOI: 10.1016/j.pharmthera.2014.09.003] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 09/02/2014] [Indexed: 12/31/2022]
|
47
|
Karpova MN, Zin'kovskii KA, Kuznetsova LV, Klishina NV. Increase of the seizure threshold in C57BL/6 mice after citicoline administration. Bull Exp Biol Med 2015; 158:315-7. [PMID: 25573358 DOI: 10.1007/s10517-015-2750-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Indexed: 10/24/2022]
Abstract
We studied the dose-dependent effect of preventive intraperitoneal injection of citicoline (cytidine 5'-diphosphocholine) on acute generalized epileptiform activity in C57Bl/6 mice. The duration of citicoline action was also evaluated. Administration of citicoline in doses of 500 and 1000 mg/kg 1 h before treatment with the convulsant agent pentylenetetrazole produced an anticonvulsant effect. This effect was manifested in an increase of the threshold of clonic seizures and tonic phase of seizures with lethal outcome. Moreover, the latency of seizure development was elevated under these conditions. The anticonvulsant effect of citicoline persisted for 6 h after its injection.
Collapse
Affiliation(s)
- M N Karpova
- Research Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, Russia,
| | | | | | | |
Collapse
|
48
|
Gao XY, Huang JO, Hu YF, Gu Y, Zhu SZ, Huang KB, Chen JY, Pan SY. Combination of mild hypothermia with neuroprotectants has greater neuroprotective effects during oxygen-glucose deprivation and reoxygenation-mediated neuronal injury. Sci Rep 2014; 4:7091. [PMID: 25404538 PMCID: PMC4665348 DOI: 10.1038/srep07091] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 10/29/2014] [Indexed: 12/02/2022] Open
Abstract
Co-treatment of neuroprotective reagents may improve the therapeutic efficacy of hypothermia in protecting neurons during ischemic stroke. This study aimed to find promising drugs that enhance the neuroprotective effect of mild hypothermia (MH). 26 candidate drugs were selected based on different targets. Primary cultured cortical neurons were exposed to oxygen-glucose deprivation and reoxygenation (OGD/R) to induce neuronal damage, followed by either single treatment (a drug or MH) or a combination of a drug and MH. Results showed that, compared with single treatment, combination of MH with brain derived neurotrophic factor, glibenclamide, dizocilpine, human urinary kallidinogenase or neuroglobin displayed higher proportion of neuronal cell viability. The latter three drugs also caused less apoptosis rate in combined treatment. Furthermore, co-treatment of those three drugs and MH decreased the level of reactive oxygen species (ROS) and intracellular calcium accumulation, as well as stabilized mitochondrial membrane potential (MMP), indicating the combined neuroprotective effects are probably via inhibiting mitochondrial apoptosis pathway. Taken together, the study suggests that combined treatment with hypothermia and certain neuroprotective reagents provide a better protection against OGD/R-induced neuronal injury.
Collapse
Affiliation(s)
- Xiao-Ya Gao
- 1] Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China [2] Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Jian-Ou Huang
- 1] Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China [2] Department of Neurology, the 421 Hospital, Guangzhou, Guangdong, P. R. China
| | - Ya-Fang Hu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Yong Gu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Shu-Zhen Zhu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Kai-Bin Huang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Jin-Yu Chen
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Su-Yue Pan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
| |
Collapse
|
49
|
Wignall ND, Brown ES. Citicoline in addictive disorders: a review of the literature. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2014; 40:262-8. [PMID: 24950234 PMCID: PMC4139283 DOI: 10.3109/00952990.2014.925467] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 05/07/2014] [Accepted: 05/12/2014] [Indexed: 11/13/2022]
Abstract
BACKGROUND Citicoline is a dietary supplement that has been used as a neuroprotective agent for neurological disorders such as stroke and dementia. Citicoline influences acetylcholine, dopamine, and glutamate neurotransmitter systems; serves as an intermediate in phospholipid metabolism; and enhances the integrity of neuronal membranes. Interest has grown in citicoline as a treatment for addiction since it may have beneficial effects on craving, withdrawal symptoms, and cognitive functioning, as well as the ability to attenuate the neurotoxic effects of drugs of abuse. OBJECTIVES To review the literature on citicoline's use in addictive disorders. METHODS Using PubMed we conducted a narrative review of the clinical literature on citicoline related to addictive disorders from the years 1900-2013 using the following keywords: citicoline, CDP-choline, addiction, cocaine, alcohol, substance abuse, and substance dependence. Out of approximately 900 first hits, nine clinical studies have been included in this review. RESULTS Most addiction research investigated citicoline for cocaine use. The findings suggest that it is safe and well tolerated. Furthermore, citicoline appears to decrease craving and is associated with a reduction in cocaine use, at least at high doses in patients with both bipolar disorder and cocaine dependence. Limited data suggest citicoline may also hold promise for alcohol and cannabis dependence and in reducing food consumption. CONCLUSIONS Currently, there is limited research on the efficacy of citicoline for addictive disorders, but the available literature suggests promising results. Future research should employ larger sample sizes, increased dosing, and more complex study designs.
Collapse
Affiliation(s)
- Nicholas D. Wignall
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX
| | - E. Sherwood Brown
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
50
|
Camós S, Gubern C, Sobrado M, Rodríguez R, Romera V, Moro M, Lizasoain I, Serena J, Mallolas J, Castellanos M. The high-mobility group I-Y transcription factor is involved in cerebral ischemia and modulates the expression of angiogenic proteins. Neuroscience 2014; 269:112-30. [DOI: 10.1016/j.neuroscience.2014.03.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 03/07/2014] [Accepted: 03/18/2014] [Indexed: 12/24/2022]
|