1
|
Zhang F, Liu M, Tuo J, Zhang L, Zhang J, Yu C, Xu Z. Levodopa-induced dyskinesia: interplay between the N-methyl-D-aspartic acid receptor and neuroinflammation. Front Immunol 2023; 14:1253273. [PMID: 37860013 PMCID: PMC10582719 DOI: 10.3389/fimmu.2023.1253273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/22/2023] [Indexed: 10/21/2023] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder of middle-aged and elderly people, clinically characterized by resting tremor, myotonia, reduced movement, and impaired postural balance. Clinically, patients with PD are often administered levodopa (L-DOPA) to improve their symptoms. However, after years of L-DOPA treatment, most patients experience complications of varying severity, including the "on-off phenomenon", decreased efficacy, and levodopa-induced dyskinesia (LID). The development of LID can seriously affect the quality of life of patients, but its pathogenesis is unclear and effective treatments are lacking. Glutamic acid (Glu)-mediated changes in synaptic plasticity play a major role in LID. The N-methyl-D-aspartic acid receptor (NMDAR), an ionotropic glutamate receptor, is closely associated with synaptic plasticity, and neuroinflammation can modulate NMDAR activation or expression; in addition, neuroinflammation may be involved in the development of LID. However, it is not clear whether NMDA receptors are co-regulated with neuroinflammation during LID formation. Here we review how neuroinflammation mediates the development of LID through the regulation of NMDA receptors, and assess whether common anti-inflammatory drugs and NMDA receptor antagonists may be able to mitigate the development of LID through the regulation of central neuroinflammation, thereby providing a new theoretical basis for finding new therapeutic targets for LID.
Collapse
Affiliation(s)
- Fanshi Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Mei Liu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jinmei Tuo
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Li Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jun Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Changyin Yu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zucai Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| |
Collapse
|
2
|
Ruiz MCM, Guimarães RP, Mortari MR. Parkinson’s Disease Rodent Models: are they suitable for DBS research? J Neurosci Methods 2022; 380:109687. [DOI: 10.1016/j.jneumeth.2022.109687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 07/20/2022] [Accepted: 08/02/2022] [Indexed: 11/20/2022]
|
3
|
Subthalamic Nucleus Deep Brain Stimulation Employs trkB Signaling for Neuroprotection and Functional Restoration. J Neurosci 2017; 37:6786-6796. [PMID: 28607168 DOI: 10.1523/jneurosci.2060-16.2017] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 04/19/2017] [Accepted: 06/04/2017] [Indexed: 12/23/2022] Open
Abstract
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is the most common neurosurgical treatment for Parkinson's disease motor symptoms. In preclinical models, STN DBS provides neuroprotection for substantia nigra (SN) dopamine neurons and increases BDNF in the nigrostriatal system and primary motor cortex. However, whether BDNF signaling in the SN participates in the neuroprotective effects of DBS remains unknown. We demonstrate that STN DBS in male rats activates signaling downstream of tropomyosin receptor kinase type B (trkB), namely, phosphorylation of Akt and ribosomal protein S6, in SN neurons. Long-term trkB blockade abolished STN DBS-mediated neuroprotection of SN neurons following progressive 6-hydroxydopamine lesion and was associated with decreased phosphorylated ribosomal protein S6 immunoreactivity. Acute trkB blockade in rats with stable nigrostriatal denervation attenuated the forelimb akinesia improvement normally induced by STN DBS. These results suggest that STN DBS increases BDNF-trkB signaling to contribute to the neuroprotective and symptomatic efficacy of STN DBS.SIGNIFICANCE STATEMENT Subthalamic nucleus deep brain stimulation (STN DBS) is increasingly used in mid- to late-stage Parkinson's disease (PD) but with an incomplete knowledge of its molecular mechanisms. STN DBS is neuroprotective against neurotoxicants in animal models and increases BDNF. This study is the first to show that BDNF signaling through the cognate tropomyosin receptor kinase type B (trkB) receptor occurs in substantia nigra pars compacta neurons and is required for neuroprotection. In addition, blockade of trkB unexpectedly reduced the functional benefit of STN DBS on a short timescale that is inconsistent with canonical trkB signaling pathways, suggesting a noncanonical role for trkB in STN DBS-mediated behavioral effects. Together, these data implicate trkB signaling in the symptomatic efficacy and disease-modifying potential of STN DBS.
Collapse
|
4
|
Paul R, Borah A. L-DOPA-induced hyperhomocysteinemia in Parkinson's disease: Elephant in the room. Biochim Biophys Acta Gen Subj 2016; 1860:1989-97. [DOI: 10.1016/j.bbagen.2016.06.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 05/20/2016] [Accepted: 06/14/2016] [Indexed: 02/08/2023]
|
5
|
Jourdain VA, Morin N, Grégoire L, Morissette M, Di Paolo T. Changes in glutamate receptors in dyskinetic parkinsonian monkeys after unilateral subthalamotomy. J Neurosurg 2015; 123:1383-93. [PMID: 25932606 DOI: 10.3171/2014.10.jns141570] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Unilateral subthalamotomy is a surgical procedure that may be used to alleviate disabling levodopa-induced dyskinesias (LIDs) in patients with Parkinson disease (PD). However, the mechanisms involved in LID remain largely unknown. The subthalamic nucleus (STN) is the sole glutamatergic nucleus within the basal ganglia, and its lesion may produce changes in glutamate receptors in various areas of the basal ganglia. The authors aimed to investigate the biochemical changes in glutamate receptors in striatal and pallidal regions of the basal ganglia after lesion of the STN in parkinsonian macaque monkeys. METHODS The authors treated 12 female ovariectomized monkeys with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to induce PD-like symptoms, treated 8 of these animals with 3,4-dihydroxy-l-phenylalanine (L-DOPA; levodopa) to induce LID, and performed unilateral subthalamotomy in 4 of these 8 monkeys. Four additional monkeys were treated with saline only and were used as controls. The MPTP monkeys had previously been shown to respond behaviorally to lower doses of levodopa after the STN lesion. Autoradiography of slices from postmortem brain tissues was used to visualize changes in the specific binding of striatal and pallidal ionotropic glutamate receptors (that is, of the α-amino-3-hydroxy 5-methyl-4-isoxazole propionate [AMPA] and N-methyl-d-aspartate [NMDA] NR1/NR2B subunit receptors) and of metabotropic glutamate (mGlu) receptors (that is, mGlu2/3 and mGlu5 receptors). The specific binding and distribution of glutamate receptors in the basal ganglia of the levodopa-treated, STN-lesioned MPTP monkeys were compared with those in the saline-treated control monkeys and in the saline-treated and levodopa-treated MPTP monkeys. RESULTS The autoradiographic results indicated that none of the pharmacological and surgical treatments produced changes in the specific binding of AMPA receptors in the basal ganglia. Levodopa treatment increased the specific binding of NMDA receptors in the basal ganglia. Subthalamotomy reversed these increases in the striatum, but in the globus pallidus (GP), the subthalamotomy reversed these increases only contralaterally. Levodopa treatment reversed MPTP-induced increases in mGlu2/3 receptors only in the GP. mGlu2/3 receptor-specific binding in the striatum and GP decreased bilaterally in the levodopa-treated, STN-lesioned MPTP monkeys compared with the other 3 groups. Compared with mGlu5 receptor-specific binding in the control monkeys, that of the levodopa-treated MPTP monkeys increased in the dorsal putamen and remained unchanged in the caudate nucleus and in the GP. CONCLUSIONS These results implicate glutamate receptors in the previously observed benefits of unilateral subthalamotomy to improve motor control.
Collapse
Affiliation(s)
- Vincent A Jourdain
- Neuroscience Research Unit, Centre Hospitalier Universitaire de Québec; and.,Faculty of Pharmacy, Laval University, Quebec, Canada
| | - Nicolas Morin
- Neuroscience Research Unit, Centre Hospitalier Universitaire de Québec; and.,Faculty of Pharmacy, Laval University, Quebec, Canada
| | - Laurent Grégoire
- Neuroscience Research Unit, Centre Hospitalier Universitaire de Québec; and
| | - Marc Morissette
- Neuroscience Research Unit, Centre Hospitalier Universitaire de Québec; and
| | - Thérèse Di Paolo
- Neuroscience Research Unit, Centre Hospitalier Universitaire de Québec; and.,Faculty of Pharmacy, Laval University, Quebec, Canada
| |
Collapse
|
6
|
Kong M, Ba M, Liu C, Zhang Y, Zhang H, Qiu H. NR2B antagonist CP-101,606 inhibits NR2B phosphorylation at tyrosine-1472 and its interactions with Fyn in levodopa-induced dyskinesia rat model. Behav Brain Res 2015; 282:46-53. [PMID: 25576965 DOI: 10.1016/j.bbr.2014.12.059] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 12/28/2014] [Accepted: 12/31/2014] [Indexed: 10/24/2022]
Abstract
The augmented tyrosine phosphorylation of NR2B subunit of N-methyl-d-aspartate receptors (NMDAR) dependent on Fyn kinase has been associated with levodopa (l-dopa)-induced dyskinesia (LID). CP-101,606, one selective NR2B subunit antagonist, can improve dyskinesia. Yet, the accurate action mechanism is less well understood. In the present study, the evidences were investigated. Valid 6-hydroxydopamine-lesioned parkinsonian rats were treated with l-dopa intraperitoneally for 22 days to induce LID rat model. On day 23, rats received either CP-101,606 (0.5mg/kg) or vehicle with each l-dopa dose. On the day of 1, 8, 15, 22, and 23 during l-dopa treatment, we determined abnormal involuntary movements (AIMs) in rats. The levels of NR2B phosphorylation at tyrosine-1472 (pNR2B-Tyr1472) and interactions of NR2B with Fyn in LID rat model were detected by immunoblotting and immunoprecipitation. Results showed that CP-101,606 attenuated l-dopa-induced AIMs. In agreement with behavioral analysis, CP-101,606 reduced the augmented pNR2B-Tyr1472 and its interactions with Fyn triggered during the l-dopa administration in the lesioned striatum of parkinsonian rats. Moreover, CP-101,606 also decreased the level of Ca(2+)/calmodulin-dependent protein kinase II at threonine-286 hyperphosphorylation (pCaMKII-Thr286), which was the downstream signaling amplification molecule of NMDAR overactivation and closely associated with LID. However, the protein level of NR2B and Fyn had no difference under the above conditions. These data indicate that the inhibition of the interactions of NR2B with Fyn and NR2B tyrosine phosphorylation may contribute to the CP-101,606-induced downregulation of NMDAR function and provide benefit for the therapy of LID.
Collapse
Affiliation(s)
- Min Kong
- Department of Neurology, Yantaishan Hospital, Yantai City, Shandong 264000, China
| | - Maowen Ba
- Department of Neurology, Yuhuangding Hospital, Yantai City, Shandong 264000, China.
| | - Chuanyu Liu
- Department of Neurology, Yuhuangding Hospital, Yantai City, Shandong 264000, China
| | - Yanxiang Zhang
- Department of Neurology, Yuhuangding Hospital, Yantai City, Shandong 264000, China
| | - Hongli Zhang
- Department of Endocrinology, Ruijin Hospital Affiliated To Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Haiyan Qiu
- Department of Neuroscience, the University of Texas Southwestern Medical Center, TX 75390, USA
| |
Collapse
|
7
|
Modeling dyskinesia in animal models of Parkinson disease. Exp Neurol 2014; 256:105-16. [DOI: 10.1016/j.expneurol.2013.01.024] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 01/12/2013] [Accepted: 01/21/2013] [Indexed: 01/23/2023]
|
8
|
El Arfani A, Bentea E, Aourz N, Ampe B, De Deurwaerdère P, Van Eeckhaut A, Massie A, Sarre S, Smolders I, Michotte Y. NMDA receptor antagonism potentiates the L-DOPA-induced extracellular dopamine release in the subthalamic nucleus of hemi-parkinson rats. Neuropharmacology 2014; 85:198-205. [PMID: 24863042 DOI: 10.1016/j.neuropharm.2014.05.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 04/07/2014] [Accepted: 05/14/2014] [Indexed: 11/28/2022]
Abstract
Long term treatment with L-3,4-dihydroxyphenylalanine (L-DOPA) is associated with several motor complications. Clinical improvement of this treatment is therefore needed. Lesions or high frequency stimulation of the hyperactive subthalamic nucleus (STN) in Parkinson's disease (PD), alleviate the motor symptoms and reduce dyskinesia, either directly and/or by allowing the reduction of the L-DOPA dose. N-methyl-D-aspartate (NMDA) receptor antagonists might have similar actions. However it remains elusive how the neurochemistry changes in the STN after a separate or combined administration of L-DOPA and a NMDA receptor antagonist. By means of in vivo microdialysis, the effect of L-DOPA and/or MK 801, on the extracellular dopamine (DA) and glutamate (GLU) levels was investigated for the first time in the STN of sham and 6-hydroxydopamine-lesioned rats. The L-DOPA-induced DA increase in the STN was significantly higher in DA-depleted rats compared to shams. MK 801 did not influence the L-DOPA-induced DA release in shams. However, MK 801 enhanced the L-DOPA-induced DA release in hemi-parkinson rats. Interestingly, the extracellular STN GLU levels remained unchanged after nigral degeneration. Furthermore, administration of MK 801 alone or combined with L-DOPA did not alter the STN GLU levels in both sham and DA-depleted rats. The present study does not support the hypothesis that DA-ergic degeneration influences the STN GLU levels neither that MK 801 alters the GLU levels in lesioned and non-lesioned rats. However, NMDA receptor antagonists could be used as a beneficial adjuvant treatment for PD by enhancing the therapeutic efficacy of l-DOPA at least in part in the STN.
Collapse
Affiliation(s)
- Anissa El Arfani
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neuroscience, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium.
| | - Eduard Bentea
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neuroscience, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium; Department of Pharmaceutical Biotechnology and Molecular Biology, Center for Neuroscience, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium.
| | - Najat Aourz
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neuroscience, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium.
| | - Ben Ampe
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neuroscience, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium.
| | - Philippe De Deurwaerdère
- Unité Mixte de Recherche, Centre National de la Recherche Scientifique (UMR-CNRS) 5227, Université de Bordeaux, 146 rue Léo Saignat, B.P. 28, 33076 Bordeaux Cedex, France.
| | - Ann Van Eeckhaut
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neuroscience, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium.
| | - Ann Massie
- Department of Pharmaceutical Biotechnology and Molecular Biology, Center for Neuroscience, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium.
| | - Sophie Sarre
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neuroscience, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium.
| | - Ilse Smolders
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neuroscience, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium.
| | - Yvette Michotte
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neuroscience, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium.
| |
Collapse
|
9
|
Favier M, Carcenac C, Drui G, Boulet S, El Mestikawy S, Savasta M. High-frequency stimulation of the subthalamic nucleus modifies the expression of vesicular glutamate transporters in basal ganglia in a rat model of Parkinson's disease. BMC Neurosci 2013; 14:152. [PMID: 24308494 PMCID: PMC4234365 DOI: 10.1186/1471-2202-14-152] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 11/27/2013] [Indexed: 11/18/2022] Open
Abstract
Background It has been suggested that glutamatergic system hyperactivity may be related to the pathogenesis of Parkinson’s disease (PD). Vesicular glutamate transporters (VGLUT1-3) import glutamate into synaptic vesicles and are key anatomical and functional markers of glutamatergic excitatory transmission. Both VGLUT1 and VGLUT2 have been identified as definitive markers of glutamatergic neurons, but VGLUT 3 is also expressed by non glutamatergic neurons. VGLUT1 and VGLUT2 are thought to be expressed in a complementary manner in the cortex and the thalamus (VL/VM), in glutamatergic neurons involved in different physiological functions. Chronic high-frequency stimulation (HFS) of the subthalamic nucleus (STN) is the neurosurgical therapy of choice for the management of motor deficits in patients with advanced PD. STN-HFS is highly effective, but its mechanisms of action remain unclear. This study examines the effect of STN-HFS on VGLUT1-3 expression in different brain nuclei involved in motor circuits, namely the basal ganglia (BG) network, in normal and 6-hydroxydopamine (6-OHDA) lesioned rats. Results Here we report that: 1) Dopamine(DA)-depletion did not affect VGLUT1 and VGLUT3 expression but significantly decreased that of VGLUT2 in almost all BG structures studied; 2) STN-HFS did not change VGLUT1-3 expression in the different brain areas of normal rats while, on the contrary, it systematically induced a significant increase of their expression in DA-depleted rats and 3) STN-HFS reversed the decrease in VGLUT2 expression induced by the DA-depletion. Conclusions These results show for the first time a comparative analysis of changes of expression for the three VGLUTs induced by STN-HFS in the BG network of normal and hemiparkinsonian rats. They provide evidence for the involvement of VGLUT2 in the modulation of BG cicuits and in particular that of thalamostriatal and thalamocortical pathways suggesting their key role in its therapeutic effects for alleviating PD motor symptoms.
Collapse
Affiliation(s)
- Mathieu Favier
- Institut National de la Santé et de la Recherche Médicale, Unité 836, Grenoble Institut des Neurosciences, Equipe Dynamique et Physiopathologie des Ganglions de la Base, Grenoble F-38043, Cedex 9, France.
| | | | | | | | | | | |
Collapse
|
10
|
Dopamine-dependent long-term depression at subthalamo-nigral synapses is lost in experimental parkinsonism. J Neurosci 2013; 33:14331-41. [PMID: 24005286 DOI: 10.1523/jneurosci.1681-13.2013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Impairments of synaptic plasticity are a hallmark of several neurological disorders, including Parkinson's disease (PD) which results from the progressive loss of dopaminergic neurons of the substantia nigra pars compacta leading to abnormal activity within the basal ganglia (BG) network and pathological motor symptoms. Indeed, disrupted plasticity at corticostriatal glutamatergic synapses, the gateway of the BG, is correlated to the onset of PD-related movement disorders and thus has been proposed to be a key neural substrate regulating information flow and motor function in BG circuits. However, a critical question is whether similar plasticity impairments could occur at other glutamatergic connections within the BG that would also affect the inhibitory influence of the network on the motor thalamus. Here, we show that long-term plasticity at subthalamo-nigral glutamatergic synapses (STN-SNr) sculpting the activity patterns of nigral neurons, the main output of the network, is also affected in experimental parkinsonism. Using whole-cell patch-clamp in acute rat brain slices, we describe a molecular pathway supporting an activity-dependent long-term depression of STN-SNr synapses through an NMDAR-and D1/5 dopamine receptor-mediated endocytosis of synaptic AMPA glutamate receptors. We also show that this plastic property is lost in an experimental rat model of PD but can be restored through the recruitment of dopamine D1/5 receptors. Altogether, our findings suggest that pathological impairments of subthalamo-nigral plasticity may enhance BG outputs and thereby contribute to PD-related motor dysfunctions.
Collapse
|
11
|
Yang J, Hu D, Xia J, Liu J, Zhang G, Gendelman HE, Boukli NM, Xiong H. Enhancement of NMDA receptor-mediated excitatory postsynaptic currents by gp120-treated macrophages: implications for HIV-1-associated neuropathology. J Neuroimmune Pharmacol 2013; 8:921-33. [PMID: 23660833 DOI: 10.1007/s11481-013-9468-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 04/24/2013] [Indexed: 10/26/2022]
Abstract
A plethora of prior studies has linked HIV-1-infected and immune activated brain mononuclear phagocytes (MP; blood borne macrophages and microglia) to neuronal dysfunction. These are modulated by N-methyl-D-aspartate receptor (NMDAR) antagonists and supporting their relevance for HIV-1-associated nervous system disease. The role of NMDAR subsets in HIV-1-induced neuronal injury, nonetheless, is poorly understood. To this end, we investigated conditioned media from HIV-1gp120-treated human monocyte-derived-macrophages (MDM) for its abilities to affect NMDAR-mediated excitatory postsynaptic currents (EPSC(NMDAR)) in rat hippocampal slices. Bath application of gp120-treated MDM-conditioned media (MCM) produced an increase of EPSC(NMDAR). In contrast, control (untreated) MCM had limited effects on EPSC(NMDAR). Testing NR2A NMDAR (NR2AR)-mediated EPSC (EPSC(NR2AR)) and NR2B NMDAR (NR2BR)-mediated EPSC (EPSC(NR2BR)) for MCM showed significant increased EPSC(NR2BR) when compared to EPSC(NR2AR) enhancement. When synaptic NR2AR-mediated EPSC was blocked by bath application of MK801 combined with low frequency stimulations, MCM retained its ability to enhance EPSC(NMDAR) evoked by stronger stimulations. This suggested that increase in EPSC(NMDAR) was mediated, in part, through extra-synaptic NR2BR. Further analyses revealed that the soluble factors with low (<3 kD) to medium (3-10 kD) molecular weight mediated the observed increases in EPSC(NMDAR). The link between activation of NR2BRs and HIV-1gp120 MCM for neuronal injury was demonstrated by NR2BR but not NR2AR blockers. Taken together, these results indicate that macrophage secretory products induce neuronal injury through extra-synaptic NR2BRs.
Collapse
Affiliation(s)
- Jianming Yang
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Yang X, Wu N, Song L, Liu Z. Intrastriatal injections of KN-93 ameliorates levodopa-induced dyskinesia in a rat model of Parkinson's disease. Neuropsychiatr Dis Treat 2013; 9:1213-20. [PMID: 23983471 PMCID: PMC3751461 DOI: 10.2147/ndt.s45422] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Levodopa remains the most effective drug for the treatment of Parkinson's disease (PD). However, long-term levodopa treatment is associated with the emergence of levodopa-induced dyskinesia (LID), which has hampered its use for PD treatment. The mechanisms of LID are only partially understood. A previous study showed that KN-93, a Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) inhibitor, could be used to ameliorate LID in rats. However, the precise mechanisms by which KN-93 acts as an antidyskinetic are not fully understood. METHODS In the present study, a rat model of PD was induced by 6-hydroxydopamine (OHDA) injections. Then, the successfully lesioned rats were intrastriatally administered with a different dose of KN-93 (1 μg, 2 μg, or 5 μg) prior to levodopa treatment. Abnormal involuntary movements (AIMs) scores and apomorphine-induced rotations were measured in PD rats. Phosphorylated levels of GluR1 at Serine-845 (pGluR1S845) levels were determined by western blot. Arc and Penk levels were measured by real-time polymerase chain reaction (PCR). RESULTS We found that both 2 μg and 5 μg KN-93 treatment lowered AIMs scores in levodopa priming PD rats without affecting the antiparkinsonian effect of levodopa. In agreement with behavioral analysis, KN-93 treatment (2 μg) reduced pGluR1S845 levels in PD rats. Moreover, KN-93 treatment (2 μg) reduced the expression of Gad1 and Nur77 in PD rats. CONCLUSION These data indicated that intrastriatal injections of KN-93 were beneficial in reducing the expression of LID by lowering the expression of pGluR1S845 via suppressing the activation of CaMKII in PD rats. Decreased expression of pGluR1S845 further reduced the expression of Gad1 and Nur77 in PD rats.
Collapse
Affiliation(s)
- Xinxin Yang
- Department of Neurology, Xinhua Hospital affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | | | | | | |
Collapse
|