1
|
Kui L, Jiao Y, Jiang H, Wang G, Li Z, Ji X, Zhou C. Expression and metabolism profiles of CVT associated with inflammatory responses and oxygen carrier ability in the brain. CNS Neurosci Ther 2024; 30:e14494. [PMID: 37902195 PMCID: PMC11017414 DOI: 10.1111/cns.14494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 08/21/2023] [Accepted: 10/02/2023] [Indexed: 10/31/2023] Open
Abstract
AIM As the main type of stroke, the incidence of cerebral venous thrombosis (CVT) has been rising. However, the comprehensive mechanisms behind it remain unclear. Thus, the multi-omics study is required to investigate the mechanism after CVT and elucidate the characteristic pathology of venous stroke and arterial stroke. METHODS Adult rats were subjected to CVT and MCAO models. Whole-transcriptome sequencing (RNA-seq) and untargeted metabolomics analysis were performed to construct the transcriptome and metabolism profiles of rat brains after CVT and also MCAO. The difference analysis, functional annotation, and enrichment analysis were also performed. RESULTS Through RNA-seq analysis, differentially expressed genes (DEGs) were screened. 174 CVT specific genes including Il1a, Ccl9, Cxxl6, Tnfrsf14, etc., were detected. The hemoglobin genes, including both Hba and Hbb, were significantly downregulated after CVT, compared both to the MCAO and Sham groups. Metabolism analysis showed that CVT had higher heterogeneity of metabolism compared to MCAO. Metabolites including N-stearoyltyrosine, 5-methoxy-3-indoleaceate, Afegostat, pipecolic acid, etc. were specially regulated in CVT. Through the immune infiltration analysis, it was found that CVT had a higher immune response, with the abundance of certain types of immune cells increased, especially T helper cells. It was important to find the prevalence of the activation of inflammatory chemokine, cytokine, NOD-like pathway, and neutrophil extracellular trap. CONCLUSION We explored and analyzed the gene expression and metabolomic characteristics of CVT, revealed the specific inflammatory reaction mechanism of CVT and found the markers in transcriptome and metabolism levels. It points out the direction for CVT early diagnosis and treatment.
Collapse
Affiliation(s)
- Ling Kui
- Shenzhen Qianhai Shekou Free Trade Zone HospitalShenzhenChina
| | - Yinming Jiao
- Shenzhen Qianhai Shekou Free Trade Zone HospitalShenzhenChina
| | - Huimin Jiang
- Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Beijing Advanced Innovation Center for Big Data‐based Precision MedicineCapital Medical UniversityBeijingChina
| | - Guoyun Wang
- Shenzhen Qianhai Shekou Free Trade Zone HospitalShenzhenChina
| | - Zongyu Li
- Dehong People's HospitalMangshiChina
| | - Xunming Ji
- Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Beijing Advanced Innovation Center for Big Data‐based Precision MedicineCapital Medical UniversityBeijingChina
- Department of Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Chen Zhou
- Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Beijing Advanced Innovation Center for Big Data‐based Precision MedicineCapital Medical UniversityBeijingChina
| |
Collapse
|
2
|
Grcic L, Leech G, Kwan K, Storr T. Targeting misfolding and aggregation of the amyloid-β peptide and mutant p53 protein using multifunctional molecules. Chem Commun (Camb) 2024; 60:1372-1388. [PMID: 38204416 DOI: 10.1039/d3cc05834d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Biomolecule misfolding and aggregation play a major role in human disease, spanning from neurodegeneration to cancer. Inhibition of these processes is of considerable interest, and due to the multifactorial nature of these diseases, the development of drugs that act on multiple pathways simultaneously is a promising approach. This Feature Article focuses on the development of multifunctional molecules designed to inhibit the misfolding and aggregation of the amyloid-β (Aβ) peptide in Alzheimer's disease (AD), and the mutant p53 protein in cancer. While for the former, the goal is to accelerate the removal of the Aβ peptide and associated aggregates, for the latter, the goal is reactivation via stabilization of the active folded form of mutant p53 protein and/or aggregation inhibition. Due to the similar aggregation pathway of the Aβ peptide and mutant p53 protein, a common therapeutic approach may be applicable.
Collapse
Affiliation(s)
- Lauryn Grcic
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.
| | - Grace Leech
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.
| | - Kalvin Kwan
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.
| | - Tim Storr
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.
| |
Collapse
|
3
|
Yang L, Chen Y, Jia Z, Yuan X, Liu J. Electrostatic assembly of gold nanoparticle and metal-organic framework nanoparticles attenuates amyloid β aggregate-mediated neurotoxicity. J Mater Chem B 2023; 11:4453-4463. [PMID: 37158054 DOI: 10.1039/d3tb00281k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The deposition of amyloid β (Aβ) is a conventional pathological hallmark of Alzheimer's disease (AD). Consequently, the inhibition of Aβ aggregation combined with the disaggregation of Aβ fibrils is an important therapeutic method for AD treatment. In this study, a gold nanoparticle-decorated porous metal organic framework MIL-101(Fe) (AuNPs@PEG@MIL-101) was created as an Aβ inhibitor. The high positively charged MIL-101 induced a high number of Aβ40 to be absorbed or aggregated on the surface of nanoparticles. In addition, AuNPs improved the surface property of MIL-101, causing it to uniformly bind Aβ monomers and Aβ fibrils. Thus, this framework can efficiently suppress extracellular Aβ monomer fibrillation and disrupt the preformed Aβ fibers. AuNPs@PEG@MIL-101 also decreases intracellular Aβ40 aggregation and the amount of Aβ40 immobilized on the cell membrane, thus protecting PC12 cells from Aβ40-induced microtubular defects and cell membrane damage. In summary, AuNPs@PEG@MIL-101 shows great potential for application in AD therapy.
Collapse
Affiliation(s)
- Licong Yang
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China.
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Yutong Chen
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China.
| | - Zhi Jia
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China.
| | - Xiaoyu Yuan
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China.
| | - Jie Liu
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
4
|
Mohd Murshid N, Aminullah Lubis F, Makpol S. Epigenetic Changes and Its Intervention in Age-Related Neurodegenerative Diseases. Cell Mol Neurobiol 2022; 42:577-595. [PMID: 33074454 PMCID: PMC11441183 DOI: 10.1007/s10571-020-00979-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023]
Abstract
Epigenetic mechanisms involving the modulation of gene activity without modifying the DNA bases are reported to have lifelong effects on mature neurons in addition to their impact on synaptic plasticity and cognition. Histone methylation and acetylation are involved in synchronizing gene expression and protein function in neuronal cells. Studies have demonstrated in experimental models of neurodegenerative disorders that manipulations of these two mechanisms influence the susceptibility of neurons to degeneration and apoptosis. In Alzheimer's disease (AD), the expression of presenilin 1 (PSEN1) is markedly increased due to decreased methylation at CpG sites, thus promoting the accumulation of toxic amyloid-β (Aβ) peptide. In Parkinson's disease (PD), dysregulation of α-synuclein (SNCA) expression is presumed to occur via aberrant methylation at CpG sites, which controls the activation or suppression of protein expression. Mutant Huntingtin (mtHTT) alters the activity of histone acetyltransferases (HATs), causing the dysregulation of transcription observed in most Huntington's disease (HD) cases. Folate, vitamin B6, vitamin B12, and S-adenosylmethionine (SAM) are vital cofactors involved in DNA methylation modification; 5-azacytidine (AZA) is the most widely studied DNA methyltransferase (DNMT) inhibitor, and dietary polyphenols are DNMT inhibitors in vitro. Drug intervention is believed to reverse the epigenetic mechanisms to serve as a regulator in neuronal diseases. Nevertheless, the biochemical effect of the drugs on brain function and the underlying mechanisms are not well understood. This review focuses on further discussion of therapeutic targets, emphasizing the potential role of epigenetic factors including histone and DNA modifications in the diseases.
Collapse
Affiliation(s)
- Nuraqila Mohd Murshid
- Department of Biochemistry, Faculty of Medicine, Level 17 Preclinical Building, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Faridah Aminullah Lubis
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Level 17 Preclinical Building, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000, Kuala Lumpur, Malaysia.
| |
Collapse
|
5
|
Rampa A, Gobbi S, Belluti F, Bisi A. Tackling Alzheimer's Disease with Existing Drugs: A Promising Strategy for Bypassing Obstacles. Curr Med Chem 2021; 28:2305-2327. [PMID: 32867634 DOI: 10.2174/0929867327666200831140745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/22/2020] [Accepted: 08/08/2020] [Indexed: 11/22/2022]
Abstract
The unmet need for the development of effective drugs to treat Alzheimer 's disease has been steadily growing, representing a major challenge in drug discovery. In this context, drug repurposing, namely the identification of novel therapeutic indications for approved or investigational compounds, can be seen as an attractive attempt to obtain new medications reducing both the time and the economic burden usually required for research and development programs. In the last years, several classes of drugs have evidenced promising beneficial effects in neurodegenerative diseases, and for some of them, preliminary clinical trials have been started. This review aims to illustrate some of the most recent examples of drugs reprofiled for Alzheimer's disease, considering not only the finding of new uses for existing drugs but also the new hypotheses on disease pathogenesis that could promote previously unconsidered therapeutic regimens. Moreover, some examples of structural modifications performed on existing drugs in order to obtain multifunctional compounds will also be described.
Collapse
Affiliation(s)
- Angela Rampa
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| | - Silvia Gobbi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| | - Federica Belluti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| | - Alessandra Bisi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| |
Collapse
|
6
|
Abstract
Alzheimer’s disease (AD) is the most common form of dementia, and the prevalence of this currently untreatable disease is expected to rise in step with increased global life expectancy. AD is a multifaceted disorder commonly characterized by extracellular amyloid–beta (Aβ) aggregates, oxidative stress, metal ion dysregulation, and intracellular neurofibrillary tangles. This review will focus on medicinal inorganic chemistry strategies to target AD, with a focus on the Aβ peptide and its relation to metal ion dysregulation and oxidative stress. Multifunctional compounds designed to target multiple disease processes have emerged as promising therapeutic options, and recent reports detailing multifunctional metal-binding compounds, as well as discrete metal complexes, will be discussed.
Collapse
Affiliation(s)
- Tim Storr
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
7
|
Oboh G, Adedayo BC, Adetola MB, Oyeleye IS, Ogunsuyi OB. Characterization and neuroprotective properties of alkaloid extract ofVernonia amygdalinaDelile in experimental models of Alzheimer’s disease. Drug Chem Toxicol 2020; 45:731-740. [DOI: 10.1080/01480545.2020.1773845] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Ganiyu Oboh
- Functional Foods and Nutraceuticals Unit of Biochemistry Department, Federal University of Technology, Akure, Nigeria
| | - Bukola Christiana Adedayo
- Functional Foods and Nutraceuticals Unit of Biochemistry Department, Federal University of Technology, Akure, Nigeria
| | - Mayowa Blessing Adetola
- Functional Foods and Nutraceuticals Unit of Biochemistry Department, Federal University of Technology, Akure, Nigeria
| | - Idowu Sunday Oyeleye
- Functional Foods and Nutraceuticals Unit of Biochemistry Department, Federal University of Technology, Akure, Nigeria
- Department of Biomedical Technology, Federal University of Technology, Akure, Nigeria
| | - Opeyemi Babatunde Ogunsuyi
- Functional Foods and Nutraceuticals Unit of Biochemistry Department, Federal University of Technology, Akure, Nigeria
- Department of Biomedical Technology, Federal University of Technology, Akure, Nigeria
| |
Collapse
|
8
|
Klenner MA, Zhang B, Ciancaleoni G, Howard JK, Maynard-Casely HE, Clegg JK, Massi M, Fraser BH, Pascali G. Rhenium(i) complexation–dissociation strategy for synthesising fluorine-18 labelled pyridine bidentate radiotracers. RSC Adv 2020; 10:8853-8865. [PMID: 35496512 PMCID: PMC9049978 DOI: 10.1039/d0ra00318b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 02/10/2020] [Indexed: 01/23/2023] Open
Abstract
A novel fluorine-18 radiolabelling method employing rhenium(i) mediation is described herein. In less than 1 minute, fluorine-18 labelled complexes and ligands were synthesised in greater than 80% and 60% radiochemical yields (RCY), respectively.
Collapse
Affiliation(s)
- Mitchell A. Klenner
- Human Health & National Deuteration Facility
- Australian Nuclear Science and Technology Organisation (ANSTO)
- Australia
- School of Molecular and Life Sciences
- Curtin University
| | - Bo Zhang
- School of Chemistry
- Monash University
- Melbourne
- Australia
| | | | - James K. Howard
- Human Health & National Deuteration Facility
- Australian Nuclear Science and Technology Organisation (ANSTO)
- Australia
| | - Helen E. Maynard-Casely
- Human Health & National Deuteration Facility
- Australian Nuclear Science and Technology Organisation (ANSTO)
- Australia
| | - Jack K. Clegg
- School of Chemistry and Molecular Biosciences
- The University of Queensland
- St. Lucia
- Australia
| | | | - Benjamin H. Fraser
- Human Health & National Deuteration Facility
- Australian Nuclear Science and Technology Organisation (ANSTO)
- Australia
| | - Giancarlo Pascali
- Human Health & National Deuteration Facility
- Australian Nuclear Science and Technology Organisation (ANSTO)
- Australia
- Brain and Mind Centre
- The University of Sydney
| |
Collapse
|
9
|
Protective effect of potassium 2-(l-hydroxypentyl)-benzoate on hippocampal neurons, synapses and dystrophic axons in APP/PS1 mice. Psychopharmacology (Berl) 2019; 236:2761-2771. [PMID: 31165206 DOI: 10.1007/s00213-019-05251-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/18/2019] [Indexed: 10/26/2022]
Abstract
RATIONALE As the hub of memory and space, hippocampus is very sensitive to a wide variety of injuries and is one of the earliest brain structures to develop neurodegenerative changes in AD. Previous research has showed a protective effect of potassium 2-(l-hydroxypentyl)-benzoate (PHPB) on cognitive deficits in animal models of AD. However, it is unclear whether this protective effect is associated with hippocampal alterations. OBJECTIVES The present study was conducted to evaluate the protective effect of PHPB on hippocampal neurodegenerative changes in middle-aged APP/PS1 mice. METHODS Ten-month-old male APP/PS1 transgenic mice and age-matched wild-type mice were randomly divided into three groups. PHPB-treated APP/PS1 group received 30 mg/kg PHPB by oral gavage once daily for 12 weeks. Wild-type group and APP/PS1 group received the same volume of water alone. Twelve weeks later, mice (13-month-old) were tested for in vivo 1H-MRS examination and then sacrificed for subsequent biochemical and pathological examinations using transmission electron microscopy, Golgi staining, immunohistochemistry, and western blotting. RESULTS We found that PHPB treatment significantly improved the micromorphology of hippocampal neurons and subcellular organelles, ameliorated synapse loss and presynaptic axonal dystrophy, increased hippocampal dendritic spine density and dendritic complexity, enhanced the expression of hippocampal synapse-associated proteins, and improved hippocampal metabolism in middle-aged APP/PS1 mice. CONCLUSIONS Our study showed for the first time the protective effect of PHPB on hippocampal neurons, synapses, and dystrophic axons in APP/PS1 mice, which to some extent revealed the possible mechanism for its ability to improve cognition in animal models of AD.
Collapse
|
10
|
Sales TA, Prandi IG, Castro AAD, Leal DHS, Cunha EFFD, Kuca K, Ramalho TC. Recent Developments in Metal-Based Drugs and Chelating Agents for Neurodegenerative Diseases Treatments. Int J Mol Sci 2019; 20:E1829. [PMID: 31013856 PMCID: PMC6514778 DOI: 10.3390/ijms20081829] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/07/2019] [Accepted: 04/09/2019] [Indexed: 02/07/2023] Open
Abstract
The brain has a unique biological complexity and is responsible for important functions in the human body, such as the command of cognitive and motor functions. Disruptive disorders that affect this organ, e.g. neurodegenerative diseases (NDDs), can lead to permanent damage, impairing the patients' quality of life and even causing death. In spite of their clinical diversity, these NDDs share common characteristics, such as the accumulation of specific proteins in the cells, the compromise of the metal ion homeostasis in the brain, among others. Despite considerable advances in understanding the mechanisms of these diseases and advances in the development of treatments, these disorders remain uncured. Considering the diversity of mechanisms that act in NDDs, a wide range of compounds have been developed to act by different means. Thus, promising compounds with contrasting properties, such as chelating agents and metal-based drugs have been proposed to act on different molecular targets as well as to contribute to the same goal, which is the treatment of NDDs. This review seeks to discuss the different roles and recent developments of metal-based drugs, such as metal complexes and metal chelating agents as a proposal for the treatment of NDDs.
Collapse
Affiliation(s)
- Thais A Sales
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras/MG, 37200-000, Brazil.
| | - Ingrid G Prandi
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras/MG, 37200-000, Brazil.
| | - Alexandre A de Castro
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras/MG, 37200-000, Brazil.
| | - Daniel H S Leal
- Department of Health Sciences, Federal University of Espírito Santo, São Mateus/ES, 29932-540, Brazil.
| | - Elaine F F da Cunha
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras/MG, 37200-000, Brazil.
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 500 03, Czech Republic..
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, 500 03 Czech Republic.
| | - Teodorico C Ramalho
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras/MG, 37200-000, Brazil.
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 500 03, Czech Republic..
| |
Collapse
|
11
|
Mishra P, Kumar A, Panda G. Anti-cholinesterase hybrids as multi-target-directed ligands against Alzheimer’s disease (1998–2018). Bioorg Med Chem 2019; 27:895-930. [DOI: 10.1016/j.bmc.2019.01.025] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/15/2019] [Accepted: 01/23/2019] [Indexed: 01/09/2023]
|
12
|
Synthesis and evaluation of clioquinol-rolipram/roflumilast hybrids as multitarget-directed ligands for the treatment of Alzheimer's disease. Eur J Med Chem 2019; 163:512-526. [DOI: 10.1016/j.ejmech.2018.12.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/04/2018] [Accepted: 12/06/2018] [Indexed: 02/07/2023]
|
13
|
Savelieff MG, Nam G, Kang J, Lee HJ, Lee M, Lim MH. Development of Multifunctional Molecules as Potential Therapeutic Candidates for Alzheimer’s Disease, Parkinson’s Disease, and Amyotrophic Lateral Sclerosis in the Last Decade. Chem Rev 2018; 119:1221-1322. [DOI: 10.1021/acs.chemrev.8b00138] [Citation(s) in RCA: 270] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Masha G. Savelieff
- SciGency Science Communications, Ann Arbor, Michigan 48104, United States
| | - Geewoo Nam
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Juhye Kang
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyuck Jin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Misun Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
14
|
Wu WY, Dai YC, Li NG, Dong ZX, Gu T, Shi ZH, Xue X, Tang YP, Duan JA. Novel multitarget-directed tacrine derivatives as potential candidates for the treatment of Alzheimer's disease. J Enzyme Inhib Med Chem 2017; 32:572-587. [PMID: 28133981 PMCID: PMC6009885 DOI: 10.1080/14756366.2016.1210139] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder, which is complex and progressive; it has not only threatened the health of elderly people, but also burdened the whole social medical and health system. The available therapy for AD is limited and the efficacy remains unsatisfactory. In view of the prevalence and expected increase in the incidence of AD, the design and development of efficacious and safe anti-AD agents has become a hotspot in the field of pharmaceutical research. Due to the multifactorial etiology of AD, the multitarget-directed ligands (MTDLs) approach is promising in search for new drugs for AD. Tacrine, which is the first acetylcholinesterase (AChE) inhibitor, has been selected as the ideal active fragment because of its simple structure, clear activity, and its superiority in the structural modification, thus it could be introduced into the overall molecular skeletons of the multi-target-directed anti-AD agents. In this review, we have summarized the recent advances (2012 to the present) in the chemical modification of tacrine, which could provide the reference for the further study of novel multi-target-directed tacrine derivatives to treat AD.
Collapse
Affiliation(s)
- Wen-Yu Wu
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China.,b Department of Medicinal Chemistry , Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China
| | - Yu-Chen Dai
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China.,b Department of Medicinal Chemistry , Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China
| | - Nian-Guang Li
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China.,b Department of Medicinal Chemistry , Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China
| | - Ze-Xi Dong
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China.,b Department of Medicinal Chemistry , Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China
| | - Ting Gu
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China.,b Department of Medicinal Chemistry , Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China
| | - Zhi-Hao Shi
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China.,c Department of Organic Chemistry , China Pharmaceutical University , Nanjing , Jiangsu , China
| | - Xin Xue
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China.,b Department of Medicinal Chemistry , Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China
| | - Yu-Ping Tang
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China.,b Department of Medicinal Chemistry , Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China
| | - Jin-Ao Duan
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China.,b Department of Medicinal Chemistry , Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China
| |
Collapse
|
15
|
Recent progress in repositioning Alzheimer's disease drugs based on a multitarget strategy. Future Med Chem 2016; 8:2113-2142. [PMID: 27774814 DOI: 10.4155/fmc-2016-0103] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Alzheimer's disease (AD) is a serious progressive neurological disorder, characterized by impaired cognition and profound irreversible memory loss. The multifactorial nature of AD and the absence of a cure so far have stimulated medicinal chemists worldwide to follow multitarget drug-design strategies based on repositioning approved drugs. This review describes a summary of recently published works focused on tailoring new derivatives of US FDA-approved acetylcholinesterase inhibitors, in addition to huperzine (a drug approved in China), either by hybridization with other pharmacophore elements (to hit more AD targets), or by combination of two FDA-approved drugs. Besides the capacity for improving the cholinergic activity, these polyfunctional derivatives are also able to tackle other important neuroprotective properties, such as anti-β-amyloid aggregation, scavenging of radical oxygen species, modulation of redox-active metals or inhibition of monoamine oxidase, thereby resulting in potentially novel and more effective therapeutics for the treatment of AD.
Collapse
|
16
|
Novel series of tacrine-tianeptine hybrids: Synthesis, cholinesterase inhibitory activity, S100B secretion and a molecular modeling approach. Eur J Med Chem 2016; 121:758-772. [DOI: 10.1016/j.ejmech.2016.06.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 11/19/2022]
|
17
|
8-Hydroxyquinolines in medicinal chemistry: A structural perspective. Eur J Med Chem 2016; 120:252-74. [DOI: 10.1016/j.ejmech.2016.05.007] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 01/12/2023]
|
18
|
Multi-target therapeutics for neuropsychiatric and neurodegenerative disorders. Drug Discov Today 2016; 21:1886-1914. [PMID: 27506871 DOI: 10.1016/j.drudis.2016.08.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/20/2016] [Accepted: 08/01/2016] [Indexed: 12/30/2022]
Abstract
Historically, neuropsychiatric and neurodegenerative disease treatments focused on the 'magic bullet' concept; however multi-targeted strategies are increasingly attractive gauging from the escalating research in this area. Because these diseases are typically co-morbid, multi-targeted drugs capable of interacting with multiple targets will expand treatment to the co-morbid disease condition. Despite their theoretical efficacy, there are significant impediments to clinical success (e.g., difficulty titrating individual aspects of the drug and inconclusive pathophysiological mechanisms). The new and revised diagnostic frameworks along with studies detailing the endophenotypic characteristics of the diseases promise to provide the foundation for the circumvention of these impediments. This review serves to evaluate the various marketed and nonmarketed multi-targeted drugs with particular emphasis on their design strategy.
Collapse
|
19
|
Tavares E, Antequera D, López-González I, Ferrer I, Miñano FJ, Carro E. Potential Role of Aminoprocalcitonin in the Pathogenesis of Alzheimer Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2723-35. [PMID: 27497681 DOI: 10.1016/j.ajpath.2016.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/25/2016] [Accepted: 06/09/2016] [Indexed: 11/15/2022]
Abstract
Increasing evidence suggests that inflammatory responses cause brain atrophy and play a prominent and early role in the progression of Alzheimer disease. Recent findings show that the neuroendocrine peptide aminoprocalcitonin (NPCT) plays a critical role in the development of systemic inflammatory response; however, the presence, possible function, regulation, and mechanisms by which NPCT may be involved in Alzheimer disease neuropathology remain unknown. We explored the expression of NPCT and its interaction with amyloid-β (Aβ), and proinflammatory and neurogenic effects. By using brain samples of Alzheimer disease patients and APP/PS1 transgenic mice, we evaluated the potential role of NPCT on Aβ-related pathology. We found that NPCT is expressed in hippocampal and cortical neurons and Aβ-induced up-regulation of NPCT expression. Peripherally administered antibodies against NPCT decreased microglial activation, decreased circulating levels of proinflammatory cytokines, and prevented Aβ-induced neurotoxicity in experimental models of Alzheimer disease. Remarkably, anti-NPTC therapy resulted in a significant improvement in the behavioral status of APP/PS1 mice. Our results indicate a central role of NPCT in Alzheimer disease pathogenesis and suggest NPCT as a potential biomarker and therapeutic target.
Collapse
Affiliation(s)
- Eva Tavares
- Clinical and Experimental Pharmacology Research Unit, Valme University Hospital, Seville, Spain.
| | - Desiree Antequera
- Group of Neurodegenerative Diseases, Instituto de Investigacion Hospital 12 de Octubre (i+12), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Neurodegenerative Diseases Biomedical Research Center (CIBERNED), Madrid, Spain
| | - Irene López-González
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Neurodegenerative Diseases Biomedical Research Center (CIBERNED), Madrid, Spain; Institut de Neuropatologia, IDIBELL-Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Hospitalet de Llobregat, Spain; Universitat de Barcelona, Hospitalet de Llobregat, Barcelona, Spain
| | - Isidro Ferrer
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Neurodegenerative Diseases Biomedical Research Center (CIBERNED), Madrid, Spain; Institut de Neuropatologia, IDIBELL-Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Hospitalet de Llobregat, Spain; Universitat de Barcelona, Hospitalet de Llobregat, Barcelona, Spain
| | - Francisco J Miñano
- Clinical and Experimental Pharmacology Research Unit, Valme University Hospital, Seville, Spain; Department of Pharmacology, Pediatrics and Radiology, Faculty of Medicine, University of Seville, Seville, Spain
| | - Eva Carro
- Group of Neurodegenerative Diseases, Instituto de Investigacion Hospital 12 de Octubre (i+12), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Neurodegenerative Diseases Biomedical Research Center (CIBERNED), Madrid, Spain.
| |
Collapse
|
20
|
Estrada M, Pérez C, Soriano E, Laurini E, Romano M, Pricl S, Morales-García JA, Pérez-Castillo A, Rodríguez-Franco MI. New neurogenic lipoic-based hybrids as innovative Alzheimer's drugs with σ-1 agonism and β-secretase inhibition. Future Med Chem 2016; 8:1191-207. [PMID: 27402296 DOI: 10.4155/fmc-2016-0036] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Neurogenic agents emerge as innovative drugs for the treatment of Alzheimer's disease (AD), whose pathological complexity suggests strengthening research in the multi-target directed ligands strategy. RESULTS By combining the lipoic acid structure with N-benzylpiperidine or N,N-dibenzyl(N-methyl)amine fragments, new multi-target directed ligands were obtained that act at three relevant targets in AD: σ-1 receptor (σ1R), β-secretase-1 (BACE1) and acetylcholinesterase (AChE). Moreover, they show potent neurogenic properties, good antioxidant capacity and favorable CNS permeability. Molecular modeling studies on AChE, σ1R and BACE1 highlight relevant drug-protein interactions that may contribute to the development of new disease-modifying drugs. CONCLUSION New lipoic-based σ1 agonists endowed with neurogenic, antioxidant, cholinergic and amyloid β-peptide-reducing properties have been discovered for the potential treatment of AD.
Collapse
Affiliation(s)
- Martín Estrada
- Instituto de Química Médica (IQM-CSIC), C/Juan de la Cierva 3, 28006-Madrid, Spain
| | - Concepción Pérez
- Instituto de Química Médica (IQM-CSIC), C/Juan de la Cierva 3, 28006-Madrid, Spain
| | - Elena Soriano
- Instituto de Química Orgánica General (IQOG-CSIC), C/Juan de la Cierva 3, 28006-Madrid, Spain
| | - Erik Laurini
- Molecular Simulation Engineering (MOSE) Laboratory, DEA, Piazzale Europa 1, University of Trieste, 34127 Trieste, Italy
| | - Maurizio Romano
- Department of Life Sciences, University of Trieste, Via A. Valerio 28, 34127 - Trieste, Italy
| | - Sabrina Pricl
- Molecular Simulation Engineering (MOSE) Laboratory, DEA, Piazzale Europa 1, University of Trieste, 34127 Trieste, Italy
- National Interuniversity Consortium for Material Science & Technology (INSTM), Research Unit MOSE-DEA, University of Trieste, Trieste, Italy
| | - José A Morales-García
- Instituto de Investigaciones Biomédicas "Alberto Sols" (IIB-CSIC), C/Arturo Duperier 4, 28029-Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), C/Valderrebollo 5, 28031-Madrid, Spain
| | - Ana Pérez-Castillo
- Instituto de Investigaciones Biomédicas "Alberto Sols" (IIB-CSIC), C/Arturo Duperier 4, 28029-Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), C/Valderrebollo 5, 28031-Madrid, Spain
| | | |
Collapse
|
21
|
Estrada M, Herrera-Arozamena C, Pérez C, Viña D, Romero A, Morales-García JA, Pérez-Castillo A, Rodríguez-Franco MI. New cinnamic - N-benzylpiperidine and cinnamic - N,N-dibenzyl(N-methyl)amine hybrids as Alzheimer-directed multitarget drugs with antioxidant, cholinergic, neuroprotective and neurogenic properties. Eur J Med Chem 2016; 121:376-386. [PMID: 27267007 DOI: 10.1016/j.ejmech.2016.05.055] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/25/2016] [Accepted: 05/23/2016] [Indexed: 12/18/2022]
Abstract
Here we describe new families of multi-target directed ligands obtained by linking antioxidant cinnamic-related structures with N-benzylpiperidine (NBP) or N,N-dibenzyl(N-methyl)amine (DBMA) fragments. Resulting hybrids, in addition to their antioxidant and neuroprotective properties against mitochondrial oxidative stress, are active at relevant molecular targets in Alzheimer's disease, such as cholinesterases (hAChE and hBuChE) and monoamine oxidases (hMAO-A and hMAO-B). Hybrids derived from umbellic - NBP (8), caffeic - NBP (9), and ferulic - DBMA (12) displayed balanced biological profiles, with IC50s in the low-micromolar and submicromolar range for hChEs and hMAOs, and an antioxidant potency comparable to vitamin E. Moreover, the caffeic - NBP hybrid 9 is able to improve the differentiation of adult SGZ-derived neural stem cells into a neuronal phenotype in vitro.
Collapse
Affiliation(s)
- Martín Estrada
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/Juan de la Cierva 3, 28006, Madrid, Spain
| | - Clara Herrera-Arozamena
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/Juan de la Cierva 3, 28006, Madrid, Spain
| | - Concepción Pérez
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/Juan de la Cierva 3, 28006, Madrid, Spain
| | - Dolores Viña
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Alejandro Romero
- Departamento de Toxicología y Farmacología, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - José A Morales-García
- Instituto de Investigaciones Biomédicas "Alberto Sols", (IIB-CSIC), C/Arturo Duperier 4, 28029, Madrid, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), C/Valderrebollo 5, 28031, Madrid, Spain
| | - Ana Pérez-Castillo
- Instituto de Investigaciones Biomédicas "Alberto Sols", (IIB-CSIC), C/Arturo Duperier 4, 28029, Madrid, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), C/Valderrebollo 5, 28031, Madrid, Spain
| | - María Isabel Rodríguez-Franco
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/Juan de la Cierva 3, 28006, Madrid, Spain.
| |
Collapse
|
22
|
Rational approach to an antiprion compound with a multiple mechanism of action. Future Med Chem 2015; 7:2113-20. [DOI: 10.4155/fmc.15.79] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: The main pathogenic event of prion disorders has been identified in the deposition of the disease-associated prion protein (PrPSc), which is accompanied by metal dyshomeostasis. Results: The multitarget-directed ligand 1, designed by combining a heteroaromatic prion recognition motif to an 8-hydroxyquinoline metal chelator, has been developed as a potential antiprion disease-modifying agent. Importantly, 1 was found to effectively clear PrPSc from scrapie-infected cells, and, at the same time, inhibit metal-induced prion aggregation and reactive oxygen species generation. 1 was also characterized in terms of pharmacokinetic properties in a preliminary in vitro investigation. Conclusion: Compound 1 has emerged as a suitable lead candidate against prion diseases and as a good starting point for a further optimization process.
Collapse
|
23
|
Sola I, Viayna E, Gómez T, Galdeano C, Cassina M, Camps P, Romeo M, Diomede L, Salmona M, Franco P, Schaeffer M, Colantuono D, Robin D, Brunner D, Taub N, Hutter-Paier B, Muñoz-Torrero D. Multigram synthesis and in vivo efficacy studies of a novel multitarget anti-Alzheimer's compound. Molecules 2015; 20:4492-515. [PMID: 25764491 PMCID: PMC6272704 DOI: 10.3390/molecules20034492] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 02/25/2015] [Accepted: 03/03/2015] [Indexed: 01/07/2023] Open
Abstract
We describe the multigram synthesis and in vivo efficacy studies of a donepezil‒huprine hybrid that has been found to display a promising in vitro multitarget profile of interest for the treatment of Alzheimer's disease (AD). Its synthesis features as the key step a novel multigram preparative chromatographic resolution of intermediate racemic huprine Y by chiral HPLC. Administration of this compound to transgenic CL4176 and CL2006 Caenorhabditis elegans strains expressing human Aβ42, here used as simplified animal models of AD, led to a significant protection from the toxicity induced by Aβ42. However, this protective effect was not accompanied, in CL2006 worms, by a reduction of amyloid deposits. Oral administration for 3 months to transgenic APPSL mice, a well-established animal model of AD, improved short-term memory, but did not alter brain levels of Aβ peptides nor cortical and hippocampal amyloid plaque load. Despite the clear protective and cognitive effects of AVCRI104P4, the lack of Aβ lowering effect in vivo might be related to its lower in vitro potency toward Aβ aggregation and formation as compared with its higher anticholinesterase activities. Further lead optimization in this series should thus focus on improving the anti-amyloid/anticholinesterase activity ratio.
Collapse
Affiliation(s)
- Irene Sola
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, Barcelona E-08028, Spain.
| | - Elisabet Viayna
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, Barcelona E-08028, Spain.
| | - Tània Gómez
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, Barcelona E-08028, Spain.
| | - Carles Galdeano
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, Barcelona E-08028, Spain.
| | - Matteo Cassina
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, Barcelona E-08028, Spain.
| | - Pelayo Camps
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, Barcelona E-08028, Spain.
| | - Margherita Romeo
- Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Via La Masa 19, Milan 20156, Italy.
| | - Luisa Diomede
- Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Via La Masa 19, Milan 20156, Italy.
| | - Mario Salmona
- Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Via La Masa 19, Milan 20156, Italy.
| | - Pilar Franco
- Chiral Technologies Europe, Parc d'Innovation, Bd. Gonthier d'Andernach, Illkirch F-67400, France.
| | - Mireille Schaeffer
- Chiral Technologies Europe, Parc d'Innovation, Bd. Gonthier d'Andernach, Illkirch F-67400, France.
| | - Diego Colantuono
- Chiral Technologies Europe, Parc d'Innovation, Bd. Gonthier d'Andernach, Illkirch F-67400, France.
| | - David Robin
- Chiral Technologies Europe, Parc d'Innovation, Bd. Gonthier d'Andernach, Illkirch F-67400, France.
| | - Daniela Brunner
- Neuropharmacology Department of QPS Austria-Gmbh, Parkring 12, Grambach 8074, Austria.
| | - Nicole Taub
- Neuropharmacology Department of QPS Austria-Gmbh, Parkring 12, Grambach 8074, Austria.
| | - Birgit Hutter-Paier
- Neuropharmacology Department of QPS Austria-Gmbh, Parkring 12, Grambach 8074, Austria.
| | - Diego Muñoz-Torrero
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, Barcelona E-08028, Spain.
| |
Collapse
|
24
|
Zhang B, Li X, Li B, Gao C, Jiang Y. Acridine and its derivatives: a patent review (2009 - 2013). Expert Opin Ther Pat 2015; 24:647-64. [PMID: 24848259 DOI: 10.1517/13543776.2014.902052] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Acridine derivatives have been extensively explored as potential therapeutic agents for the treatment of a number of diseases, such as cancer, Alzheimer's, and bacterial and protozoan infections. Their mode of action is mainly attributed to DNA intercalation and the subsequent effects on the biological processes linked to DNA and its related enzymes. AREA COVERED This review covers the relevant efforts in developing acridine derivatives with enhanced therapeutic potency and selectivity and as fluorescent materials, with particular focus on the newly patented acridine derivatives in 2009 - 2013, acridine drugs in clinical trials and preclinical studies, and other new derivatives that emerged in 2009 - 2013. EXPERT OPINION Thousands of acridines with therapeutic and biological activities or with photochemical properties have been developed. In addition, to modify the position and the nature of the substituent on the acridine core, more attention may be paid to the development of azaacridine or other heteroatom-substituted acridine derivatives and their synthesis methods to broaden the application of acridine derivatives. In cancer chemotherapy, the mode of action of acridine derivatives needs to be further studied. Efficient methods for identification and optimization of acridine derivatives to localize at the sites of disease need to be further developed. Moreover, acridine drugs may be combined with such bioactive agents as DNA repair proteins inhibitors to overcome tumor resistance and improve outcomes.
Collapse
Affiliation(s)
- Bin Zhang
- Tsinghua University, Department of Chemistry , Beijing 100084 , PR China
| | | | | | | | | |
Collapse
|
25
|
Yuan X, Guo X, Deng Y, Zhu D, Shang J, Liu H. Chronic intermittent hypoxia-induced neuronal apoptosis in the hippocampus is attenuated by telmisartan through suppression of iNOS/NO and inhibition of lipid peroxidation and inflammatory responses. Brain Res 2014; 1596:48-57. [PMID: 25463026 DOI: 10.1016/j.brainres.2014.11.035] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 11/04/2014] [Accepted: 11/16/2014] [Indexed: 01/14/2023]
Abstract
Obstructive sleep apnea syndrome (OSAS) plays a critical role in the initiation and progression of Alzheimer׳s disease (AD), but little is known about the precise mechanism of OSAS-induced AD. Nitric oxide synthase (NOS) and nitric oxide (NO) are known to play key roles in the development of AD. Several studies have confirmed that an angiotensin II type 1 receptor blocker, telmisartan, beneficially regulates NOS and NO. Here, we examined the neuroprotective effects of telmisartan against hippocampal apoptosis induced by chronic intermittent hypoxia (CIH), the most characteristic pathophysiological change of OSAS. Adult male Sprague Dawley rats were subjected to 8h of intermittent hypoxia per day with or without telmisartan for eight weeks. Neuronal apoptosis in the hippocampal CA1 region, NOS activity, NO content, and the presence of inflammatory agents and radical oxygen species in the hippocampus were determined. The results showed that CIH activated inducible nitric oxide synthase (iNOS), increased NO content, and enhanced lipid peroxidation and inflammatory responses in the hippocampus. Treatment with telmisartan inhibited excessive iNOS and NO generation and reduced lipid peroxidation and inflammatory responses. In addition, telmisartan significantly ameliorated the hippocampal apoptosis induced by CIH. In conclusion, Pre-CIH telmisartan administration attenuated CIH-induced hippocampal apoptosis partly by regulating NOS activity, inhibiting excessive NO generation, and reducing lipid peroxidation and inflammatory responses.
Collapse
Affiliation(s)
- Xiao Yuan
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, 430030, China
| | - Xueling Guo
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, 430030, China
| | - Yan Deng
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, 430030, China
| | - Die Zhu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, 430030, China
| | - Jin Shang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, 430030, China
| | - Huiguo Liu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, 430030, China.
| |
Collapse
|
26
|
Yan Y, Ma T, Gong K, Ao Q, Zhang X, Gong Y. Adipose-derived mesenchymal stem cell transplantation promotes adult neurogenesis in the brains of Alzheimer's disease mice. Neural Regen Res 2014; 9:798-805. [PMID: 25206892 PMCID: PMC4146257 DOI: 10.4103/1673-5374.131596] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2014] [Indexed: 12/11/2022] Open
Abstract
In the present study, we transplanted adipose-derived mesenchymal stem cells into the hippocampi of APP/PS1 transgenic Alzheimer's disease model mice. Immunofluorescence staining revealed that the number of newly generated (BrdU(+)) cells in the subgranular zone of the dentate gyrus in the hippocampus was significantly higher in Alzheimer's disease mice after adipose-derived mesenchymal stem cell transplantation, and there was also a significant increase in the number of BrdU(+)/DCX(+) neuroblasts in these animals. Adipose-derived mesenchymal stem cell transplantation enhanced neurogenic activity in the subventricular zone as well. Furthermore, adipose-derived mesenchymal stem cell transplantation reduced oxidative stress and alleviated cognitive impairment in the mice. Based on these findings, we propose that adipose-derived mesenchymal stem cell transplantation enhances endogenous neurogenesis in both the subgranular and subventricular zones in APP/PS1 transgenic Alzheimer's disease mice, thereby facilitating functional recovery.
Collapse
Affiliation(s)
- Yufang Yan
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Tuo Ma
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Kai Gong
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Qiang Ao
- Institute of Neurological Disorders, Yuquan Hospital, Tsinghua University, Beijing, China
| | - Xiufang Zhang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yandao Gong
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
27
|
Hamulakova S, Janovec L, Hrabinova M, Spilovska K, Korabecny J, Kristian P, Kuca K, Imrich J. Synthesis and Biological Evaluation of Novel Tacrine Derivatives and Tacrine–Coumarin Hybrids as Cholinesterase Inhibitors. J Med Chem 2014; 57:7073-84. [DOI: 10.1021/jm5008648] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Slavka Hamulakova
- Institute
of Chemistry, Faculty of Science, P. J. Safarik University, SK-041
67 Kosice, Slovak Republic
| | - Ladislav Janovec
- Institute
of Chemistry, Faculty of Science, P. J. Safarik University, SK-041
67 Kosice, Slovak Republic
| | - Martina Hrabinova
- Center
for Advanced Studies, Faculty of Military Health Sciences, University of Defence, CZ-500 01 Hradec Kralove, Czech Republic
| | - Katarina Spilovska
- Institute
of Chemistry, Faculty of Science, P. J. Safarik University, SK-041
67 Kosice, Slovak Republic
- Department
of Toxicology, Faculty of Military Health Sciences, University of Defence, CZ-500 01 Hradec Kralove, Czech Republic
| | - Jan Korabecny
- Center
for Biomedical Research, University Hospital, CZ-500 05 Hradec
Kralove, Czech Republic
- Department
of Toxicology, Faculty of Military Health Sciences, University of Defence, CZ-500 01 Hradec Kralove, Czech Republic
| | - Pavol Kristian
- Institute
of Chemistry, Faculty of Science, P. J. Safarik University, SK-041
67 Kosice, Slovak Republic
| | - Kamil Kuca
- Center
for Advanced Studies, Faculty of Military Health Sciences, University of Defence, CZ-500 01 Hradec Kralove, Czech Republic
- Center
for Biomedical Research, University Hospital, CZ-500 05 Hradec
Kralove, Czech Republic
| | - Jan Imrich
- Institute
of Chemistry, Faculty of Science, P. J. Safarik University, SK-041
67 Kosice, Slovak Republic
| |
Collapse
|
28
|
Dibenzo[1,4,5]thiadiazepine: A hardly-known heterocyclic system with neuroprotective properties of potential usefulness in the treatment of neurodegenerative diseases. Eur J Med Chem 2014; 81:350-8. [DOI: 10.1016/j.ejmech.2014.04.075] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/08/2014] [Accepted: 04/25/2014] [Indexed: 02/07/2023]
|
29
|
Bilkei-Gorzo A. Genetic mouse models of brain ageing and Alzheimer's disease. Pharmacol Ther 2014; 142:244-57. [DOI: 10.1016/j.pharmthera.2013.12.009] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 11/26/2013] [Indexed: 12/21/2022]
|
30
|
López-Iglesias B, Pérez C, Morales-García JA, Alonso-Gil S, Pérez-Castillo A, Romero A, López MG, Villarroya M, Conde S, Rodríguez-Franco MI. New Melatonin–N,N-Dibenzyl(N-methyl)amine Hybrids: Potent Neurogenic Agents with Antioxidant, Cholinergic, and Neuroprotective Properties as Innovative Drugs for Alzheimer’s Disease. J Med Chem 2014; 57:3773-85. [DOI: 10.1021/jm5000613] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Beatriz López-Iglesias
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - Concepción Pérez
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - José A. Morales-García
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (IIB-CSIC), C/Arturo Duperier 4, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), C/ Valderrebollo 5, 28031 Madrid, Spain
| | - Sandra Alonso-Gil
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (IIB-CSIC), C/Arturo Duperier 4, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), C/ Valderrebollo 5, 28031 Madrid, Spain
| | - Ana Pérez-Castillo
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (IIB-CSIC), C/Arturo Duperier 4, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), C/ Valderrebollo 5, 28031 Madrid, Spain
| | - Alejandro Romero
- Instituto Teófilo Hernando and Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo
Morcillo 4, 28029 Madrid, Spain
| | - Manuela G. López
- Instituto Teófilo Hernando and Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo
Morcillo 4, 28029 Madrid, Spain
| | - Mercedes Villarroya
- Instituto Teófilo Hernando and Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo
Morcillo 4, 28029 Madrid, Spain
| | - Santiago Conde
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - María Isabel Rodríguez-Franco
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
31
|
Yang L, Chen Q, Liu Y, Zhang J, Sun D, Zhou Y, Liu J. Se/Ru nanoparticles as inhibitors of metal-induced Aβ aggregation in Alzheimer's disease. J Mater Chem B 2014; 2:1977-1987. [DOI: 10.1039/c3tb21586e] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Metal dyshomeostasis and inflammation in Alzheimer's and Parkinson's diseases: possible impact of environmental exposures. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:726954. [PMID: 23710288 PMCID: PMC3654362 DOI: 10.1155/2013/726954] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 02/06/2013] [Accepted: 02/07/2013] [Indexed: 12/14/2022]
Abstract
A dysregulated metal homeostasis is associated with both Alzheimer's (AD) and Parkinson's (PD) diseases; AD patients have decreased cortex and elevated serum copper levels along with extracellular amyloid-beta plaques containing copper, iron, and zinc. For AD, a putative hepcidin-mediated lowering of cortex copper mechanism is suggested. An age-related mild chronic inflammation and/or elevated intracellular iron can trigger hepcidin production followed by its binding to ferroportin which is the only neuronal iron exporter, thereby subjecting it to lysosomal degradation. Subsequently raised neuronal iron levels can induce translation of the ferroportin assisting and copper binding amyloid precursor protein (APP); constitutive APP transmembrane passage lowers the copper pool which is important for many enzymes. Using in silico gene expression analyses, we here show significantly decreased expression of copper-dependent enzymes in AD brain and metallothioneins were upregulated in both diseases. Although few AD exposure risk factors are known, AD-related tauopathies can result from cyanobacterial microcystin and β-methylamino-L-alanine (BMAA) intake. Several environmental exposures may represent risk factors for PD; for this disease neurodegeneration is likely to involve mitochondrial dysfunction, microglial activation, and neuroinflammation. Administration of metal chelators and anti-inflammatory agents could affect disease outcomes.
Collapse
|
33
|
Munday R. Is protein phosphatase inhibition responsible for the toxic effects of okadaic Acid in animals? Toxins (Basel) 2013; 5:267-85. [PMID: 23381142 PMCID: PMC3640535 DOI: 10.3390/toxins5020267] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/08/2013] [Accepted: 01/24/2013] [Indexed: 12/18/2022] Open
Abstract
Okadaic acid (OA) and its derivatives, which are produced by dinoflagellates of the genera Prorocentrum and Dinophysis, are responsible for diarrhetic shellfish poisoning in humans. In laboratory animals, these toxins cause epithelial damage and fluid accumulation in the gastrointestinal tract, and at high doses, they cause death. These substances have also been shown to be tumour promoters, and when injected into the brains of rodents, OA induces neuronal damage reminiscent of that seen in Alzheimer’s disease. OA and certain of its derivatives are potent inhibitors of protein phosphatases, which play many roles in cellular metabolism. In 1990, it was suggested that inhibition of these enzymes was responsible for the diarrhetic effect of these toxins. It is now repeatedly stated in the literature that protein phosphatase inhibition is not only responsible for the intestinal effects of OA and derivatives, but also for their acute toxic effects, their tumour promoting activity and their neuronal toxicity. In the present review, the evidence for the involvement of protein phosphatase inhibition in the induction of the toxic effects of OA and its derivatives is examined, with the conclusion that the mechanism of toxicity of these substances requires re-evaluation.
Collapse
Affiliation(s)
- Rex Munday
- AgResearch Ltd, Ruakura Research Centre, Hamilton, New Zealand.
| |
Collapse
|
34
|
da Costa JS, Lopes JPB, Russowsky D, Petzhold CL, Borges ACDA, Ceschi MA, Konrath E, Batassini C, Lunardi PS, Gonçalves CAS. Synthesis of tacrine-lophine hybrids via one-pot four component reaction and biological evaluation as acetyl- and butyrylcholinesterase inhibitors. Eur J Med Chem 2013; 62:556-63. [PMID: 23422935 DOI: 10.1016/j.ejmech.2013.01.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 01/23/2013] [Accepted: 01/24/2013] [Indexed: 10/27/2022]
Abstract
A novel series of tacrine-lophine hybrids was synthesized and tested for their ability to inhibit acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) with IC50 in the nanomolar concentration scale. The key step is the one-pot four component condensation reaction of 9-aminoalkylamino-1,2,3,4-tetrahydroacridines, benzil, different substituted aromatic aldehydes and NH4OAc, using InCl3 as the best catalyst. Tacrine-lophine hybrids were found to be potent and selective inhibitors of cholinesterases. As an extension of the four component approach to tetrasubstituted imidazoles, a new series of bis-(2,4,5-triphenyl-1H-imidazoles) or bis(n)-lophines was tested against AChE and BuChE.
Collapse
Affiliation(s)
- Jessé Sobieski da Costa
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Campus do Vale, 91501-970 Porto Alegre - RS, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kochi A, Eckroat TJ, Green KD, Mayhoub AS, Lim MH, Garneau-Tsodikova S. A novel hybrid of 6-chlorotacrine and metal–amyloid-β modulator for inhibition of acetylcholinesterase and metal-induced amyloid-β aggregation. Chem Sci 2013. [DOI: 10.1039/c3sc51902c] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
36
|
Szymański P, Lázničková A, Lázniček M, Bajda M, Malawska B, Markowicz M, Mikiciuk-Olasik E. 2,3-dihydro-1H-cyclopenta[b]quinoline derivatives as acetylcholinesterase inhibitors-synthesis, radiolabeling and biodistribution. Int J Mol Sci 2012; 13:10067-10090. [PMID: 22949848 PMCID: PMC3431846 DOI: 10.3390/ijms130810067] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/07/2012] [Accepted: 08/06/2012] [Indexed: 12/24/2022] Open
Abstract
In the present study we describe the synthesis and biological assessment of new tacrine analogs in the course of inhibition of acetylcholinesterase. The obtained molecules were synthesized in a condensation reaction between activated 6-BOC-hydrazinopyridine-3-carboxylic acid and 8-aminoalkyl derivatives of 2,3-dihydro-1H-cyclopenta[b]quinoline. Activities of the newly synthesized compounds were estimated by means of Ellman’s method. Compound 6h (IC50 = 3.65 nM) was found to be most active. All obtained novel compounds present comparable activity to that of tacrine towards acetylcholinesterase (AChE) and, simultaneously, lower activity towards butyrylcholinesterase (BChE). Apart from 6a, all synthesized compounds are characterized by a higher affinity for AChE and a lower affinity for BChE in comparison with tacrine. Among all obtained molecules, compound 6h presented the highest selectivity towards inhibition of acetylcholinesterase. Molecular modeling showed that all compounds demonstrated a similar binding mode with AChE and interacted with catalytic and peripheral sites of AChE. Also, a biodistribution study of compound 6a radiolabeled with 99mTc was performed.
Collapse
Affiliation(s)
- Paweł Szymański
- Department of Pharmaceutical Chemistry and Drug Analyses, Medical University, ul. Muszyńskiego 1, Lodz 90-151, Poland; E-Mails: (M.M.); (E.M.-O.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel./Fax: +48-42-677-9250
| | - Alice Lázničková
- Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Heyrovskeho 1203, Hradec Kralove CZ-50005, Czech Republic; E-Mails: (A.L.); (M.L.)
| | - Milan Lázniček
- Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Heyrovskeho 1203, Hradec Kralove CZ-50005, Czech Republic; E-Mails: (A.L.); (M.L.)
| | - Marek Bajda
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland; E-Mails: (M.B.); (B.M.)
| | - Barbara Malawska
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland; E-Mails: (M.B.); (B.M.)
| | - Magdalena Markowicz
- Department of Pharmaceutical Chemistry and Drug Analyses, Medical University, ul. Muszyńskiego 1, Lodz 90-151, Poland; E-Mails: (M.M.); (E.M.-O.)
| | - Elżbieta Mikiciuk-Olasik
- Department of Pharmaceutical Chemistry and Drug Analyses, Medical University, ul. Muszyńskiego 1, Lodz 90-151, Poland; E-Mails: (M.M.); (E.M.-O.)
| |
Collapse
|