1
|
Celikkan FT, Hayirli Ozyol N, Nakkas H, Evirgen O. Ultrastructural and morphometric alterations to the peripheral nerve following the administration of immunosuppressive agent tacrolimus (FK506). Ultrastruct Pathol 2021; 45:112-117. [PMID: 33596749 DOI: 10.1080/01913123.2021.1881673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Tacrolimus, a widely used immunosuppressive drug for preventing graft rejection following organ transplantation, was reported to develop neurotoxic side effects ranging from mild to severe symptoms in the literature. Rats were randomly divided into three groups as control and 2-week and 3-week treatment groups and received a 2 mg/kg/day tacrolimus by oral gavage. Animals were sacrificed and sciatic nerves obtained from all groups were fixed and processed for light and electron microscopic investigations. The myelinated fiber diameter, axon diameter, G-ratio (axon diameter/myelinated fiber diameter), and myelin thickness were also determined. The data obtained in the control and tacrolimus-treated groups were compared.The control group sciatic nerve fascicles showed normal morphology with myelinated and unmyelinated fibers. Experimental groups exhibited axonal dilatation, irregularly thickened and vacuolated myelin sheaths with separation of myelin layers. The morphometric analysis showed that the myelinated fibers of the 2-week tacrolimus-treated group displayed a moderate increase in the myelin thickness and axon and fiber diameter in comparison with the control and 3-week tacrolimus-treated groups. The G-ratio was found to be in normal range in all groups and there were no statistically significant difference.The present study indicates that the treatment with tacrolimus may produce a mild degenerative change but prolonged drug administration for 3 weeks led to improvement in morphometric and morphologic data and the normal G-ratio values, suggesting that the regeneration capacity of the myelinated fibers maintains their normal function to transmit nerve impulses.
Collapse
Affiliation(s)
- Ferda Topal Celikkan
- Faculty of Medicine, Department of Histology and Embryology, Ankara University, Ankara, Turkey
| | - Nazli Hayirli Ozyol
- Faculty of Medicine, Department of Histology and Embryology, Hitit University, Corum, Turkey
| | - Hilal Nakkas
- Faculty of Medicine, Department of Histology and Embryology, Ankara Yildirim Beyazit University, Ankara, Turkey
| | - Oya Evirgen
- Faculty of Medicine, Department of Histology and Embryology, Ankara University, Ankara, Turkey
| |
Collapse
|
2
|
Recent Topics on The Mechanisms of Immunosuppressive Therapy-Related Neurotoxicities. Int J Mol Sci 2019; 20:ijms20133210. [PMID: 31261959 PMCID: PMC6651704 DOI: 10.3390/ijms20133210] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 02/07/2023] Open
Abstract
Although transplantation procedures have been developed for patients with end-stage hepatic insufficiency or other diseases, allograft rejection still threatens patient health and lifespan. Over the last few decades, the emergence of immunosuppressive agents such as calcineurin inhibitors (CNIs) and mammalian target of rapamycin (mTOR) inhibitors have strikingly increased graft survival. Unfortunately, immunosuppressive agent-related neurotoxicity commonly occurs in clinical practice, with the majority of neurotoxicity cases caused by CNIs. The possible mechanisms through which CNIs cause neurotoxicity include increasing the permeability or injury of the blood–brain barrier, alterations of mitochondrial function, and alterations in the electrophysiological state. Other immunosuppressants can also induce neuropsychiatric complications. For example, mTOR inhibitors induce seizures, mycophenolate mofetil induces depression and headaches, methotrexate affects the central nervous system, the mouse monoclonal immunoglobulin G2 antibody (used against the cluster of differentiation 3) also induces headaches, and patients using corticosteroids usually experience cognitive alteration. Therapeutic drug monitoring, individual therapy based on pharmacogenetics, and early recognition of symptoms help reduce neurotoxic events considerably. Once neurotoxicity occurs, a reduction in the drug dosage, switching to other immunosuppressants, combination therapy with drugs used to treat the neuropsychiatric manifestation, or blood purification therapy have proven to be effective against neurotoxicity. In this review, we summarize recent topics on the mechanisms of immunosuppressive drug-related neurotoxicity. In addition, information about the neuroprotective effects of several immunosuppressants is also discussed.
Collapse
|
3
|
Konersman CG, Bordini BJ, Scharer G, Lawlor MW, Zangwill S, Southern JF, Amos L, Geddes GC, Kliegman R, Collins MP. BAG3 myofibrillar myopathy presenting with cardiomyopathy. Neuromuscul Disord 2015; 25:418-22. [PMID: 25728519 DOI: 10.1016/j.nmd.2015.01.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 01/18/2015] [Accepted: 01/26/2015] [Indexed: 01/16/2023]
Abstract
Myofibrillar myopathies (MFMs) are a heterogeneous group of neuromuscular disorders distinguished by the pathological hallmark of myofibrillar dissolution. Most patients present in adulthood, but mutations in several genes including BCL2-associated athanogene 3 (BAG3) cause predominantly childhood-onset disease. BAG3-related MFM is particularly severe, featuring weakness, cardiomyopathy, neuropathy, and early lethality. While prior cases reported either neuromuscular weakness or concurrent weakness and cardiomyopathy at onset, we describe the first case in which cardiomyopathy and cardiac transplantation (age eight) preceded neuromuscular weakness by several years (age 12). The phenotype comprised distal weakness and severe sensorimotor neuropathy. Nerve biopsy was primarily axonal with secondary demyelinating/remyelinating changes without "giant axons." Muscle biopsy showed extensive neuropathic changes that made myopathic changes difficult to interpret. Similar to previous cases, a p.Pro209Leu mutation in exon 3 of BAG3 was found. This case underlines the importance of evaluating for MFMs in patients with combined neuromuscular weakness and cardiomyopathy.
Collapse
Affiliation(s)
| | - Brett J Bordini
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Gunter Scharer
- Department of Pediatrics, Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michael W Lawlor
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Steven Zangwill
- Department of Cardiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - James F Southern
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Louella Amos
- Department of Pediatrics, Division of Pulmonary and Sleep Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Gabrielle C Geddes
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Robert Kliegman
- Department of Pediatrics, Undiagnosed and Rare Disease Program, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michael P Collins
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
4
|
Moldovan M, Pinchenko V, Dmytriyeva O, Pankratova S, Fugleholm K, Klingelhofer J, Bock E, Berezin V, Krarup C, Kiryushko D. Peptide mimetic of the S100A4 protein modulates peripheral nerve regeneration and attenuates the progression of neuropathy in myelin protein P0 null mice. Mol Med 2013; 19:43-53. [PMID: 23508572 DOI: 10.2119/molmed.2012.00248] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 03/07/2013] [Indexed: 11/06/2022] Open
Abstract
We recently found that S100A4, a member of the multifunctional S100 protein family, protects neurons in the injured brain and identified two sequence motifs in S100A4 mediating its neurotrophic effect. Synthetic peptides encompassing these motifs stimulated neuritogenesis and survival in vitro and mimicked the S100A4-induced neuroprotection in brain trauma. Here, we investigated a possible function of S100A4 and its mimetics in the pathologies of the peripheral nervous system (PNS). We found that S100A4 was expressed in the injured PNS and that its peptide mimetic (H3) affected the regeneration and survival of myelinated axons. H3 accelerated electrophysiological, behavioral and morphological recovery after sciatic nerve crush while transiently delaying regeneration after sciatic nerve transection and repair. On the basis of the finding that both S100A4 and H3 increased neurite branching in vitro, these effects were attributed to the modulatory effect of H3 on initial axonal sprouting. In contrast to the modest effect of H3 on the time course of regeneration, H3 had a long-term neuroprotective effect in the myelin protein P0 null mice, a model of dysmyelinating neuropathy (Charcot-Marie-Tooth type 1 disease), where the peptide attenuated the deterioration of nerve conduction, demyelination and axonal loss. From these results, S100A4 mimetics emerge as a possible means to enhance axonal sprouting and survival, especially in the context of demyelinating neuropathies with secondary axonal loss, such as Charcot-Marie-Tooth type 1 disease. Moreover, our data suggest that S100A4 is a neuroprotectant in PNS and that other S100 proteins, sharing high homology in the H3 motif, may have important functions in PNS pathologies.
Collapse
Affiliation(s)
- Mihai Moldovan
- Nerve Laboratory, Department of Neuroscience and Pharmacology, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Vasculitis-like neuropathy in amyotrophic lateral sclerosis unresponsive to treatment. Acta Neuropathol 2011; 122:343-52. [PMID: 21626035 DOI: 10.1007/s00401-011-0837-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 05/08/2011] [Accepted: 05/13/2011] [Indexed: 10/18/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease with variable involvement of other systems. A pathogenetic role of immune-mediated mechanisms has been suggested. We retrospectively analyzed sural nerve pathology and the clinical course in 18 patients with ALS. These patients had undergone sural nerve biopsy because of clinical or neurophysiological signs indicating sensory involvement (ALS+). Eleven of the 18 ALS+ patients had inflammatory cell infiltrates (ALS(vasc)) resembling infiltrates seen in patients with vasculitic neuropathy. Data were compared with the 7 patients without vasculitic infiltrates (ALS(nonvasc)) and with those of 16 patients with isolated peripheral nerve vasculitis (NP(vasc)). Biopsy specimens were processed with standard histological stains and with immunohistochemistry for a panel of inflammatory markers, with the hypothesis that the composition of infiltrates should differ between ALS(vasc) and NP(vasc). Immunoreactive cells were quantified in a blinded manner. Unlike patients with NP(vasc), those with ALS(vasc) had only minor neurophysiological abnormalities in the sural nerve and, except for the infiltrates, almost normal nerve morphology on semithin sections. The difference in epineurial T cell count was significant between ALS(vasc) and ALS(nonvasc) (p = 0.031). Surprisingly, the cellular composition of epineurial infiltrates in sural nerve biopsies was indistinguishable between ALS(vasc) and NP(vasc) despite a significant difference in fiber pathology (p < 0.0001). Standard immunosuppressive treatment did not prevent clinical progression of the motor neuron disease in any of the patients with ALS(vasc). ALS(vasc) appears as a neuropathological subtype in ALS+ suggesting immune-mediated disease components but without response to standard immunosuppressive treatment.
Collapse
|
6
|
Moldovan M, Alvarez S, Pinchenko V, Klein D, Nielsen FC, Wood JN, Martini R, Krarup C. Na(v)1.8 channelopathy in mutant mice deficient for myelin protein zero is detrimental to motor axons. ACTA ACUST UNITED AC 2010; 134:585-601. [PMID: 21169333 DOI: 10.1093/brain/awq336] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Myelin protein zero mutations were found to produce Charcot-Marie-Tooth disease phenotypes with various degrees of myelin impairment and axonal loss, ranging from the mild 'demyelinating' adult form to severe and early onset forms. Protein zero deficient homozygous mice ( ) show a severe and progressive dysmyelinating neuropathy from birth with compromised myelin compaction, hypomyelination and distal axonal degeneration. A previous study using immunofluorescence showed that motor nerves deficient of myelin protein zero upregulate the Na(V)1.8 voltage gated sodium channel isoform, which is normally present only in restricted populations of sensory axons. The aim of this study was to investigate the function of motor axons in protein zero-deficient mice with particular emphasis on ectopic Na(V)1.8 voltage gated sodium channel. We combined 'threshold tracking' excitability studies with conventional nerve conduction studies, behavioural studies using rotor-rod measurements, and histological measures to assess membrane dysfunction and its progression in protein zero deficient homozygous mutants as compared with age-matched wild-type controls. The involvement of Na(V)1.8 was investigated by pharmacologic block using the subtype-selective Na(V)1.8 blocker A-803467 and chronically in Na(V)1.8 knock-outs. We found that in the context of dysmyelination, abnormal potassium ion currents and membrane depolarization, the ectopic Na(V)1.8 channels further impair the motor axon excitability in protein zero deficient homozygous mutants to an extent that precipitates conduction failure in severely affected axons. Our data suggest that a Na(V)1.8 channelopathy contributed to the poor motor function of protein zero deficient homozygous mutants, and that the conduction failure was associated with partially reversible reduction of the electrically evoked muscle response and of the clinical function as indicated by the partial recovery of function at rotor-rod measurements. As a consequence of these findings of partially reversible dysfunction, we propose that the Na(V)1.8 voltage gated sodium channel should be considered as a novel therapeutic target for Charcot-Marie-Tooth disease.
Collapse
Affiliation(s)
- Mihai Moldovan
- Institute of Neuroscience and Pharmacology, Panum, University of Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|