1
|
Pruvost M, Patzig J, Yattah C, Selcen I, Hernandez M, Park HJ, Moyon S, Liu S, Morioka MS, Shopland L, Al-Dalahmah O, Bendl J, Fullard JF, Roussos P, Goldman J, He Y, Dupree JL, Casaccia P. The stability of the myelinating oligodendrocyte transcriptome is regulated by the nuclear lamina. Cell Rep 2023; 42:112848. [PMID: 37515770 PMCID: PMC10600948 DOI: 10.1016/j.celrep.2023.112848] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/26/2023] [Accepted: 07/07/2023] [Indexed: 07/31/2023] Open
Abstract
Oligodendrocytes are specialized cells that insulate and support axons with their myelin membrane, allowing proper brain function. Here, we identify lamin A/C (LMNA/C) as essential for transcriptional and functional stability of myelinating oligodendrocytes. We show that LMNA/C levels increase with differentiation of progenitors and that loss of Lmna in differentiated oligodendrocytes profoundly alters their chromatin accessibility and transcriptional signature. Lmna deletion in myelinating glia is compatible with normal developmental myelination. However, altered chromatin accessibility is detected in fully differentiated oligodendrocytes together with increased expression of progenitor genes and decreased levels of lipid-related transcription factors and inner mitochondrial membrane transcripts. These changes are accompanied by altered brain metabolism, lower levels of myelin-related lipids, and altered mitochondrial structure in oligodendrocytes, thereby resulting in myelin thinning and the development of a progressively worsening motor phenotype. Overall, our data identify LMNA/C as essential for maintaining the transcriptional and functional stability of myelinating oligodendrocytes.
Collapse
Affiliation(s)
- Mathilde Pruvost
- Neuroscience Initiative at the Advanced Science Research Center of the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY 10031, USA
| | - Julia Patzig
- Neuroscience Initiative at the Advanced Science Research Center of the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY 10031, USA
| | - Camila Yattah
- Neuroscience Initiative at the Advanced Science Research Center of the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY 10031, USA; Graduate Program in Biochemistry, The Graduate Center of The City University of New York, 365 5(th) Avenue, New York, NY 10016, USA
| | - Ipek Selcen
- Neuroscience Initiative at the Advanced Science Research Center of the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY 10031, USA; Graduate Program in Biochemistry, The Graduate Center of The City University of New York, 365 5(th) Avenue, New York, NY 10016, USA
| | - Marylens Hernandez
- Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hye-Jin Park
- Neuroscience Initiative at the Advanced Science Research Center of the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY 10031, USA
| | - Sarah Moyon
- Neuroscience Initiative at the Advanced Science Research Center of the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY 10031, USA
| | - Shibo Liu
- Neuroscience Initiative at the Advanced Science Research Center of the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY 10031, USA; Structural Biology Initiative, Advanced Science Research Center at the Graduate Center, City University of New York, New York, NY 10031, USA
| | - Malia S Morioka
- Neuroscience Initiative at the Advanced Science Research Center of the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY 10031, USA; Macaulay Honors College, City College of New York, New York, NY 10031, USA
| | - Lindsay Shopland
- Jackson Laboratory, 1650 Santa Ana Ave, Sacramento, CA 95835, USA
| | - Osama Al-Dalahmah
- Department of Pathology and Cell Biology, Division of Neuropathology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, and the New York Presbyterian Hospital, New York, NY 10032, USA
| | - Jaroslav Bendl
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - John F Fullard
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Panos Roussos
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mental Illness Research, Education, and Clinical Center (VISN 2 South), James J. Peters VA Medical Center, Bronx, NY 10468, USA; Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - James Goldman
- Department of Pathology and Cell Biology, Division of Neuropathology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, and the New York Presbyterian Hospital, New York, NY 10032, USA
| | - Ye He
- Neuroscience Initiative at the Advanced Science Research Center of the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY 10031, USA; Macaulay Honors College, City College of New York, New York, NY 10031, USA
| | - Jeffrey L Dupree
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Patrizia Casaccia
- Neuroscience Initiative at the Advanced Science Research Center of the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY 10031, USA; Graduate Program in Biochemistry, The Graduate Center of The City University of New York, 365 5(th) Avenue, New York, NY 10016, USA; Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate Program in Biology, The Graduate Center of The City University of New York, 365 5th Avenue, New York, NY 10016, USA.
| |
Collapse
|
2
|
Trangle SS, Rosenberg T, Parnas H, Levy G, Bar E, Marco A, Barak B. In individuals with Williams syndrome, dysregulation of methylation in non-coding regions of neuronal and oligodendrocyte DNA is associated with pathology and cortical development. Mol Psychiatry 2023; 28:1112-1127. [PMID: 36577841 DOI: 10.1038/s41380-022-01921-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 12/03/2022] [Accepted: 12/12/2022] [Indexed: 12/29/2022]
Abstract
Williams syndrome (WS) is a neurodevelopmental disorder caused by a heterozygous micro-deletion in the WS critical region (WSCR) and is characterized by hyper-sociability and neurocognitive abnormalities. Nonetheless, whether and to what extent WSCR deletion leads to epigenetic modifications in the brain and induces pathological outcomes remains largely unknown. By examining DNA methylation in frontal cortex, we revealed genome-wide disruption in the methylome of individuals with WS, as compared to typically developed (TD) controls. Surprisingly, differentially methylated sites were predominantly annotated as introns and intergenic loci and were found to be highly enriched around binding sites for transcription factors that regulate neuronal development, plasticity and cognition. Moreover, by utilizing enhancer-promoter interactome data, we confirmed that most of these loci function as active enhancers in the human brain or as target genes of transcriptional networks associated with myelination, oligodendrocyte (OL) differentiation, cognition and social behavior. Cell type-specific methylation analysis revealed aberrant patterns in the methylation of active enhancers in neurons and OLs, and important neuron-glia interactions that might be impaired in individuals with WS. Finally, comparison of methylation profiles from blood samples of individuals with WS and healthy controls, along with other data collected in this study, identified putative targets of endophenotypes associated with WS, which can be used to define brain-risk loci for WS outside the WSCR locus, as well as for other associated pathologies. In conclusion, our study illuminates the brain methylome landscape of individuals with WS and sheds light on how these aberrations might be involved in social behavior and physiological abnormalities. By extension, these results may lead to better diagnostics and more refined therapeutic targets for WS.
Collapse
Affiliation(s)
- Sari Schokoroy Trangle
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Tali Rosenberg
- Neuro-Epigenetics Laboratory, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Hadar Parnas
- Neuro-Epigenetics Laboratory, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Gilad Levy
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Ela Bar
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel.,The School of Neurobiology, Biochemistry & Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Asaf Marco
- Neuro-Epigenetics Laboratory, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel.
| | - Boaz Barak
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel. .,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel.
| |
Collapse
|
3
|
Sternbach S, West N, Singhal NK, Clements R, Basu S, Tripathi A, Dutta R, Freeman EJ, McDonough J. The BHMT-betaine methylation pathway epigenetically modulates oligodendrocyte maturation. PLoS One 2021; 16:e0250486. [PMID: 33975330 PMCID: PMC8112889 DOI: 10.1371/journal.pone.0250486] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/08/2021] [Indexed: 11/18/2022] Open
Abstract
Research into the epigenome is of growing importance as a loss of epigenetic control has been implicated in the development of neurodegenerative diseases. Previous studies have implicated aberrant DNA and histone methylation in multiple sclerosis (MS) disease pathogenesis. We have previously reported that the methyl donor betaine is depleted in MS and is linked to changes in histone H3 trimethylation (H3K4me3) in neurons. We have also shown that betaine increases histone methyltransferase activity by activating chromatin bound betaine homocysteine S-methyltransferase (BHMT). Here, we investigated the role of the BHMT-betaine methylation pathway in oligodendrocytes. Immunocytochemistry in the human MO3.13 cell line, primary rat oligodendrocytes, and tissue from MS postmortem brain confirmed the presence of the BHMT enzyme in the nucleus in oligodendrocytes. BHMT expression is increased 2-fold following oxidative insult, and qRT-PCR demonstrated that betaine can promote an increase in expression of oligodendrocyte maturation genes SOX10 and NKX-2.2 under oxidative conditions. Chromatin fractionation provided evidence of a direct interaction of BHMT on chromatin and co-IP analysis indicates an interaction between BHMT and DNMT3a. Our data show that both histone and DNA methyltransferase activity are increased following betaine administration. Betaine effects were shown to be dependent on BHMT expression following siRNA knockdown of BHMT. This is the first report of BHMT expression in oligodendrocytes and suggests that betaine acts through BHMT to modulate histone and DNA methyltransferase activity on chromatin. These data suggest that methyl donor availability can impact epigenetic changes and maturation in oligodendrocytes.
Collapse
Affiliation(s)
- Sarah Sternbach
- School of Biomedical Sciences, Kent State University, Kent, Ohio, United States of America
| | - Nicole West
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio, United States of America
| | - Naveen K. Singhal
- Department of Biological Sciences, Kent State University, Kent, Ohio, United States of America
| | - Robert Clements
- School of Biomedical Sciences, Kent State University, Kent, Ohio, United States of America
- Department of Biological Sciences, Kent State University, Kent, Ohio, United States of America
| | - Soumitra Basu
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio, United States of America
| | - Ajai Tripathi
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Ranjan Dutta
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Ernest J. Freeman
- School of Biomedical Sciences, Kent State University, Kent, Ohio, United States of America
- Department of Biological Sciences, Kent State University, Kent, Ohio, United States of America
| | - Jennifer McDonough
- School of Biomedical Sciences, Kent State University, Kent, Ohio, United States of America
- Department of Biological Sciences, Kent State University, Kent, Ohio, United States of America
| |
Collapse
|
5
|
Harauz G, Boggs JM. Myelin management by the 18.5-kDa and 21.5-kDa classic myelin basic protein isoforms. J Neurochem 2013; 125:334-61. [PMID: 23398367 DOI: 10.1111/jnc.12195] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 02/05/2013] [Accepted: 02/05/2013] [Indexed: 12/15/2022]
Abstract
The classic myelin basic protein (MBP) splice isoforms range in nominal molecular mass from 14 to 21.5 kDa, and arise from the gene in the oligodendrocyte lineage (Golli) in maturing oligodendrocytes. The 18.5-kDa isoform that predominates in adult myelin adheres the cytosolic surfaces of oligodendrocyte membranes together, and forms a two-dimensional molecular sieve restricting protein diffusion into compact myelin. However, this protein has additional roles including cytoskeletal assembly and membrane extension, binding to SH3-domains, participation in Fyn-mediated signaling pathways, sequestration of phosphoinositides, and maintenance of calcium homeostasis. Of the diverse post-translational modifications of this isoform, phosphorylation is the most dynamic, and modulates 18.5-kDa MBP's protein-membrane and protein-protein interactions, indicative of a rich repertoire of functions. In developing and mature myelin, phosphorylation can result in microdomain or even nuclear targeting of the protein, supporting the conclusion that 18.5-kDa MBP has significant roles beyond membrane adhesion. The full-length, early-developmental 21.5-kDa splice isoform is predominantly karyophilic due to a non-traditional P-Y nuclear localization signal, with effects such as promotion of oligodendrocyte proliferation. We discuss in vitro and recent in vivo evidence for multifunctionality of these classic basic proteins of myelin, and argue for a systematic evaluation of the temporal and spatial distributions of these protein isoforms, and their modified variants, during oligodendrocyte differentiation.
Collapse
Affiliation(s)
- George Harauz
- Department of Molecular and Cellular Biology, Biophysics Interdepartmental Group and Collaborative Program in Neuroscience, University of Guelph, Guelph, Ontario, Canada.
| | | |
Collapse
|
7
|
Pedre X, Mastronardi F, Bruck W, López-Rodas G, Kuhlmann T, Casaccia P. Changed histone acetylation patterns in normal-appearing white matter and early multiple sclerosis lesions. J Neurosci 2011; 31:3435-45. [PMID: 21368055 PMCID: PMC3081530 DOI: 10.1523/jneurosci.4507-10.2011] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 01/05/2011] [Accepted: 01/08/2011] [Indexed: 11/21/2022] Open
Abstract
The epigenetic identity of oligodendrocytes is modulated by posttranslational modifications of histones. Acetylation of histone H3 results from the balance between the activity of histone acetyltransferases (HATs) and histone deacetylases and modulates transcriptional activation. We have previously shown that, in rodents, histone deacetylation favors oligodendrocyte differentiation, whereas acetylation is associated with increased levels of transcriptional inhibitors of oligodendrocyte differentiation. Here, we report, in humans brains, a shift toward histone acetylation in the white matter of the frontal lobes of aged subjects and in patients with chronic multiple sclerosis (MS). Increased immunoreactivity for acetylated histone H3 was observed in the nuclei of NogoA+ oligodendrocytes in a subset of MS samples. These changes were associated with high levels of transcriptional inhibitors of oligodendrocyte differentiation (i.e., TCF7L2, ID2, and SOX2) and higher HAT transcript levels (i.e., CBP, P300) in female MS patients compared with non-neurological controls and correlated with disease duration. Chromatin immunoprecipitation from samples of MS patients revealed enrichment of acetyl-histone H3 at the promoter of the increased target genes (i.e., TCF7L2). The data in chronic lesions contrasted with findings in early MS lesions, where a marked oligodendroglial histone deacetylation was observed. Together, these data suggest that histone deacetylation is a process that occurs at the early stages of the disease and whose efficiency decreases with disease duration.
Collapse
Affiliation(s)
- Xiomara Pedre
- Department of Neuroscience and Genetics and Genomics, Mount Sinai School of Medicine, New York, New York 10029
| | | | - Wolfgang Bruck
- Department of Neuropathology, University Medical Center Göttingen, D-37075 Göttingen, Germany
| | - Gerardo López-Rodas
- Department of Neuroscience and Genetics and Genomics, Mount Sinai School of Medicine, New York, New York 10029
- Department of Biochemistry and Molecular Biology, University of Valencia, 46100 Burjassot, Valencia, Spain, and
| | - Tanja Kuhlmann
- Institute of Neuropathology, University Hospital Münster, D-48149 Münster, Germany
| | - Patrizia Casaccia
- Department of Neuroscience and Genetics and Genomics, Mount Sinai School of Medicine, New York, New York 10029
| |
Collapse
|