1
|
Danner B, Gonzalez AD, Corbett WC, Alhneif M, Etemadmoghadam S, Parker-Garza J, Flanagan ME. Brain banking in the United States and Europe: Importance, challenges, and future trends. J Neuropathol Exp Neurol 2024; 83:219-229. [PMID: 38506125 PMCID: PMC10951968 DOI: 10.1093/jnen/nlae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024] Open
Abstract
In recent years, brain banks have become valuable resources for examining the molecular underpinnings of various neurological and psychological disorders including Alzheimer disease and Parkinson disease. However, the availability of brain tissue has significantly declined. Proper collection, preparation, and preservation of postmortem autopsy tissue are essential for optimal downstream brain tissue distribution and experimentation. Collaborations between brain banks through larger networks such as NeuroBioBank with centralized sample request mechanisms promote tissue distribution where brain donations are disproportionately lower. Collaborations between brain banking networks also help to standardize the brain donation and sample preparation processes, ensuring proper distribution and experimentation. Ethical brain donation and thorough processing enhances the responsible conduct of scientific studies. Education and outreach programs that foster collaboration between hospitals, nursing homes, neuropathologists, and other research scientists help to alleviate concerns among potential brain donors. Furthermore, ensuring that biorepositories accurately reflect the true demographics of communities will result in research data that reliably represent populations. Implementing these measures will grant scientists improved access to brain tissue, facilitating a deeper understanding of the neurological diseases that impact millions.
Collapse
Affiliation(s)
- Benjamin Danner
- Biggs Institute, University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
| | - Angelique D Gonzalez
- Biggs Institute, University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
| | - William Cole Corbett
- Biggs Institute, University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
| | - Mohammad Alhneif
- Biggs Institute, University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
| | - Shahroo Etemadmoghadam
- Biggs Institute, University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
| | - Julie Parker-Garza
- Biggs Institute, University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
| | - Margaret E Flanagan
- Biggs Institute, University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
- Department of Pathology, University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
| |
Collapse
|
2
|
Winship IR, Dursun SM, Baker GB, Balista PA, Kandratavicius L, Maia-de-Oliveira JP, Hallak J, Howland JG. An Overview of Animal Models Related to Schizophrenia. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2019; 64:5-17. [PMID: 29742910 PMCID: PMC6364139 DOI: 10.1177/0706743718773728] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Schizophrenia is a heterogeneous psychiatric disorder that is poorly treated with current therapies. In this brief review, we provide an update regarding the use of animal models to study schizophrenia in an attempt to understand its aetiology and develop novel therapeutic strategies. Tremendous progress has been made developing and validating rodent models that replicate the aetiologies, brain pathologies, and behavioural abnormalities associated with schizophrenia in humans. Here, models are grouped into 3 categories-developmental, drug induced, and genetic-to reflect the heterogeneous risk factors associated with schizophrenia. Each of these models is associated with varied but overlapping pathophysiology, endophenotypes, behavioural abnormalities, and cognitive impairments. Studying schizophrenia using multiple models will permit an understanding of the core features of the disease, thereby facilitating preclinical research aimed at the development and validation of better pharmacotherapies to alter the progression of schizophrenia or alleviate its debilitating symptoms.
Collapse
Affiliation(s)
- Ian R Winship
- 1 Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta
| | - Serdar M Dursun
- 2 Department of Psychiatry, Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta.,3 National Institute of Science and Technology-Translational Science, Brazil
| | - Glen B Baker
- 2 Department of Psychiatry, Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta.,3 National Institute of Science and Technology-Translational Science, Brazil
| | - Priscila A Balista
- 4 Department of Pharmacy, Centro Universitario das Faculdades Metropolitanas Unidas, São Paulo, Brazil
| | - Ludmyla Kandratavicius
- 5 Department of Neuroscience and Behavior, Faculty of Medicine of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
| | - Joao Paulo Maia-de-Oliveira
- 3 National Institute of Science and Technology-Translational Science, Brazil.,6 Department of Clinical Medicine, Rio Grande do Norte Federal University, Natal, Brazil
| | - Jaime Hallak
- 3 National Institute of Science and Technology-Translational Science, Brazil.,5 Department of Neuroscience and Behavior, Faculty of Medicine of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil.,7 Department of Psychiatry (NRU), University of Alberta, Edmonton, Alberta
| | - John G Howland
- 8 Department of Physiology, University of Saskatchewan, Saskatoon, Saskatchewan
| |
Collapse
|
3
|
Cheon S, Dean M, Chahrour M. The ubiquitin proteasome pathway in neuropsychiatric disorders. Neurobiol Learn Mem 2018; 165:106791. [PMID: 29398581 DOI: 10.1016/j.nlm.2018.01.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/19/2018] [Accepted: 01/26/2018] [Indexed: 12/20/2022]
Abstract
The ubiquitin proteasome system (UPS) is a highly conserved pathway that tightly regulates protein turnover in cells. This process is integral to neuronal development, differentiation, and function. Several members of the UPS are disrupted in neuropsychiatric disorders, highlighting the importance of this pathway in brain development and function. In this review, we discuss some of these pathway members, the molecular processes they regulate, and the potential for targeting the UPS in an effort to develop therapeutic strategies in neuropsychiatric and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Solmi Cheon
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Milan Dean
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Maria Chahrour
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Departments of Neuroscience and Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
4
|
Xu Y, Wang J, Rao S, Ritter M, Manor LC, Backer R, Cao H, Cheng Z, Liu S, Liu Y, Tian L, Dong K, Yao Shugart Y, Wang G, Zhang F. An Integrative Computational Approach to Evaluate Genetic Markers for Bipolar Disorder. Sci Rep 2017; 7:6745. [PMID: 28751646 PMCID: PMC5532256 DOI: 10.1038/s41598-017-05846-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 06/05/2017] [Indexed: 01/08/2023] Open
Abstract
Studies to date have reported hundreds of genes connected to bipolar disorder (BP). However, many studies identifying candidate genes have lacked replication, and their results have, at times, been inconsistent with one another. This paper, therefore, offers a computational workflow that can curate and evaluate BP-related genetic data. Our method integrated large-scale literature data and gene expression data that were acquired from both postmortem human brain regions (BP case/control: 45/50) and peripheral blood mononuclear cells (BP case/control: 193/593). To assess the pathogenic profiles of candidate genes, we conducted Pathway Enrichment, Sub-Network Enrichment, and Gene-Gene Interaction analyses, with 4 metrics proposed and validated for each gene. Our approach developed a scalable BP genetic database (BP_GD), including BP related genes, drugs, pathways, diseases and supporting references. The 4 metrics successfully identified frequently-studied BP genes (e.g. GRIN2A, DRD1, DRD2, HTR2A, CACNA1C, TH, BDNF, SLC6A3, P2RX7, DRD3, and DRD4) and also highlighted several recently reported BP genes (e.g. GRIK5, GRM1 and CACNA1A). The computational biology approach and the BP database developed in this study could contribute to a better understanding of the current stage of BP genetic research and assist further studies in the field.
Collapse
Affiliation(s)
- Yong Xu
- Department of Psychiatry, First Clinical Medical College/First Hospital of Shanxi Medical University, Taiyuan, 030000, China
| | - Jun Wang
- Wuxi Mental Health Center, Nanjing Medical University, Wuxi, Jiangsu Province, 214151, China
| | - Shuquan Rao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - McKenzie Ritter
- Unit on Statistical Genomics, National Institute of Mental Health, National Institutes of Health, Bethesda, 20852, USA
| | - Lydia C Manor
- American Informatics Consultant LLC, Rockville, Maryland, 20852, USA
| | - Robert Backer
- Department of Psychological & Brain Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Hongbao Cao
- Unit on Statistical Genomics, National Institute of Mental Health, National Institutes of Health, Bethesda, 20852, USA
- Department of Biology Products, Life Science Solutions, Elsevier Inc., Rockville, MD, 20852, USA
| | - Zaohuo Cheng
- Wuxi Mental Health Center, Nanjing Medical University, Wuxi, Jiangsu Province, 214151, China
| | - Sha Liu
- Department of Psychiatry, First Clinical Medical College/First Hospital of Shanxi Medical University, Taiyuan, 030000, China
| | - Yansong Liu
- Wuxi Mental Health Center, Nanjing Medical University, Wuxi, Jiangsu Province, 214151, China
| | - Lin Tian
- Wuxi Mental Health Center, Nanjing Medical University, Wuxi, Jiangsu Province, 214151, China
| | - Kunlun Dong
- Wuxi Mental Health Center, Nanjing Medical University, Wuxi, Jiangsu Province, 214151, China
| | - Yin Yao Shugart
- Unit on Statistical Genomics, National Institute of Mental Health, National Institutes of Health, Bethesda, 20852, USA
| | - Guoqiang Wang
- Wuxi Mental Health Center, Nanjing Medical University, Wuxi, Jiangsu Province, 214151, China.
| | - Fuquan Zhang
- Wuxi Mental Health Center, Nanjing Medical University, Wuxi, Jiangsu Province, 214151, China.
| |
Collapse
|
5
|
Shen H, Li Z. miRNAs in NMDA receptor-dependent synaptic plasticity and psychiatric disorders. Clin Sci (Lond) 2016; 130:1137-46. [PMID: 27252401 PMCID: PMC5582542 DOI: 10.1042/cs20160046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 03/21/2016] [Indexed: 12/17/2022]
Abstract
The identification and functional delineation of miRNAs (a class of small non-coding RNAs) have added a new layer of complexity to our understanding of the molecular mechanisms underlying synaptic plasticity. Genome-wide association studies in conjunction with investigations in cellular and animal models, moreover, provide evidence that miRNAs are involved in psychiatric disorders. In the present review, we examine the current knowledge about the roles played by miRNAs in NMDA (N-methyl-D-aspartate) receptor-dependent synaptic plasticity and psychiatric disorders.
Collapse
Affiliation(s)
- Hongmei Shen
- Section on Synapse Development and Plasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, U.S.A
| | - Zheng Li
- Section on Synapse Development and Plasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, U.S.A.
| |
Collapse
|
6
|
Landek-Salgado MA, Faust TE, Sawa A. Molecular substrates of schizophrenia: homeostatic signaling to connectivity. Mol Psychiatry 2016; 21:10-28. [PMID: 26390828 PMCID: PMC4684728 DOI: 10.1038/mp.2015.141] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 06/24/2015] [Accepted: 06/25/2015] [Indexed: 02/06/2023]
Abstract
Schizophrenia (SZ) is a devastating psychiatric condition affecting numerous brain systems. Recent studies have identified genetic factors that confer an increased risk of SZ and participate in the disease etiopathogenesis. In parallel to such bottom-up approaches, other studies have extensively reported biological changes in patients by brain imaging, neurochemical and pharmacological approaches. This review highlights the molecular substrates identified through studies with SZ patients, namely those using top-down approaches, while also referring to the fruitful outcomes of recent genetic studies. We have subclassified the molecular substrates by system, focusing on elements of neurotransmission, targets in white matter-associated connectivity, immune/inflammatory and oxidative stress-related substrates, and molecules in endocrine and metabolic cascades. We further touch on cross-talk among these systems and comment on the utility of animal models in charting the developmental progression and interaction of these substrates. Based on this comprehensive information, we propose a framework for SZ research based on the hypothesis of an imbalance in homeostatic signaling from immune/inflammatory, oxidative stress, endocrine and metabolic cascades that, at least in part, underlies deficits in neural connectivity relevant to SZ. Thus, this review aims to provide information that is translationally useful and complementary to pathogenic hypotheses that have emerged from genetic studies. Based on such advances in SZ research, it is highly expected that we will discover biomarkers that may help in the early intervention, diagnosis or treatment of SZ.
Collapse
Affiliation(s)
- M A Landek-Salgado
- Department of Psychiatry, John Hopkins University School of Medicine, Baltimore, MD, USA
| | - T E Faust
- Department of Psychiatry, John Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neuroscience, John Hopkins University School of Medicine, Baltimore, MD, USA
| | - A Sawa
- Department of Psychiatry, John Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
7
|
O'Shea KS, McInnis MG. Neurodevelopmental origins of bipolar disorder: iPSC models. Mol Cell Neurosci 2015; 73:63-83. [PMID: 26608002 DOI: 10.1016/j.mcn.2015.11.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 10/14/2015] [Accepted: 11/18/2015] [Indexed: 12/22/2022] Open
Abstract
Bipolar disorder (BP) is a chronic neuropsychiatric condition characterized by pathological fluctuations in mood from mania to depression. Adoption, twin and family studies have consistently identified a significant hereditary component to BP, yet there is no clear genetic event or consistent neuropathology. BP has been suggested to have a developmental origin, although this hypothesis has been difficult to test since there are no viable neurons or glial cells to analyze, and research has relied largely on postmortem brain, behavioral and imaging studies, or has examined proxy tissues including saliva, olfactory epithelium and blood cells. Neurodevelopmental factors, particularly pathways related to nervous system development, cell migration, extracellular matrix, H3K4 methylation, and calcium signaling have been identified in large gene expression and GWAS studies as altered in BP. Recent advances in stem cell biology, particularly the ability to reprogram adult somatic tissues to a pluripotent state, now make it possible to interrogate these pathways in viable cell models. A number of induced pluripotent stem cell (iPSC) lines from BP patient and healthy control (C) individuals have been derived in several laboratories, and their ability to form cortical neurons examined. Early studies suggest differences in activity, calcium signaling, blocks to neuronal differentiation, and changes in neuronal, and possibly glial, lineage specification. Initial observations suggest that differentiation of BP patient-derived neurons to dorsal telencephalic derivatives may be impaired, possibly due to alterations in WNT, Hedgehog or Nodal pathway signaling. These investigations strongly support a developmental contribution to BP and identify novel pathways, mechanisms and opportunities for improved treatments.
Collapse
Affiliation(s)
- K Sue O'Shea
- Department of Cell and Developmental Biology, University of Michigan, 3051 BSRB, 109 Zina Pitcher PL, Ann Arbor, MI 48109-2200, United States; Department of Psychiatry, University of Michigan, 4250 Plymouth Rd, Ann Arbor, MI 48109-5765, United States.
| | - Melvin G McInnis
- Department of Psychiatry, University of Michigan, 4250 Plymouth Rd, Ann Arbor, MI 48109-5765, United States
| |
Collapse
|
8
|
Abstract
Recent findings implicate alterations in glutamate signaling, leading to aberrant synaptic plasticity, in schizophrenia. Matrix metalloproteinase-9 (MMP-9) has been shown to regulate glutamate receptors, be regulated by glutamate at excitatory synapses, and modulate physiological and morphological synaptic plasticity. By means of functional gene polymorphism, gene responsiveness to antipsychotics and blood plasma levels MMP-9 has recently been implicated in schizophrenia. This commentary critically reviews these findings based on the hypothesis that MMP-9 contributes to pathological synaptic plasticity in schizophrenia.
Collapse
Affiliation(s)
- Katarzyna Lepeta
- Department of Molecular and Cellular Neurobiology, Nencki Institute, Warsaw, Poland
| | - Leszek Kaczmarek
- Department of Molecular and Cellular Neurobiology, Nencki Institute, Warsaw, Poland
| |
Collapse
|
9
|
Innate immune response is differentially dysregulated between bipolar disease and schizophrenia. Schizophr Res 2015; 161:215-21. [PMID: 25487697 DOI: 10.1016/j.schres.2014.10.055] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 09/22/2014] [Accepted: 10/28/2014] [Indexed: 01/04/2023]
Abstract
Schizophrenia (SZ) and bipolar disorder (BD) are severe psychiatric conditions with a neurodevelopmental component. Genetic findings indicate the existence of an overlap in genetic susceptibility across the disorders. Also, image studies provide evidence for a shared neurobiological basis, contributing to a dimensional diagnostic approach. This study aimed to identify the molecular mechanisms that differentiate SZ and BD patients from health controls but also that distinguish both from health individuals. Comparison of gene expression profiling in post-mortem brains of both disorders and health controls (30 cases), followed by a further comparison between 29 BD and 29 SZ revealed 28 differentially expressed genes. These genes were used in co-expression analysesthat revealed the pairs CCR1/SERPINA1, CCR5/HCST, C1QA/CD68, CCR5/S100A11 and SERPINA1/TLR1 as presenting the most significant difference in co-expression between SZ and BD. Next, a protein-protein interaction (PPI) network using the 28 differentially expressed genes as seeds revealed CASP4, TYROBP, CCR1, SERPINA1, CCR5 and C1QA as having a central role in the diseases manifestation. Both co-expression and network topological analyses pointed to genes related to microglia functions. Based on this data, we suggest that differences between SZ and BP are due to genes involved with response to stimulus, defense response, immune system process and response to stress biological processes, all having a role in the communication of environmental factors to the cells and associated to microglia.
Collapse
|
10
|
BrainNet Europe's Code of Conduct for brain banking. J Neural Transm (Vienna) 2015; 122:937-40. [PMID: 25578485 PMCID: PMC4498226 DOI: 10.1007/s00702-014-1353-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 12/16/2014] [Indexed: 11/26/2022]
Abstract
Research utilizing human tissue and its removal at post-mortem has given rise to many controversies in the media and posed many dilemmas in the fields of law and ethics. The law often lacks clear instructions and unambiguous guidelines. The absence of a harmonized international legislation with regard to post-mortem medical procedures and donation of tissue and organs contributes to the complexity of the issue. Therefore, within the BrainNet Europe (BNE) consortium, a consortium of 19 European brain banks, we drafted an ethical Code of Conduct for brain banking that covers basic legal rules and bioethical principles involved in brain banking. Sources include laws, regulations and guidelines (Declarations, Conventions, Recommendations, Guidelines and Directives) issued by international key organizations, such as the Council of Europe, European Commission, World Medical Association and World Health Organization. The Code of Conduct addresses fundamental topics as the rights of the persons donating their tissue, the obligations of the brain bank with regard to respect and observance of such rights, informed consent, confidentiality, protection of personal data, collections of human biological material and their management, and transparency and accountability within the organization of a brain bank. The Code of Conduct for brain banking is being adopted by the BNE network prior to being enshrined in official legislation for brain banking in Europe and beyond.
Collapse
|
11
|
Smith KR, Kopeikina KJ, Fawcett-Patel JM, Leaderbrand K, Gao R, Schürmann B, Myczek K, Radulovic J, Swanson GT, Penzes P. Psychiatric risk factor ANK3/ankyrin-G nanodomains regulate the structure and function of glutamatergic synapses. Neuron 2014; 84:399-415. [PMID: 25374361 DOI: 10.1016/j.neuron.2014.10.010] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2014] [Indexed: 01/21/2023]
Abstract
Recent evidence implicates glutamatergic synapses as key pathogenic sites in psychiatric disorders. Common and rare variants in the ANK3 gene, encoding ankyrin-G, have been associated with bipolar disorder, schizophrenia, and autism. Here we demonstrate that ankyrin-G is integral to AMPAR-mediated synaptic transmission and maintenance of spine morphology. Using superresolution microscopy we find that ankyrin-G forms distinct nanodomain structures within the spine head and neck. At these sites, it modulates mushroom spine structure and function, probably as a perisynaptic scaffold and barrier within the spine neck. Neuronal activity promotes ankyrin-G accumulation in distinct spine subdomains, where it differentially regulates NMDA receptor-dependent plasticity. These data implicate subsynaptic nanodomains containing a major psychiatric risk molecule, ankyrin-G, as having location-specific functions and open directions for basic and translational investigation of psychiatric risk molecules.
Collapse
Affiliation(s)
- Katharine R Smith
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611 USA
| | - Katherine J Kopeikina
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611 USA
| | - Jessica M Fawcett-Patel
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611 USA
| | - Katherine Leaderbrand
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611 USA
| | - Ruoqi Gao
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611 USA
| | - Britta Schürmann
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611 USA
| | - Kristoffer Myczek
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611 USA
| | - Jelena Radulovic
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611 USA; Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611 USA
| | - Geoffrey T Swanson
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611 USA
| | - Peter Penzes
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611 USA; Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611 USA.
| |
Collapse
|
12
|
Barkus C, Sanderson DJ, Rawlins JNP, Walton ME, Harrison PJ, Bannerman DM. What causes aberrant salience in schizophrenia? A role for impaired short-term habituation and the GRIA1 (GluA1) AMPA receptor subunit. Mol Psychiatry 2014; 19:1060-70. [PMID: 25224260 PMCID: PMC4189912 DOI: 10.1038/mp.2014.91] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 06/19/2014] [Accepted: 06/25/2014] [Indexed: 01/13/2023]
Abstract
The GRIA1 locus, encoding the GluA1 (also known as GluRA or GluR1) AMPA glutamate receptor subunit, shows genome-wide association to schizophrenia. As well as extending the evidence that glutamatergic abnormalities have a key role in the disorder, this finding draws attention to the behavioural phenotype of Gria1 knockout mice. These mice show deficits in short-term habituation. Importantly, under some conditions the attention being paid to a recently presented neutral stimulus can actually increase rather than decrease (sensitization). We propose that this mouse phenotype represents a cause of aberrant salience and, in turn, that aberrant salience (and the resulting positive symptoms) in schizophrenia may arise, at least in part, from a glutamatergic genetic predisposition and a deficit in short-term habituation. This proposal links an established risk gene with a psychological process central to psychosis and is supported by findings of comparable deficits in short-term habituation in mice lacking the NMDAR receptor subunit Grin2a (which also shows association to schizophrenia). As aberrant salience is primarily a dopaminergic phenomenon, the model supports the view that the dopaminergic abnormalities can be downstream of a glutamatergic aetiology. Finally, we suggest that, as illustrated here, the real value of genetically modified mice is not as 'models of schizophrenia' but as experimental tools that can link genomic discoveries with psychological processes and help elucidate the underlying neural mechanisms.
Collapse
Affiliation(s)
- C Barkus
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX, U.K
| | - DJ Sanderson
- Department of Psychology, Durham University, Durham, DH1 3LE, U.K
| | - JNP Rawlins
- Department of Experimental Psychology, University of Oxford, 9 South Parks Road, Oxford, OX1 3UD, U.K
| | - ME Walton
- Department of Experimental Psychology, University of Oxford, 9 South Parks Road, Oxford, OX1 3UD, U.K
| | - PJ Harrison
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX, U.K
| | - DM Bannerman
- Department of Experimental Psychology, University of Oxford, 9 South Parks Road, Oxford, OX1 3UD, U.K
| |
Collapse
|
13
|
Chronic treatment with mood-stabilizers attenuates abnormal hyperlocomotion of GluA1-subunit deficient mice. PLoS One 2014; 9:e100188. [PMID: 24932798 PMCID: PMC4059755 DOI: 10.1371/journal.pone.0100188] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 05/22/2014] [Indexed: 12/20/2022] Open
Abstract
Abnormal excitatory glutamate neurotransmission and plasticity have been implicated in schizophrenia and affective disorders. Gria1−/− mice lacking GluA1 subunit (encoded by Gria1 gene) of AMPA-type glutamate receptor show robust novelty-induced hyperactivity, social deficits and heightened approach features, suggesting that they could be used to test for anti-manic activity of drugs. Here, we tested the efficacy of chronic treatment with established anti-manic drugs on behavioural properties of the Gria1−/− mice. The mice received standard mood stabilizers (lithium and valproate) and novel ones (topiramate and lamotrigine, used more as anticonvulsants) as supplements in rodent chow for at least 4 weeks. All drugs attenuated novelty-induced locomotor hyperactivity of the Gria1−/− mice, especially by promoting the habituation, while none of them attenuated 2-mg/kg amphetamine-induced hyperactivity as compared to control diet. Treatment with lithium and valproate reversed the elevated exploratory activity of Gria1−/− mice. Valproate treatment also reduced struggling behaviour in tail suspension test and restored reciprocally-initiated social contacts of Gria1−/− mice to the level shown by the wild-type Gria1+/+ mice. Gria1−/− mice consumed slightly more sucrose during intermittent sucrose exposure than the wild-types, but ran similar distances on running wheels. These behaviours were not consistently affected by lithium and valproate in the Gria1−/− mice. The efficacy of various anti-manic drug treatments on novelty-induced hyperactivity suggests that the Gria1−/− mouse line can be utilized in screening for new therapeutics.
Collapse
|
14
|
Fusté M, Pinacho R, Meléndez-Pérez I, Villalmanzo N, Villalta-Gil V, Haro JM, Ramos B. Reduced expression of SP1 and SP4 transcription factors in peripheral blood mononuclear cells in first-episode psychosis. J Psychiatr Res 2013; 47:1608-14. [PMID: 23941741 DOI: 10.1016/j.jpsychires.2013.07.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 07/12/2013] [Accepted: 07/16/2013] [Indexed: 12/22/2022]
Abstract
Alterations of transcription factor specificity protein 4 (SP4) and 1 (SP1) have been linked to different neuropsychiatric diseases. Reduced SP4 and SP1 protein levels in the prefrontal cortex have been associated with bipolar disorder and schizophrenia, respectively, suggesting that both factors could be involved in the pathogenesis of disorders with psychotic features. The aim of this study was to investigate whether the reduction of SP1, SP4 and SP3 protein and mRNA expression in peripheral blood mononuclear cells in the early stages of psychosis may act as a potential biomarker of these disorders. A cross-sectional study of first-episode psychosis patients (n = 14) compared to gender- and age-matched healthy controls (n = 14) was designed. Patients were recruited through the adult mental health services of Parc Sanitari Sant Joan de Déu. Protein and gene expression levels of SP1, SP4 and SP3 were assessed in peripheral blood mononuclear cells of patients with first-episode psychosis and healthy control subjects. We report that protein levels of SP1 and SP4, but not SP3, are significantly reduced in patients compared to controls. In contrast, we did not observe any differences in expression levels for SP1, SP4 or SP3 genes between patient and control groups. In patients, SP4 protein levels were significantly associated with SP1 protein levels. No association was found, however, between protein and gene expression levels for each factor. Our study shows reduced SP1 and SP4 protein levels in first-episode psychosis in lymphocytes, suggesting that these transcription factors are potential peripheral biomarkers of psychotic spectrum disorders in the early stages.
Collapse
Affiliation(s)
- Montserrat Fusté
- Unitat de recerca, Parc Sanitari Sant Joan de Déu, Fundació Sant Joan de Déu, Universitat de Barcelona, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Dr. Antoni Pujadas, 42, 08830 Sant Boi de Llobregat, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
15
|
Hannan AJ. Nature, nurture and neurobiology: Gene–environment interactions in neuropsychiatric disorders. Neurobiol Dis 2013; 57:1-4. [DOI: 10.1016/j.nbd.2013.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
16
|
Pinacho R, Villalmanzo N, Roca M, Iniesta R, Monje A, Haro JM, Meana JJ, Ferrer I, Gill G, Ramos B. Analysis of Sp transcription factors in the postmortem brain of chronic schizophrenia: a pilot study of relationship to negative symptoms. J Psychiatr Res 2013; 47:926-34. [PMID: 23540600 DOI: 10.1016/j.jpsychires.2013.03.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 03/07/2013] [Accepted: 03/08/2013] [Indexed: 01/13/2023]
Abstract
Negative symptoms are the most resilient manifestations in schizophrenia. An imbalance in dopamine and glutamate pathways has been proposed for the emergence of these symptoms. SP1, SP3 and SP4 transcription factors regulate genes in these pathways, suggesting a possible involvement in negative symptoms. In this study, we characterized Sp factors in the brains of subjects with schizophrenia and explored a possible association with negative symptoms. We also included analysis of NR1, NR2A and DRD2 as Sp target genes. Postmortem cerebellum and prefrontal cortex from an antemortem clinically well-characterized and controlled collection of elderly subjects with chronic schizophrenia (n = 16) and control individuals (n = 14) were examined. We used the Positive and Negative Syndrome and the Clinical Global Impression Schizophrenia scales, quantitative PCR and immunoblot. SP1 protein and mRNA were reduced in the prefrontal cortex in schizophrenia whereas none of Sp factors were altered in the cerebellum. However, we found that SP1, SP3 and SP4 protein levels inversely correlated with negative symptoms in the cerebellum. Furthermore, NR2A and DRD2 mRNA levels correlated with negative symptoms in the cerebellum. In the prefrontal cortex, SP1 mRNA and NR1 and DRD2 inversely correlated with these symptoms while Sp protein levels did not. This pilot study not only reinforces the involvement of SP1 in schizophrenia, but also suggests that reduced levels or function of SP1, SP4 and SP3 may participate in negative symptoms, in part through the regulation of NMDA receptor subunits and/or Dopamine D2 receptor, providing novel information about the complex negative symptoms in this disorder.
Collapse
Affiliation(s)
- Raquel Pinacho
- Unitat de Recerca, Parc Sanitari Sant Joan de Déu, Fundació Sant Joan de Déu, Universitat de Barcelona, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Dr. Antoni Pujadas, 42, 08830 Sant Boi de Llobregat, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Molteni R, Macchi F, Riva MA. Gene expression profiling as functional readout of rodent models for psychiatric disorders. Cell Tissue Res 2013; 354:51-60. [DOI: 10.1007/s00441-013-1648-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Accepted: 04/24/2013] [Indexed: 10/26/2022]
|
18
|
Mor E, Kano SI, Colantuoni C, Sawa A, Navon R, Shomron N. MicroRNA-382 expression is elevated in the olfactory neuroepithelium of schizophrenia patients. Neurobiol Dis 2013; 55:1-10. [PMID: 23542694 DOI: 10.1016/j.nbd.2013.03.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 03/17/2013] [Accepted: 03/20/2013] [Indexed: 02/06/2023] Open
Abstract
Schizophrenia is a common neuropsychiatric disorder that has a strong genetic component. MicroRNAs (miRNAs) have been implicated in neurodevelopmental and psychiatric disorders including schizophrenia, as indicated by their dysregulation in post-mortem brain tissues and in peripheral blood of schizophrenia patients. The olfactory epithelium (OE) is one of the few accessible neural tissues that contain neurons and their stem cells. Previous studies showed that OE-derived tissues and cells can be safely and easily collected from live human subjects and may provide a "window" into neuronal processes involved in disorders such as schizophrenia, while avoiding the limitations of using postmortem brain samples or non-neuronal tissues. In this study, we found that the brain-enriched miR-382 (miR-382-5p) expression was elevated in in vitro cultured olfactory cells, in a cohort of seven schizophrenia patients compared with seven non-schizophrenic controls. MiR-382 elevation was further confirmed in laser-capture microdissected OE neuronal tissue (LCM-OE), enriched for mature olfactory neurons, in a cohort of 18 schizophrenia patients and 18 non-schizophrenic controls. In sharp contrast, miR-382 expression could not be detected in lymphoblastoid cell lines generated from schizophrenic or non-schizophrenic individuals. We further found that miR-382 directly regulates the expression of two genes, FGFR1 and SPRY4, which are downregulated in both the cultured olfactory cells and LCM-OE derived from schizophrenia patients. These genes are involved in the fibroblast growth factor (FGF) signaling pathway, while impairment of this pathway may underlie abnormal brain development and function associated with schizophrenia. Our data suggest that miR-382 elevation detected in patients' OE-derived samples might serve to strengthen current biomarker studies in schizophrenia. This study also illustrates the potential utility of OE-derived tissues and cells as surrogate samples for the brain.
Collapse
Affiliation(s)
- Eyal Mor
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| | | | | | | | | | | |
Collapse
|
19
|
Hitzemann R, Bottomly D, Darakjian P, Walter N, Iancu O, Searles R, Wilmot B, McWeeney S. Genes, behavior and next-generation RNA sequencing. GENES, BRAIN, AND BEHAVIOR 2013; 12:1-12. [PMID: 23194347 PMCID: PMC6050050 DOI: 10.1111/gbb.12007] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 10/31/2012] [Accepted: 11/21/2012] [Indexed: 12/30/2022]
Abstract
Advances in next-generation sequencing suggest that RNA-Seq is poised to supplant microarray-based approaches for transcriptome analysis. This article briefly reviews the use of microarrays in the brain-behavior context and then illustrates why RNA-Seq is a superior strategy. Compared with microarrays, RNA-Seq has a greater dynamic range, detects both coding and noncoding RNAs, is superior for gene network construction, detects alternative spliced transcripts, detects allele specific expression and can be used to extract genotype information, e.g. nonsynonymous coding single nucleotide polymorphisms. Examples of where RNA-Seq has been used to assess brain gene expression are provided. Despite the advantages of RNA-Seq, some disadvantages remain. These include the high cost of RNA-Seq and the computational complexities associated with data analysis. RNA-Seq embraces the complexity of the transcriptome and provides a mechanism to understand the underlying regulatory code; the potential to inform the brain-behavior relationship is substantial.
Collapse
Affiliation(s)
- R Hitzemann
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239-3098, USA.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Andreazza AC. Combining redox-proteomics and epigenomics to explain the involvement of oxidative stress in psychiatric disorders. MOLECULAR BIOSYSTEMS 2013; 8:2503-12. [PMID: 22710408 DOI: 10.1039/c2mb25118c] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Psychiatric disorders affect approximately 10% of adults in North-America. The complex nature of these illnesses makes the search for their pathophysiology a challenge. However, studies have consistently shown that mitochondrial dysfunction and oxidative stress are common features across major psychiatric disorders, including bipolar disorder and schizophrenia. Nevertheless, little is known about specific targets of oxidation in the brain. The search for redox sensors (protein targets for oxidation) will offer information about which pathways are regulated by oxidation in psychiatric disorders. Additionally, DNA is also a target for oxidative damage and recently, studies have suggested that oxidation of cytosine and guanosine can serve as an epigenetic modulator by decreasing or preventing further DNA methylation. Therefore, this review aims to discuss how we can use redox-proteomics and epigenomics to help explain the role of oxidative damage in major psychiatric disorders, which may ultimately lead to the identification of targets for development of new medications.
Collapse
Affiliation(s)
- Ana Cristina Andreazza
- Department of Psychiatry, University of Toronto, Medical Science Building, Room 4204, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
21
|
Takahashi N, Sakurai T. Roles of glial cells in schizophrenia: possible targets for therapeutic approaches. Neurobiol Dis 2012; 53:49-60. [PMID: 23146995 DOI: 10.1016/j.nbd.2012.11.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Revised: 09/30/2012] [Accepted: 11/01/2012] [Indexed: 12/20/2022] Open
Abstract
Glial cells consisting of oligodendrocytes, astrocytes, microglia, and NG2 positive cells are major cell populations in the central nervous system, number-wise. They function as effectors and modulators of neurodevelopment through a wide variety of neuron-glial cell interactions in brain development and functions. Glial cells can be affected by both genetic and environmental factors, leading to their dysfunctions in supporting neuronal development and functions. These in turn can affect neuronal cells, causing alterations at the circuitry level that manifest as behavioral characteristics associated with schizophrenia in late teens-early twenties. Glial cells are also involved in neuroinflammatory processes, which sometimes have deleterious effects on the normal brain development. If the glial involvement plays significant roles in schizophrenia, the processes involving glial cells can become possible therapeutic targets for schizophrenia. A number of known antipsychotics are shown to have beneficial effects on glial cells, but other drugs targeting glial cell functions may also have therapeutic effects on schizophrenia. The latter can be taken into consideration for future drug development for schizophrenia.
Collapse
Affiliation(s)
- Nagahide Takahashi
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | | |
Collapse
|
22
|
Leussis MP, Madison JM, Petryshen TL. Ankyrin 3: genetic association with bipolar disorder and relevance to disease pathophysiology. BIOLOGY OF MOOD & ANXIETY DISORDERS 2012; 2:18. [PMID: 23025490 PMCID: PMC3492013 DOI: 10.1186/2045-5380-2-18] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 08/20/2012] [Indexed: 11/26/2022]
Abstract
Bipolar disorder (BD) is a multi-factorial disorder caused by genetic and environmental influences. It has a large genetic component, with heritability estimated between 59-93%. Recent genome-wide association studies (GWAS) using large BD patient populations have identified a number of genes with strong statistical evidence for association with susceptibility for BD. Among the most significant and replicated genes is ankyrin 3 (ANK3), a large gene that encodes multiple isoforms of the ankyrin G protein. This article reviews the current evidence for genetic association of ANK3 with BD, followed by a comprehensive overview of the known biology of the ankyrin G protein, focusing on its neural functions and their potential relevance to BD. Ankyrin G is a scaffold protein that is known to have many essential functions in the brain, although the mechanism by which it contributes to BD is unknown. These functions include organizational roles for subcellular domains in neurons including the axon initial segment and nodes of Ranvier, through which ankyrin G orchestrates the localization of key ion channels and GABAergic presynaptic terminals, as well as creating a diffusion barrier that limits transport into the axon and helps define axo-dendritic polarity. Ankyrin G is postulated to have similar structural and organizational roles at synaptic terminals. Finally, ankyrin G is implicated in both neurogenesis and neuroprotection. ANK3 and other BD risk genes participate in some of the same biological pathways and neural processes that highlight several mechanisms by which they may contribute to BD pathophysiology. Biological investigation in cellular and animal model systems will be critical for elucidating the mechanism through which ANK3 confers risk of BD. This knowledge is expected to lead to a better understanding of the brain abnormalities contributing to BD symptoms, and to potentially identify new targets for treatment and intervention approaches.
Collapse
Affiliation(s)
- Melanie P Leussis
- Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry and Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA.
| | | | | |
Collapse
|
23
|
de Monasterio-Schrader P, Jahn O, Tenzer S, Wichert SP, Patzig J, Werner HB. Systematic approaches to central nervous system myelin. Cell Mol Life Sci 2012; 69:2879-94. [PMID: 22441408 PMCID: PMC11114939 DOI: 10.1007/s00018-012-0958-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 03/05/2012] [Indexed: 12/11/2022]
Abstract
Rapid signal propagation along vertebrate axons is facilitated by their insulation with myelin, a plasma membrane specialization of glial cells. The recent application of 'omics' approaches to the myelinating cells of the central nervous system, oligodendrocytes, revealed their mRNA signatures, enhanced our understanding of how myelination is regulated, and established that the protein composition of myelin is much more complex than previously thought. This review provides a meta-analysis of the > 1,200 proteins thus far identified by mass spectrometry in biochemically purified central nervous system myelin. Contaminating proteins are surprisingly infrequent according to bioinformatic prediction of subcellular localization and comparison with the transcriptional profile of oligodendrocytes. The integration of datasets also allowed the subcategorization of the myelin proteome into functional groups comprising genes that are coregulated during oligodendroglial differentiation. An unexpectedly large number of myelin-related genes cause-when mutated in humans-hereditary diseases affecting the physiology of the white matter. Systematic approaches to oligodendrocytes and myelin thus provide valuable resources for the molecular dissection of developmental myelination, glia-axonal interactions, leukodystrophies, and demyelinating diseases.
Collapse
Affiliation(s)
| | - Olaf Jahn
- Proteomics Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany
- DFG Research Center for Molecular Physiology of the Brain, Göttingen, Germany
| | - Stefan Tenzer
- Institute of Immunology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sven P. Wichert
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| | - Julia Patzig
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| | - Hauke B. Werner
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| |
Collapse
|