1
|
Zamanian MY, Golmohammadi M, Gardanova ZR, Rahimi M, Khachatryan LG, Khazaei M. The Roles of Neuroinflammation in l-DOPA-Induced Dyskinesia: Dissecting the Roles of NF-κB and TNF-α for Novel Pharmacological Therapeutic Approaches. Eur J Neurosci 2025; 61:e70034. [PMID: 40026178 DOI: 10.1111/ejn.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/02/2025] [Accepted: 02/15/2025] [Indexed: 03/04/2025]
Abstract
Levodopa-induced dyskinesia (LID) is a common and debilitating complication of long-term Parkinson's disease treatment. This review explores the roles of NF-κB and TNF-α signalling pathways in LID pathophysiology and potential therapeutic approaches targeting these mechanisms. Chronic levodopa treatment leads to aberrant neuroplasticity and neuroinflammation, involving activation of NF-κB and increased production of pro-inflammatory cytokines like TNF-α. NF-κB activation in glial cells contributes to sustained neuroinflammation and exacerbates dopaminergic neuron loss. TNF-α levels are elevated in brain regions affected by LID and correlate with dyskinesia severity. Several compounds are involved in mitigating LID by modulating these pathways. Agmatine reduces NF-κB activation and NMDA receptor expression while protecting dopaminergic neurons. Resveratrol and doxycycline demonstrate antidyskinetic effects by attenuating neuroinflammation and TNF-α production. The Rho-kinase (ROCK) inhibitor fasudil and cannabinoid receptor 2 (CB2) receptor agonists also show efficacy in reducing LID severity and neuroinflammation. Hydrogen gas inhalation decreases pro-inflammatory cytokine levels associated with LID. These findings highlight the complex interplay between NF-κB, TNF-α and other neurotransmitter systems in LID pathogenesis. Targeting neuroinflammation and glial activation through these pathways represents a promising strategy for developing novel LID treatments. Further research is needed to fully elucidate the mechanisms and optimize therapeutic approaches targeting NF-κB and TNF-α signalling in LID.
Collapse
Affiliation(s)
- Mohammad Yasin Zamanian
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Golmohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zhanna R Gardanova
- Pirogov Russian National Research Medical University, Moscow, Russia
- Medical University MGIMO-MED, Moscow, Russia
| | - Mohammad Rahimi
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Lusine G Khachatryan
- Department of Pediatric Diseases, N.F. Filatov Clinical Institute of Children's Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Mojtaba Khazaei
- Department of Neurology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
2
|
Ding MYR, Arora T, Sarica C, Yang AZ, Nasrkhani N, Grippe T, Nankoo JF, Tran S, Samuel N, Xia X, Lozano AM, Chen R. Investigation of Metaplasticity Associated with Transcranial Focused Ultrasound Neuromodulation in Humans. J Neurosci 2024; 44:e2438232024. [PMID: 39266303 PMCID: PMC11529810 DOI: 10.1523/jneurosci.2438-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 08/18/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024] Open
Abstract
Low-intensity transcranial focused ultrasound stimulation (TUS) is a novel technique for noninvasive brain stimulation (NIBS). TUS delivered in a theta (5 Hz) burst pattern (tbTUS) induces plasticity in the human primary motor cortex (M1) for 30-60 min, showing promise for therapeutic development. Metaplasticity refers to activity-dependent changes in neural functions governing synaptic plasticity; depotentiation is the reversal of long-term potentiation (LTP) by a subsequent protocol with no effect alone. Metaplasticity can enhance plasticity induction and clinical efficacy of NIBS protocols. In our study, we compared four NIBS protocol combinations to investigate metaplasticity on tbTUS in humans of either sex. We delivered four interventions: (1) sham continuous theta burst stimulation with 150 pulses (cTBS150) followed by real tbTUS (tbTUS only), (2) real cTBS150 followed by sham tbTUS (cTBS only), (3) real cTBS150 followed by real tbTUS (metaplasticity), and (4) real tbTUS followed by real cTBS150 (depotentiation). We measured motor-evoked potential amplitude, short-interval intracortical inhibition, long-interval intracortical inhibition, intracortical facilitation (ICF), and short-interval intracortical facilitation before and up to 90 min after plasticity intervention. Plasticity effects lasted at least 60 min longer when tbTUS was primed with cTBS150 compared with tbTUS alone. Plasticity was abolished when cTBS150 was delivered after tbTUS. cTBS150 alone had no significant effect. No changes in M1 intracortical circuits were observed. Plasticity induction by tbTUS can be modified in manners consistent with homeostatic metaplasticity and depotentiation. This substantiates evidence that tbTUS induces LTP-like processes and suggests that metaplasticity can be harnessed in the therapeutic development of TUS.
Collapse
Affiliation(s)
- Mandy Yi Rong Ding
- Institute of Medical Science, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Krembil Brain Institute, Toronto, Ontario M5T 1M8, Canada
| | - Tarun Arora
- Krembil Brain Institute, Toronto, Ontario M5T 1M8, Canada
| | - Can Sarica
- Krembil Brain Institute, Toronto, Ontario M5T 1M8, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Andrew Z Yang
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | - Talyta Grippe
- Krembil Brain Institute, Toronto, Ontario M5T 1M8, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | - Stephanie Tran
- Institute of Medical Science, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Krembil Brain Institute, Toronto, Ontario M5T 1M8, Canada
| | - Nardin Samuel
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Xue Xia
- Krembil Brain Institute, Toronto, Ontario M5T 1M8, Canada
| | - Andres M Lozano
- Krembil Brain Institute, Toronto, Ontario M5T 1M8, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Robert Chen
- Krembil Brain Institute, Toronto, Ontario M5T 1M8, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
3
|
Wang T, Geng J, Zeng X, Han R, Huh YE, Peng J. Exploring causal effects of sarcopenia on risk and progression of Parkinson disease by Mendelian randomization. NPJ Parkinsons Dis 2024; 10:164. [PMID: 39198455 PMCID: PMC11358304 DOI: 10.1038/s41531-024-00782-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024] Open
Abstract
Previous observational studies suggested that sarcopenia is associated with Parkinson disease (PD), but it is unclear whether this association is causal. The objective of this study was to examine causal associations between sarcopenia-related traits and the risk or progression of PD using a Mendelian randomization (MR) approach. Two-sample bidirectional MR analyses were conducted to evaluate causal relationships. Genome-wide association study (GWAS) summary statistics for sarcopenia-related traits, including right handgrip strength (n = 461,089), left handgrip strength (n = 461,026), and appendicular lean mass (n = 450,243), were retrieved from the IEU OpenGWAS database. GWAS data for the risk of PD were derived from the FinnGen database (4235 cases; 373,042 controls). Summary-level data for progression of PD, including progression to Hoehn and Yahr stage 3, progression to dementia, and development of levodopa-induced dyskinesia, were obtained from a recent GWAS publication on progression of PD in 4093 patients from 12 longitudinal cohorts. Significant causal associations identified in MR analysis were verified through a polygenic score (PGS)-based approach and pathway enrichment analysis using genotype data from the Parkinson's Progression Markers Initiative. MR results supported a significant causal influence of right handgrip strength (odds ratio [OR] = 0.152, 95% confidence interval [CI] = 0.055-0.423, adjusted P = 0.0036) and appendicular lean mass (OR = 0.597, 95% CI = 0.440-0.810, adjusted P = 0.0111) on development of levodopa-induced dyskinesia. In Cox proportional hazard analysis, higher PGSs for right handgrip strength (hazard ratio [HR] = 0.225, 95% CI = 0.095-0.530, adjusted P = 0.0019) and left handgrip strength (HR = 0.303, 95% CI = 0.121-0.59, adjusted P = 0.0323) were significantly associated with a lower risk of developing levodopa-induced dyskinesia, after adjusting for covariates. Pathway enrichment analysis revealed that genome-wide significant single-nucleotide polymorphisms for right handgrip strength were substantially enriched in biological pathways involved in the control of synaptic plasticity. This study provides genetic evidence of the protective role of handgrip strength or appendicular lean mass on the development of levodopa-induced dyskinesia in PD. Sarcopenia-related traits can be promising prognostic markers for levodopa-induced dyskinesia and potential therapeutic targets for preventing levodopa-induced dyskinesia in patients with PD.
Collapse
Affiliation(s)
- Tao Wang
- AI for Science Interdisciplinary Research Center, School of Computer Science, Northwestern Polytechnical University, Xi'an, China
| | - Jiaquan Geng
- AI for Science Interdisciplinary Research Center, School of Computer Science, Northwestern Polytechnical University, Xi'an, China
| | - Xi Zeng
- AI for Science Interdisciplinary Research Center, School of Computer Science, Northwestern Polytechnical University, Xi'an, China
| | - Ruijiang Han
- AI for Science Interdisciplinary Research Center, School of Computer Science, Northwestern Polytechnical University, Xi'an, China
| | - Young Eun Huh
- Department of Neurology, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do, South Korea.
- Parkinson's Disease and Movement Disorder Center, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do, South Korea.
| | - Jiajie Peng
- AI for Science Interdisciplinary Research Center, School of Computer Science, Northwestern Polytechnical University, Xi'an, China.
| |
Collapse
|
4
|
Sumarac S, Spencer KA, Steiner LA, Fearon C, Haniff EA, Kühn AA, Hodaie M, Kalia SK, Lozano A, Fasano A, Hutchison WD, Milosevic L. Interrogating basal ganglia circuit function in people with Parkinson's disease and dystonia. eLife 2024; 12:RP90454. [PMID: 39190604 PMCID: PMC11349293 DOI: 10.7554/elife.90454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024] Open
Abstract
Background The dichotomy between the hypo- versus hyperkinetic nature of Parkinson's disease (PD) and dystonia, respectively, is thought to be reflected in the underlying basal ganglia pathophysiology. In this study, we investigated differences in globus pallidus internus (GPi) neuronal activity, and short- and long-term plasticity of direct pathway projections. Methods Using microelectrode recording data collected from the GPi during deep brain stimulation surgery, we compared neuronal spiketrain features between people with PD and those with dystonia, as well as correlated neuronal features with respective clinical scores. Additionally, we characterized and compared readouts of short- and long-term synaptic plasticity using measures of inhibitory evoked field potentials. Results GPi neurons were slower, bustier, and less regular in dystonia. In PD, symptom severity positively correlated with the power of low-beta frequency spiketrain oscillations. In dystonia, symptom severity negatively correlated with firing rate and positively correlated with neuronal variability and the power of theta frequency spiketrain oscillations. Dystonia was moreover associated with less long-term plasticity and slower synaptic depression. Conclusions We substantiated claims of hyper- versus hypofunctional GPi output in PD versus dystonia, and provided cellular-level validation of the pathological nature of theta and low-beta oscillations in respective disorders. Such circuit changes may be underlain by disease-related differences in plasticity of striato-pallidal synapses. Funding This project was made possible with the financial support of Health Canada through the Canada Brain Research Fund, an innovative partnership between the Government of Canada (through Health Canada) and Brain Canada, and of the Azrieli Foundation (LM), as well as a grant from the Banting Research Foundation in partnership with the Dystonia Medical Research Foundation (LM).
Collapse
Affiliation(s)
- Srdjan Sumarac
- Institute of Biomedical Engineering, University of TorontoTorontoCanada
- Krembil Brain Institute, University Health NetworkTorontoCanada
| | - Kiah A Spencer
- Institute of Biomedical Engineering, University of TorontoTorontoCanada
- Krembil Brain Institute, University Health NetworkTorontoCanada
| | - Leon A Steiner
- Krembil Brain Institute, University Health NetworkTorontoCanada
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin BerlinBerlinGermany
- Berlin Institute of Health (BIH)BerlinGermany
| | - Conor Fearon
- Krembil Brain Institute, University Health NetworkTorontoCanada
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western HospitalTorontoCanada
- Department of Neurology, University of TorontoTorontoCanada
| | - Emily A Haniff
- Krembil Brain Institute, University Health NetworkTorontoCanada
| | - Andrea A Kühn
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin BerlinBerlinGermany
| | - Mojgan Hodaie
- Krembil Brain Institute, University Health NetworkTorontoCanada
- Institute of Medical Sciences, University of TorontoTorontoCanada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA)TorontoCanada
- Department of Surgery, University of TorontoTorontoCanada
| | - Suneil K Kalia
- Krembil Brain Institute, University Health NetworkTorontoCanada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA)TorontoCanada
- Department of Surgery, University of TorontoTorontoCanada
- KITE, University Health NetworkTorontoCanada
| | - Andres Lozano
- Krembil Brain Institute, University Health NetworkTorontoCanada
- Institute of Medical Sciences, University of TorontoTorontoCanada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA)TorontoCanada
- Department of Surgery, University of TorontoTorontoCanada
| | - Alfonso Fasano
- Krembil Brain Institute, University Health NetworkTorontoCanada
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western HospitalTorontoCanada
- Department of Neurology, University of TorontoTorontoCanada
- Institute of Medical Sciences, University of TorontoTorontoCanada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA)TorontoCanada
| | - William Duncan Hutchison
- Krembil Brain Institute, University Health NetworkTorontoCanada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA)TorontoCanada
- Department of Surgery, University of TorontoTorontoCanada
- Department of Physiology, University of TorontoTorontoCanada
| | - Luka Milosevic
- Institute of Biomedical Engineering, University of TorontoTorontoCanada
- Krembil Brain Institute, University Health NetworkTorontoCanada
- Institute of Medical Sciences, University of TorontoTorontoCanada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA)TorontoCanada
- KITE, University Health NetworkTorontoCanada
| |
Collapse
|
5
|
Bove F, Angeloni B, Sanginario P, Rossini PM, Calabresi P, Di Iorio R. Neuroplasticity in levodopa-induced dyskinesias: An overview on pathophysiology and therapeutic targets. Prog Neurobiol 2024; 232:102548. [PMID: 38040324 DOI: 10.1016/j.pneurobio.2023.102548] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/29/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Levodopa-induced dyskinesias (LIDs) are a common complication in patients with Parkinson's disease (PD). A complex cascade of electrophysiological and molecular events that induce aberrant plasticity in the cortico-basal ganglia system plays a key role in the pathophysiology of LIDs. In the striatum, multiple neurotransmitters regulate the different forms of physiological synaptic plasticity to provide it in a bidirectional and Hebbian manner. In PD, impairment of both long-term potentiation (LTP) and long-term depression (LTD) progresses with disease and dopaminergic denervation of striatum. The altered balance between LTP and LTD processes leads to unidirectional changes in plasticity that cause network dysregulation and the development of involuntary movements. These alterations have been documented, in both experimental models and PD patients, not only in deep brain structures but also at motor cortex. Invasive and non-invasive neuromodulation treatments, as deep brain stimulation, transcranial magnetic stimulation, or transcranial direct current stimulation, may provide strategies to modulate the aberrant plasticity in the cortico-basal ganglia network of patients affected by LIDs, thus restoring normal neurophysiological functioning and treating dyskinesias. In this review, we discuss the evidence for neuroplasticity impairment in experimental PD models and in patients affected by LIDs, and potential neuromodulation strategies that may modulate aberrant plasticity.
Collapse
Affiliation(s)
- Francesco Bove
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Benedetta Angeloni
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Pasquale Sanginario
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Paolo Maria Rossini
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Rome, Italy
| | - Paolo Calabresi
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Riccardo Di Iorio
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.
| |
Collapse
|
6
|
di Biase L, Pecoraro PM, Carbone SP, Caminiti ML, Di Lazzaro V. Levodopa-Induced Dyskinesias in Parkinson's Disease: An Overview on Pathophysiology, Clinical Manifestations, Therapy Management Strategies and Future Directions. J Clin Med 2023; 12:4427. [PMID: 37445461 DOI: 10.3390/jcm12134427] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/18/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Since its first introduction, levodopa has become the cornerstone for the treatment of Parkinson's disease and remains the leading therapeutic choice for motor control therapy so far. Unfortunately, the subsequent appearance of abnormal involuntary movements, known as dyskinesias, is a frequent drawback. Despite the deep knowledge of this complication, in terms of clinical phenomenology and the temporal relationship during a levodopa regimen, less is clear about the pathophysiological mechanisms underpinning it. As the disease progresses, specific oscillatory activities of both motor cortical and basal ganglia neurons and variation in levodopa metabolism, in terms of the dopamine receptor stimulation pattern and turnover rate, underlie dyskinesia onset. This review aims to provide a global overview on levodopa-induced dyskinesias, focusing on pathophysiology, clinical manifestations, therapy management strategies and future directions.
Collapse
Affiliation(s)
- Lazzaro di Biase
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
- Brain Innovations Lab, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo, 21, 00128 Rome, Italy
| | - Pasquale Maria Pecoraro
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
- Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Simona Paola Carbone
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
- Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Maria Letizia Caminiti
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
- Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Vincenzo Di Lazzaro
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
- Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| |
Collapse
|
7
|
A positive allosteric modulator of mGlu4 receptors restores striatal plasticity in an animal model of l-Dopa-induced dyskinesia. Neuropharmacology 2022; 218:109205. [DOI: 10.1016/j.neuropharm.2022.109205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 11/24/2022]
|
8
|
Bologna M, Valls-Solè J, Kamble N, Pal PK, Conte A, Guerra A, Belvisi D, Berardelli A. Dystonia, chorea, hemiballismus and other dyskinesias. Clin Neurophysiol 2022; 140:110-125. [PMID: 35785630 DOI: 10.1016/j.clinph.2022.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/12/2022] [Accepted: 05/24/2022] [Indexed: 11/30/2022]
Abstract
Hyperkinesias are heterogeneous involuntary movements that significantly differ in terms of clinical and semeiological manifestations, including rhythm, regularity, speed, duration, and other factors that determine their appearance or suppression. Hyperkinesias are due to complex, variable, and largely undefined pathophysiological mechanisms that may involve different brain areas. In this chapter, we specifically focus on dystonia, chorea and hemiballismus, and other dyskinesias, specifically, levodopa-induced, tardive, and cranial dyskinesia. We address the role of neurophysiological studies aimed at explaining the pathophysiology of these conditions. We mainly refer to human studies using surface and invasive in-depth recordings, as well as spinal, brainstem, and transcortical reflexology and non-invasive brain stimulation techniques. We discuss the extent to which the neurophysiological abnormalities observed in hyperkinesias may be explained by pathophysiological models. We highlight the most relevant issues that deserve future research efforts. The potential role of neurophysiological assessment in the clinical context of hyperkinesia is also discussed.
Collapse
Affiliation(s)
- Matteo Bologna
- Department of Human Neurosciences, Sapienza University of Rome, Italy; IRCCS Neuromed, Pozzilli (IS), Italy
| | - Josep Valls-Solè
- Institut d'Investigació Biomèdica August Pi I Sunyer, Villarroel, 170, Barcelona, Spain
| | - Nitish Kamble
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Bengaluru, India
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Bengaluru, India
| | - Antonella Conte
- Department of Human Neurosciences, Sapienza University of Rome, Italy; IRCCS Neuromed, Pozzilli (IS), Italy
| | | | - Daniele Belvisi
- Department of Human Neurosciences, Sapienza University of Rome, Italy; IRCCS Neuromed, Pozzilli (IS), Italy
| | - Alfredo Berardelli
- Department of Human Neurosciences, Sapienza University of Rome, Italy; IRCCS Neuromed, Pozzilli (IS), Italy.
| |
Collapse
|
9
|
Kolmančič K, Zupančič NK, Trošt M, Flisar D, Kramberger MG, Pirtošek Z, Kojović M. Continuous Dopaminergic Stimulation Improves Cortical Maladaptive Changes in Advanced Parkinson's Disease. Mov Disord 2022; 37:1465-1473. [PMID: 35436354 DOI: 10.1002/mds.29028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/10/2022] [Accepted: 03/27/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND With the progression of Parkinson's disease (PD), pulsatile treatment with oral levodopa causes maladaptive changes within basal ganglia-thalamo-cortical circuits, which are clinically expressed as motor fluctuations and dyskinesias. At the level of the motor cortex, these changes may be detected using transcranial magnetic stimulation (TMS), as abnormal corticospinal and intracortical excitability and absent response to plasticity protocols. OBJECTIVE We investigated the effect of continuous dopaminergic stimulation on cortical maladaptive changes related to oral levodopa treatment. METHODS Twenty patients with advanced PD were tested using TMS within 1 week before and again 6 months after the introduction of levodopa-carbidopa intestinal gel. We measured resting and active motor thresholds, input/output curve, short interval intracortical inhibition curve, cortical silent period, and response to intermittent theta burst stimulation. Patients were clinically assessed with Part III and Part IV of the Movement Disorders Society Unified Parkinson's Disease Rating Scale. RESULTS Six months after the introduction of levodopa-carbidopa intestinal gel, motor fluctuations scores (P = 0.001) and dyskinesias scores (P < 0.001) were reduced. Resting and active motor threshold (P = 0.012 and P = 0.015) and x-intercept of input/output curve (P = 0.005) were also decreased, while short-interval intracortical inhibition and response to intermittent theta bust stimulation were improved (P = 0.026 and P = 0.031, respectively). Changes in these parameters correlated with clinical improvement. CONCLUSIONS In patients with advanced PD, switching from intermittent to continuous levodopa delivery increased corticospinal excitability and improved deficient intracortical inhibition and abnormal motor cortex plasticity, along with amelioration of motor fluctuations and dyskinesias. Continuous dopaminergic stimulation ameliorates maladaptive changes inflicted by chronic pulsatile dopaminergic stimulation. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Kaja Kolmančič
- Department of Nuclear Medicine, University Clinical Centre, Ljubljana, Slovenia.,Department of Neurology, University Clinical Centre, Ljubljana, Slovenia
| | - Nina K Zupančič
- Department of Neurology, University Clinical Centre, Ljubljana, Slovenia
| | - Maja Trošt
- Department of Neurology, University Clinical Centre, Ljubljana, Slovenia.,Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Dušan Flisar
- Department of Neurology, University Clinical Centre, Ljubljana, Slovenia
| | - Milica G Kramberger
- Department of Neurology, University Clinical Centre, Ljubljana, Slovenia.,Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Zvezdan Pirtošek
- Department of Neurology, University Clinical Centre, Ljubljana, Slovenia.,Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Maja Kojović
- Department of Neurology, University Clinical Centre, Ljubljana, Slovenia
| |
Collapse
|
10
|
Bove F, Calabresi P. Plasticity, genetics, and epigenetics in l-dopa-induced dyskinesias. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:167-184. [PMID: 35034732 DOI: 10.1016/b978-0-12-819410-2.00009-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
l-Dopa-induced dyskinesias (LIDs) are a frequent complication in l-dopa-treated patients affected by Parkinson's disease (PD). In the last years, several progresses in the knowledge of LIDs mechanisms have led to the identification of several molecular and electrophysiologic events. A complex cascade of intracellular events underlies the pathophysiology of LIDs, and, among these, aberrant plasticity in the cortico-basal ganglia system, at striatal and cortical level, plays a key role. Furthermore, several recent studies have investigated genetic susceptibility and epigenetic modifications in LIDs pathophysiology that might have future relevance in clinical practice and pharmacologic research. These progresses might lead to the development of specific strategies not only to treat, but also to prevent or delay the development of LIDs in PD.
Collapse
Affiliation(s)
- Francesco Bove
- UOC Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Paolo Calabresi
- UOC Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy.
| |
Collapse
|
11
|
Parkinson's disease: Alterations of motor plasticity and motor learning. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:135-151. [PMID: 35034730 DOI: 10.1016/b978-0-12-819410-2.00007-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This chapter reviews the alterations in motor learning and motor cortical plasticity in Parkinson's disease (PD), the most common movement disorder. Impairments in motor learning, which is a hallmark of basal ganglia disorders, influence the performance of motor learning-related behavioral tasks and have clinical implications for the management of disturbance in gait and posture, and for rehabilitative management of PD. Although plasticity is classically induced and assessed in sliced preparation in animal models, in this review we have concentrated on the results from non-invasive brain stimulation techniques such as transcranial magnetic stimulation (TMS), transcranial alternating current stimulation (tACS) and transcranial direct current stimulation (tDCS) in patients with PD, in addition to a few animal electrophysiologic studies. The chapter summarizes the results from different cortical and subcortical plasticity investigations. Plasticity induction protocols reveal deficient plasticity in PD and these plasticity measures are modulated by medications and deep brain stimulation. There is considerable variability in these measures that are related to inter-individual variations, different disease characteristics and methodological considerations. Nevertheless, these pathophysiologic studies expand our knowledge of cortical excitability, plasticity and the effects of different treatments in PD. These tools of modulating plasticity and motor learning improve our understanding of PD pathophysiology and help to develop new treatments for this disabling condition.
Collapse
|
12
|
Fabbrini A, Guerra A. Pathophysiological Mechanisms and Experimental Pharmacotherapy for L-Dopa-Induced Dyskinesia. J Exp Pharmacol 2021; 13:469-485. [PMID: 33953618 PMCID: PMC8092630 DOI: 10.2147/jep.s265282] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/30/2021] [Indexed: 12/21/2022] Open
Abstract
L-dopa-induced dyskinesia (LID) is the most frequent motor complication associated with chronic L-dopa treatment in Parkinson’s disease (PD). Recent advances in the understanding of the pathophysiological mechanisms underlying LID suggest that abnormalities in multiple neurotransmitter systems, in addition to dopaminergic nigrostriatal denervation and altered dopamine release and reuptake dynamics at the synaptic level, are involved in LID development. Increased knowledge of neurobiological LID substrates has led to the development of several drug candidates to alleviate this motor complication. However, with the exception of amantadine, none of the pharmacological therapies tested in humans have demonstrated clinically relevant beneficial effects. Therefore, LID management is still one of the most challenging problems in the treatment of PD patients. In this review, we first describe the known pathophysiological mechanisms of LID. We then provide an updated report of experimental pharmacotherapies tested in clinical trials of PD patients and drugs currently under study to alleviate LID. Finally, we discuss available pharmacological LID treatment approaches and offer our opinion of possible issues to be clarified and future therapeutic strategies.
Collapse
Affiliation(s)
- Andrea Fabbrini
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
13
|
Insights into the Pathophysiology of Psychiatric Symptoms in Central Nervous System Disorders: Implications for Early and Differential Diagnosis. Int J Mol Sci 2021; 22:ijms22094440. [PMID: 33922780 PMCID: PMC8123079 DOI: 10.3390/ijms22094440] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 12/12/2022] Open
Abstract
Different psychopathological manifestations, such as affective, psychotic, obsessive-compulsive symptoms, and impulse control disturbances, may occur in most central nervous system (CNS) disorders including neurodegenerative and neuroinflammatory diseases. Psychiatric symptoms often represent the clinical onset of such disorders, thus potentially leading to misdiagnosis, delay in treatment, and a worse outcome. In this review, psychiatric symptoms observed along the course of several neurological diseases, namely Alzheimer’s disease, fronto-temporal dementia, Parkinson’s disease, Huntington’s disease, and multiple sclerosis, are discussed, as well as the involved brain circuits and molecular/synaptic alterations. Special attention has been paid to the emerging role of fluid biomarkers in early detection of these neurodegenerative diseases. The frequent occurrence of psychiatric symptoms in neurological diseases, even as the first clinical manifestations, should prompt neurologists and psychiatrists to share a common clinico-biological background and a coordinated diagnostic approach.
Collapse
|
14
|
Rudå D, Einarsson G, Andersen ASS, Matthiassen JB, Correll CU, Winge K, Clemmensen LKH, Paulsen RR, Pagsberg AK, Fink-Jensen A. Exploring Movement Impairments in Patients With Parkinson's Disease Using the Microsoft Kinect Sensor: A Feasibility Study. Front Neurol 2021; 11:610614. [PMID: 33488503 PMCID: PMC7815696 DOI: 10.3389/fneur.2020.610614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/03/2020] [Indexed: 11/13/2022] Open
Abstract
Background: Current assessments of motor symptoms in Parkinson's disease are often limited to clinical rating scales. Objectives: To develop a computer application using the Microsoft Kinect sensor to assess performance-related bradykinesia. Methods: The developed application (Motorgame) was tested in patients with Parkinson's disease and healthy controls. Participants were assessed with the Movement Disorder Society Unified Parkinson's disease Rating Scale (MDS-UPDRS) and standardized clinical side effect rating scales, i.e., UKU Side Effect Rating Scale and Simpson-Angus Scale. Additionally, tests of information processing (Symbol Coding Task) and motor speed (Token Motor Task), together with a questionnaire, were applied. Results: Thirty patients with Parkinson's disease and 33 healthy controls were assessed. In the patient group, there was a statistically significant (p < 0.05) association between prolonged time of motor performance in the Motorgame and upper body rigidity and bradykinesia (MDS-UPDRS) with the strongest effects in the right hand (p < 0.001). In the entire group, prolonged time of motor performance was significantly associated with higher Simson-Angus scale rigidity score and higher UKU hypokinesia scores (p < 0.05). A shortened time of motor performance was significantly associated with higher scores on information processing (p < 0.05). Time of motor performance was not significantly associated with Token Motor Task, duration of illness, or hours of daily physical activity. The Motorgame was well-accepted. Conclusions: In the present feasibility study the Motorgame was able to detect common motor symptoms in Parkinson's disease in a statistically significant and clinically meaningful way, making it applicable for further testing in larger samples.
Collapse
Affiliation(s)
- Ditte Rudå
- Child and Adolescent Mental Health Center, Mental Health Services - Capital Region of Denmark & Faculty of Health Science University of Copenhagen, Copenhagen, Denmark
| | - Gudmundur Einarsson
- Section for Image Analysis and Computer Graphics, DTU Compute, Technical University of Denmark, Copenhagen, Denmark
| | - Anne Sofie Schott Andersen
- Child and Adolescent Mental Health Center, Mental Health Services - Capital Region of Denmark & Faculty of Health Science University of Copenhagen, Copenhagen, Denmark
| | - Jannik Boll Matthiassen
- Section for Image Analysis and Computer Graphics, DTU Compute, Technical University of Denmark, Copenhagen, Denmark
| | - Christoph U Correll
- Hofstra Northwell School of Medicine, Hempstead, NY, United States.,The Zucker Hillside Hospital, New York, NY, United States.,Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany
| | - Kristian Winge
- Department of Neurology, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Line K H Clemmensen
- Section for Image Analysis and Computer Graphics, DTU Compute, Technical University of Denmark, Copenhagen, Denmark
| | - Rasmus R Paulsen
- Section for Image Analysis and Computer Graphics, DTU Compute, Technical University of Denmark, Copenhagen, Denmark
| | - Anne Katrine Pagsberg
- Child and Adolescent Mental Health Center, Mental Health Services - Capital Region of Denmark & Faculty of Health Science University of Copenhagen, Copenhagen, Denmark
| | - Anders Fink-Jensen
- Psychiatric Centre Copenhagen (Rigshospitalet), Copenhagen, Denmark.,Laboratory of Neuropsychiatry, University Hospital Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Striatal Nurr1 Facilitates the Dyskinetic State and Exacerbates Levodopa-Induced Dyskinesia in a Rat Model of Parkinson's Disease. J Neurosci 2020; 40:3675-3691. [PMID: 32238479 DOI: 10.1523/jneurosci.2936-19.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/13/2020] [Accepted: 03/19/2020] [Indexed: 12/23/2022] Open
Abstract
The transcription factor Nurr1 has been identified to be ectopically induced in the striatum of rodents expressing l-DOPA-induced dyskinesia (LID). In the present study, we sought to characterize Nurr1 as a causative factor in LID expression. We used rAAV2/5 to overexpress Nurr1 or GFP in the parkinsonian striatum of LID-resistant Lewis or LID-prone Fischer-344 (F344) male rats. In a second cohort, rats received the Nurr1 agonist amodiaquine (AQ) together with l-DOPA or ropinirole. All rats received a chronic DA agonist and were evaluated for LID severity. Finally, we performed single-unit recordings and dendritic spine analyses on striatal medium spiny neurons (MSNs) in drug-naïve rAAV-injected male parkinsonian rats. rAAV-GFP injected LID-resistant hemi-parkinsonian Lewis rats displayed mild LID and no induction of striatal Nurr1 despite receiving a high dose of l-DOPA. However, Lewis rats overexpressing Nurr1 developed severe LID. Nurr1 agonism with AQ exacerbated LID in F344 rats. We additionally determined that in l-DOPA-naïve rats striatal rAAV-Nurr1 overexpression (1) increased cortically-evoked firing in a subpopulation of identified striatonigral MSNs, and (2) altered spine density and thin-spine morphology on striatal MSNs; both phenomena mimicking changes seen in dyskinetic rats. Finally, we provide postmortem evidence of Nurr1 expression in striatal neurons of l-DOPA-treated PD patients. Our data demonstrate that ectopic induction of striatal Nurr1 is capable of inducing LID behavior and associated neuropathology, even in resistant subjects. These data support a direct role of Nurr1 in aberrant neuronal plasticity and LID induction, providing a potential novel target for therapeutic development.SIGNIFICANCE STATEMENT The transcription factor Nurr1 is ectopically induced in striatal neurons of rats exhibiting levodopa-induced dyskinesia [LID; a side-effect to dopamine replacement strategies in Parkinson's disease (PD)]. Here we asked whether Nurr1 is causing LID. Indeed, rAAV-mediated expression of Nurr1 in striatal neurons was sufficient to overcome LID-resistance, and Nurr1 agonism exacerbated LID severity in dyskinetic rats. Moreover, we found that expression of Nurr1 in l-DOPA naïve hemi-parkinsonian rats resulted in the formation of morphologic and electrophysiological signatures of maladaptive neuronal plasticity; a phenomenon associated with LID. Finally, we determined that ectopic Nurr1 expression can be found in the putamen of l-DOPA-treated PD patients. These data suggest that striatal Nurr1 is an important mediator of the formation of LID.
Collapse
|
16
|
Sciaccaluga M, Mazzocchetti P, Bastioli G, Ghiglieri V, Cardinale A, Mosci P, Caccia C, Keywood C, Melloni E, Padoani G, Vailati S, Picconi B, Calabresi P, Tozzi A. Effects of safinamide on the glutamatergic striatal network in experimental Parkinson's disease. Neuropharmacology 2020; 170:108024. [PMID: 32142791 DOI: 10.1016/j.neuropharm.2020.108024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/03/2020] [Accepted: 02/27/2020] [Indexed: 01/01/2023]
Abstract
OBJECTIVE The aim of the study was to evaluate electrophysiological effects of safinamide on the intrinsic and synaptic properties of striatal spiny projection neurons (SPNs) and to characterize the possible therapeutic antiparkinsonian effect of this drug in dopamine (DA) denervated rats before and during levodopa (l-DOPA) treatment. BACKGROUND Current therapeutic options in Parkinson's disease (PD) are primarily DA replacement strategies that usually cause progressive motor fluctuations and l-DOPA-induced dyskinesia (LIDs) as a consequence of SPNs glutamate-induced hyperactivity. As a reversible and use-dependent inhibitor of voltage-gated sodium channels, safinamide reduces the release of glutamate and possibly optimize the effect of l-DOPA therapy in PD. METHODS Electrophysiological effects of safinamide (1-100 μM) were investigated by patch-clamp recordings in striatal slices of naïve, 6-hydroxydopamine (6-OHDA)-lesioned DA-denervated rats and DA-denervated animals chronically treated with l-DOPA. LIDs were assessed in vivo with and without chronic safinamide treatment and measured by scoring the l-DOPA-induced abnormal involuntary movements (AIMs). Motor deficit was evaluated with the stepping test. RESULTS Safinamide reduced the SPNs firing rate and glutamatergic synaptic transmission in all groups, showing a dose-dependent effect with half maximal inhibitory concentration (IC50) values in the therapeutic range (3-5 μM). Chronic co-administration of safinamide plus l-DOPA in DA-denervated animals favored the recovery of corticostriatal long-term synaptic potentiation (LTP) and depotentiation of excitatory synaptic transmission also reducing motor deficits before the onset of LIDs. CONCLUSIONS Safinamide, at a clinically relevant dose, optimizes the effect of l-DOPA therapy in experimental PD reducing SPNs excitability and modulating synaptic transmission. Co-administration of safinamide and l-DOPA ameliorates motor deficits.
Collapse
Affiliation(s)
- Miriam Sciaccaluga
- Neurological Clinic, Department of Medicine, University of Perugia, Santa Maria della Misericordia Hospital, via Gambuli, 1, 06132, Perugia, Italy
| | - Petra Mazzocchetti
- Neurological Clinic, Department of Medicine, University of Perugia, Santa Maria della Misericordia Hospital, via Gambuli, 1, 06132, Perugia, Italy
| | - Guendalina Bastioli
- Neurological Clinic, Department of Medicine, University of Perugia, Santa Maria della Misericordia Hospital, via Gambuli, 1, 06132, Perugia, Italy
| | - Veronica Ghiglieri
- Department of Philosophy, Human, Social and Educational Sciences, University of Perugia, Piazza G. Ermini, 1, 06123, Perugia, Italy; Laboratory of Neurophysiology, Santa Lucia Foundation IRCCS, Via del Fosso di Fiorano, 64, 00143, Rome, Italy
| | - Antonella Cardinale
- Neurological Clinic, Department of Medicine, University of Perugia, Santa Maria della Misericordia Hospital, via Gambuli, 1, 06132, Perugia, Italy; Laboratory of Experimental Neurophysiology, IRCCS San Raffaele Pisana, Via Val Cannuta 247, 00166, Rome, Italy
| | - Paolo Mosci
- Department of Veterinary, University of Perugia, Via San Costanzo, 4, 06126, Perugia, Italy
| | - Carla Caccia
- Open R&D Department, Zambon SpA, Via Lillo del Duca, 10, 20091, Bresso, Milan, Italy
| | - Charlotte Keywood
- Open R&D Department, Zambon SpA, Via Lillo del Duca, 10, 20091, Bresso, Milan, Italy
| | - Elsa Melloni
- Open R&D Department, Zambon SpA, Via Lillo del Duca, 10, 20091, Bresso, Milan, Italy
| | - Gloria Padoani
- Open R&D Department, Zambon SpA, Via Lillo del Duca, 10, 20091, Bresso, Milan, Italy
| | - Silvia Vailati
- Open R&D Department, Zambon SpA, Via Lillo del Duca, 10, 20091, Bresso, Milan, Italy
| | - Barbara Picconi
- Laboratory of Experimental Neurophysiology, IRCCS San Raffaele Pisana, Via Val Cannuta 247, 00166, Rome, Italy; University San Raffaele, Via Val Cannuta, 247, 00166, Rome, Italy
| | - Paolo Calabresi
- Clinica Neurologica, Dipartimento di Neuroscienze, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, Largo Agostino Gemelli, 8, 00168, Roma, Italy
| | - Alessandro Tozzi
- Department of Experimental Medicine, Section of Physiology and Biochemistry, University of Perugia, via Gambuli, 1, 06132, Perugia, Italy.
| |
Collapse
|
17
|
Synaptic GluN2A-Containing NMDA Receptors: From Physiology to Pathological Synaptic Plasticity. Int J Mol Sci 2020; 21:ijms21041538. [PMID: 32102377 PMCID: PMC7073220 DOI: 10.3390/ijms21041538] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/16/2022] Open
Abstract
N-Methyl-d-Aspartate Receptors (NMDARs) are ionotropic glutamate-gated receptors. NMDARs are tetramers composed by several homologous subunits of GluN1-, GluN2-, or GluN3-type, leading to the existence in the central nervous system of a high variety of receptor subtypes with different pharmacological and signaling properties. NMDAR subunit composition is strictly regulated during development and by activity-dependent synaptic plasticity. Given the differences between GluN2 regulatory subunits of NMDAR in several functions, here we will focus on the synaptic pool of NMDARs containing the GluN2A subunit, addressing its role in both physiology and pathological synaptic plasticity as well as the contribution in these events of different types of GluN2A-interacting proteins.
Collapse
|
18
|
Modulation of inhibitory plasticity in basal ganglia output nuclei of patients with Parkinson's disease. Neurobiol Dis 2019; 124:46-56. [DOI: 10.1016/j.nbd.2018.10.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/17/2018] [Accepted: 10/31/2018] [Indexed: 01/07/2023] Open
|
19
|
Eltoprazine prevents levodopa-induced dyskinesias by reducing causal interactions for theta oscillations in the dorsolateral striatum and substantia nigra pars reticulate. Neuropharmacology 2019; 148:1-10. [PMID: 30612008 DOI: 10.1016/j.neuropharm.2018.12.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 12/22/2018] [Accepted: 12/24/2018] [Indexed: 12/21/2022]
Abstract
Oscillatory activities within basal ganglia (BG) circuitry in L-DOPA induced dyskinesia (LID), a condition that occurs in patients with Parkinson disease (PD), are not well understood. The aims of this study were firstly to investigate oscillations in main BG input and output structures-the dorsolateral striatum (dStr) and substantia nigra pars reticulata (SNr), respectively- including the direction of oscillation information flow, and secondly to investigate the effects of 5-HT1A/B receptor agonism with eltoprazine on oscillatory activities and abnormal involuntary movements (AIMs) characteristic. To this end, we conducted local field potential (LFP) electrophysiology in the dStr and SNr of LID rats simultaneous with AIM scoring. The LFP data were submitted to power spectral density, coherence, and partial Granger causality analyses. AIM data were analyzed relative to simultaneous oscillatory activities, with and without eltoprazine. We obtained four major findings. 1) Theta band (5-8 Hz) oscillations were enhanced in the dStr and SNr of LID rats. 2) Theta power correlated with AIM scores in the 180-min period after the last LID-inducing L-DOPA injection, but not with daily summed AIM scores during LID development. 3) Oscillatory information flowed from the dStr to the SNr. 4) Chronic eltoprazine reduced BG theta activity in LID rats and normalized information flow directionality, relative to that in LID rats not given eltoprazine. These results indicate that dStr activity plays a determinative role in the causal interactions of theta oscillations and that serotonergic inhibition may suppress dyskinesia by reducing dStr-SNr theta activity and restoring theta network information flow.
Collapse
|
20
|
Abstract
We review the motor cortical and basal ganglia involvement in two important movement disorders: Parkinson's disease (PD) and dystonia. Single and paired pulse transcranial magnetic stimulation studies showed altered excitability and cortical circuits in PD with decreased silent period, short interval intracortical inhibition, intracortical facilitation, long afferent inhibition, interhemispheric inhibition, and cerebellar inhibition, and increased long interval intracortical inhibition and short interval intracortical facilitation. In dystonia, there is decreased silent period, short interval intracortical inhibition, long afferent inhibition, interhemispheric inhibition, and increased intracortical facilitation. Plasticity induction protocols revealed deficient plasticity in PD and normal and exaggerated plasticity in dystonia. In the basal ganglia, there is increased β (14-30Hz) rhythm in PD and characteristic 5-18Hz band synchronization in dystonia. These motor cortical circuits, cortical plasticity, and oscillation profiles of the basal ganglia are altered with medications and deep brain stimulation treatment. There is considerable variability in these measures related to interindividual variations, different disease characteristics, and methodological considerations. Nevertheless, these pathophysiologic studies have expanded our knowledge of cortical excitability, plasticity, and oscillations in PD and dystonia, improved our understanding of disease pathophysiology, and helped to develop new treatments for these conditions.
Collapse
Affiliation(s)
- Kaviraja Udupa
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| | - Robert Chen
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
21
|
Espay AJ, Morgante F, Merola A, Fasano A, Marsili L, Fox SH, Bezard E, Picconi B, Calabresi P, Lang AE. Levodopa-induced dyskinesia in Parkinson disease: Current and evolving concepts. Ann Neurol 2018; 84:797-811. [DOI: 10.1002/ana.25364] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Alberto J. Espay
- UC Gardner Neuroscience Institute and Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology; University of Cincinnati; Cincinnati OH
| | - Francesca Morgante
- Institute of Molecular and Clinical Sciences; St George's University of London; London United Kingdom
| | - Aristide Merola
- UC Gardner Neuroscience Institute and Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology; University of Cincinnati; Cincinnati OH
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Division of Neurology; University of Toronto; Toronto Ontario Canada
- Krembil Brain Institute; Toronto Ontario Canada
| | - Luca Marsili
- UC Gardner Neuroscience Institute and Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology; University of Cincinnati; Cincinnati OH
| | - Susan H. Fox
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Division of Neurology; University of Toronto; Toronto Ontario Canada
- Krembil Brain Institute; Toronto Ontario Canada
| | - Erwan Bezard
- University of Bordeaux, Institute of Neurodegenerative Diseases; Bordeaux France
- National Center for Scientific Research, Institute of Neurodegenerative Diseases; Bordeaux France
| | - Barbara Picconi
- Experimental Neurophysiology Laboratory; IRCCS San Raffaele Pisana, University San Raffaele; Rome Italy
| | - Paolo Calabresi
- Neurological Clinic; University of Perugia, Santa Maria della Misericordia Hospital; Perugia Italy
| | - Anthony E. Lang
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Division of Neurology; University of Toronto; Toronto Ontario Canada
- Krembil Brain Institute; Toronto Ontario Canada
| |
Collapse
|
22
|
Zhu M, Cortese GP, Waites CL. Parkinson's disease-linked Parkin mutations impair glutamatergic signaling in hippocampal neurons. BMC Biol 2018; 16:100. [PMID: 30200940 PMCID: PMC6130078 DOI: 10.1186/s12915-018-0567-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 08/24/2018] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD)-associated E3 ubiquitin ligase Parkin is enriched at glutamatergic synapses, where it ubiquitinates multiple substrates, suggesting that its mutation/loss-of-function could contribute to the etiology of PD by disrupting excitatory neurotransmission. Here, we evaluate the impact of four common PD-associated Parkin point mutations (T240M, R275W, R334C, G430D) on glutamatergic synaptic function in hippocampal neurons. RESULTS We find that expression of these point mutants in cultured hippocampal neurons from Parkin-deficient and Parkin-null backgrounds alters NMDA and AMPA receptor-mediated currents and cell-surface levels and prevents the induction of long-term depression. Mechanistically, we demonstrate that Parkin regulates NMDA receptor trafficking through its ubiquitination of GluN1, and that all four mutants are impaired in this ubiquitinating activity. Furthermore, Parkin regulates synaptic AMPA receptor trafficking via its binding and retention of the postsynaptic scaffold Homer1, and all mutants are similarly impaired in this capacity. CONCLUSION Our findings demonstrate that pathogenic Parkin mutations disrupt glutamatergic synaptic transmission in hippocampal neurons by impeding NMDA and AMPA receptor trafficking. Such effects may contribute to the pathophysiology of PD in PARK2 patients.
Collapse
Affiliation(s)
- Mei Zhu
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032 USA
| | - Giuseppe P. Cortese
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032 USA
- Department of Psychiatry, Columbia University Medical Center, New York, NY USA
| | - Clarissa L. Waites
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032 USA
- Department of Neuroscience, Columbia University, New York, NY USA
- Waites Lab, 650 W. 168th St. Black Building 1210B, New York, NY 10032 USA
| |
Collapse
|
23
|
Caverzasio S, Amato N, Manconi M, Prosperetti C, Kaelin-Lang A, Hutchison WD, Galati S. Brain plasticity and sleep: Implication for movement disorders. Neurosci Biobehav Rev 2018; 86:21-35. [DOI: 10.1016/j.neubiorev.2017.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 12/31/2022]
|
24
|
Picconi B, De Leonibus E, Calabresi P. Synaptic plasticity and levodopa-induced dyskinesia: electrophysiological and structural abnormalities. J Neural Transm (Vienna) 2018; 125:1263-1271. [PMID: 29492662 DOI: 10.1007/s00702-018-1864-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/19/2018] [Indexed: 12/15/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive degeneration of dopaminergic neurons located in the midbrain. The gold-standard therapy for PD is the restoration of dopamine (DA) levels through the chronic administration of the DA precursor levodopa (L-DOPA). Although levodopa therapy is the main therapeutic approach for PD, its use is limited by the development of very disabling dyskinetic movements, mainly due to the fluctuation of DA cerebral content. Experimental animal models of PD identified in DA D1/ERK-signaling pathway aberrant activation, occurring in striatal projection neurons, coupled with structural spines abnormalities, the molecular and neuronal basis of L-DOPA-induced dyskinesia (LIDs) occurrence. Different electrophysiological approaches allowed the identification of the alteration of homeostatic structural and synaptic changes, the neuronal bases of LIDs either in vivo in parkinsonian patients or in vitro in experimental animals. Here, we report the most recent studies showing electrophysiological and morphological evidence of aberrant synaptic plasticity in parkinsonian patients during LIDs in different basal ganglia nuclei and also in cortical transmission, accounting for the complexity of the synaptic changes during dyskinesias. All together, these studies suggest that LIDs are associated with a loss of homeostatic synaptic mechanisms.
Collapse
Affiliation(s)
- Barbara Picconi
- Laboratory of Neurophysiology, IRCCS Fondazione Santa Lucia c/o CERC, via del Fosso di Fiorano 64, 00143, Rome, Italy.
| | - Elvira De Leonibus
- Institute of Genetics and Biophysics (IGB), National Research Council, Naples, Italy
- Telethon Institute of Genetics and Medicine, Telethon Foundation, Pozzuoli, Italy
| | - Paolo Calabresi
- Laboratory of Neurophysiology, IRCCS Fondazione Santa Lucia c/o CERC, via del Fosso di Fiorano 64, 00143, Rome, Italy
- Clinica Neurologica, Università degli studi di Perugia, Ospedale Santa Maria della Misericordia, S. Andrea delle Fratte, 06156, Perugia, Italy
| |
Collapse
|
25
|
Picconi B, Hernández LF, Obeso JA, Calabresi P. Motor complications in Parkinson's disease: Striatal molecular and electrophysiological mechanisms of dyskinesias. Mov Disord 2017; 33:867-876. [PMID: 29219207 DOI: 10.1002/mds.27261] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/30/2017] [Accepted: 11/02/2017] [Indexed: 12/11/2022] Open
Abstract
Long-term levodopa (l-dopa) treatment in patients with Parkinson´s disease (PD) is associated with the development of motor complications (ie, motor fluctuations and dyskinesias). The principal etiopathogenic factors are the degree of nigro-striatal dopaminergic loss and the duration and dose of l-dopa treatment. In this review article we concentrate on analysis of the mechanisms underlying l-dopa-induced dyskinesias, a phenomenon that causes disability in a proportion of patients and that has not benefited from major therapeutic advances. Thus, we discuss the main neurotransmitters, receptors, and pathways that have been thought to play a role in l-dopa-induced dyskinesias from the perspective of basic neuroscience studies. Some important advances in deciphering the molecular pathways involved in these abnormal movements have occurred in recent years to reveal potential targets that could be used for therapeutic purposes. However, it has not been an easy road because there have been a plethora of components involved in the generation of these undesired movements, even bypassing the traditional and well-accepted dopamine receptor activation, as recently revealed by optogenetics. Here, we attempt to unify the available data with the hope of guiding and fostering future research in the field of striatal activation and abnormal movement generation. © 2017 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
| | - Ledia F Hernández
- HM CINAC, Hospital Universitario HM Puerta del Sur, Mostoles, Madrid, Spain.,Universidad CEU San Pablo, Madrid, Spain.,Center for Networked Biomedical Research on Neurodegenerative Diseases, Madrid, Spain
| | - Jose A Obeso
- HM CINAC, Hospital Universitario HM Puerta del Sur, Mostoles, Madrid, Spain.,Universidad CEU San Pablo, Madrid, Spain.,Center for Networked Biomedical Research on Neurodegenerative Diseases, Madrid, Spain
| | - Paolo Calabresi
- Fondazione Santa Lucia, IRCCS, Rome, Italy.,Clinica Neurologica, Università degli studi di Perugia, Ospedale Santa Maria della Misericordia, Perugia, Italy
| |
Collapse
|
26
|
Reversal of long term potentiation-like plasticity in primary motor cortex in patients with progressive supranuclear palsy. Clin Neurophysiol 2017; 128:1547-1552. [DOI: 10.1016/j.clinph.2017.06.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 06/06/2017] [Accepted: 06/09/2017] [Indexed: 11/20/2022]
|
27
|
Field evoked potentials in the globus pallidus of non-human primates. Neurosci Res 2017; 120:18-27. [PMID: 28159649 DOI: 10.1016/j.neures.2017.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 01/12/2017] [Accepted: 01/31/2017] [Indexed: 11/20/2022]
Abstract
Stimulation-induced field evoked potentials (fEPs) have been described in the basal ganglia output nuclei of patients with Parkinson's disease and dystonia. The aim of this study was to ascertain whether fEPs were inducible in the external (GPe) and internal (GPi) segments of the globus pallidus in normal non-human primates (NHPs). Microelectrode recording and stimulation was performed in the GPe and GPi of 2 healthy NHPs. Stimulus response curves of the fEP response to changing pulse width and amplitude examined strength-duration relationships and allowed for calculation of fEP chronaxie in the GPe and GPi. Traditional localization techniques were also used, including comparison of neuronal firing rates, optic tract activation, and internal capsule activation. Notable differences were seen in the fEPs found in GPe compared to the fEPs found in GPi. The GPe fEP had a smaller chronaxie time and larger positive deflection amplitude compared to GPi. In addition, an earlier negative deflection was identified in both nuclei and a late negative deflection was observed in the GPe in contrast to reported fEPs in patients with movement disorders. fEPs proved valuable as an ancillary method in localizing the GPe and GPi in NHPs and may be useful in the operating room during human GPi deep brain stimulation or pallidotomy procedures.
Collapse
|
28
|
Stefani A, Trendafilov V, Liguori C, Fedele E, Galati S. Subthalamic nucleus deep brain stimulation on motor-symptoms of Parkinson's disease: Focus on neurochemistry. Prog Neurobiol 2017; 151:157-174. [PMID: 28159574 DOI: 10.1016/j.pneurobio.2017.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 01/20/2017] [Accepted: 01/22/2017] [Indexed: 12/19/2022]
Abstract
Deep brain stimulation (DBS) has become a standard therapy for Parkinson's disease (PD) and it is also currently under investigation for other neurological and psychiatric disorders. Although many scientific, clinical and ethical issues are still unresolved, DBS delivered into the subthalamic nucleus (STN) has improved the quality of life of several thousands of patients. The mechanisms underlying STN-DBS have been debated extensively in several reviews; less investigated are the biochemical consequences, which are still under scrutiny. Crucial and only partially understood, for instance, are the complex interplays occurring between STN-DBS and levodopa (LD)-centred therapy in the post-surgery follow-up. The main goal of this review is to address the question of whether an improved motor control, based on STN-DBS therapy, is also achieved through the additional modulation of other neurotransmitters, such as noradrenaline (NA) and serotonin (5-HT). A critical issue is to understand not only acute DBS-mediated effects, but also chronic changes, such as those involving cyclic nucleotides, capable of modulating circuit plasticity. The present article will discuss the neurochemical changes promoted by STN-DBS and will document the main results obtained in microdialysis studies. Furthermore, we will also examine the preliminary achievements of voltammetry applied to humans, and discuss new hypothetical investigational routes, taking into account novel players such as glia, or subcortical regions such as the pedunculopontine (PPN) area. Our further understanding of specific changes in brain chemistry promoted by STN-DBS would further disseminate its utilisation, at any stage of disease, avoiding an irreversible lesioning approach.
Collapse
Affiliation(s)
- A Stefani
- Department of System Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - V Trendafilov
- Laboratory for Biomedical Neurosciences (LBN), Neurocenter of Southern Switzerland (NSI), Lugano, Switzerland
| | - C Liguori
- Department of System Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - E Fedele
- Department of Pharmacy, Pharmacology and Toxicology Unit and Center of Excellence for Biomedical Research, University of Genoa, 16148 Genoa, Italy
| | - S Galati
- Laboratory for Biomedical Neurosciences (LBN), Neurocenter of Southern Switzerland (NSI), Lugano, Switzerland.
| |
Collapse
|
29
|
Wang Q, Zhang W. Maladaptive Synaptic Plasticity in L-DOPA-Induced Dyskinesia. Front Neural Circuits 2016; 10:105. [PMID: 28066191 PMCID: PMC5168436 DOI: 10.3389/fncir.2016.00105] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 12/05/2016] [Indexed: 01/28/2023] Open
Abstract
The emergence of L-DOPA-induced dyskinesia (LID) in patients with Parkinson disease (PD) could be due to maladaptive plasticity of corticostriatal synapses in response to L-DOPA treatment. A series of recent studies has revealed that LID is associated with marked morphological plasticity of striatal dendritic spines, particularly cell type-specific structural plasticity of medium spiny neurons (MSNs) in the striatum. In addition, evidence demonstrating the occurrence of plastic adaptations, including aberrant morphological and functional features, in multiple components of cortico-basal ganglionic circuitry, such as primary motor cortex (M1) and basal ganglia (BG) output nuclei. These adaptations have been implicated in the pathophysiology of LID. Here, we briefly review recent studies that have addressed maladaptive plastic changes within the cortico-BG loop in dyskinetic animal models of PD and patients with PD.
Collapse
Affiliation(s)
- Qiang Wang
- The National Key Clinic Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Engineering Technology Research Center of Education Ministry of China, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University Guangzhou, China
| | - Wangming Zhang
- The National Key Clinic Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Engineering Technology Research Center of Education Ministry of China, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University Guangzhou, China
| |
Collapse
|
30
|
Lago-Rodriguez A, Ponzo V, Jenkinson N, Benitez-Rivero S, Del-Olmo MF, Hu M, Koch G, Cheeran B. Paradoxical facilitation after depotentiation protocol can precede dyskinesia onset in early Parkinson's disease. Exp Brain Res 2016; 234:3659-3667. [PMID: 27566172 DOI: 10.1007/s00221-016-4759-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 08/17/2016] [Indexed: 12/30/2022]
Abstract
Loss of dopamine, a key modulator of synaptic signalling, and subsequent pulsatile non-physiological levodopa replacement is believed to underlie altered neuroplasticity in Parkinson's disease (PD). Animal models suggest that maladaptive plasticity (e.g. deficient depotentiation at corticostriatal synapses) is key in the development of levodopa-induced dyskinesia (LID), a common complication following levodopa replacement in PD. Human studies using transcranial magnetic stimulation protocols have shown similar depotentiation deficit in patients with LID. We hypothesized that subtle depotentiation deficits should precede LID if these deficits are mechanistically linked to LID onset. Moreover, patients on pulsatile levodopa-based therapy may show these changes earlier than those treated with levodopa-sparing strategies. We recruited 22 early non-dyskinetic PD patients (<5 years since diagnosis) and 12 age-matched healthy controls. We grouped patients into those on Levodopa-Based (n = 11) and Levodopa-Sparing therapies (n = 11). Patients were selected to obtain groups matched for age and disease severity. We used a theta-burst stimulation protocol to investigate potentiation and depotentiation in a single session. We report significant depotentiation deficits in the Levodopa-Based group, compared to both Levodopa-Sparing and Healthy Control groups. Potentiation and Depotentiation responses were similar between Levodopa-Sparing and Healthy Control groups. Although differences persist after accounting for potential confounds (e.g. levodopa-equivalent dose), these results may yet be caused by differences in disease severity and cumulative levodopa-equivalent dose as discussed in the text. In conclusion, we show for the first time that paradoxical facilitation in response to depotentiation protocols can occur in PD even prior to LID onset.
Collapse
Affiliation(s)
- Angel Lago-Rodriguez
- Nuffield Department of Clinical Neurosciences, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Oxford, UK
- School of Psychology, University of Birmingham, Birmingham, UK
| | - Viviana Ponzo
- Laboratorio di Neurologia Clinica e Comportamentale, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Ned Jenkinson
- Nuffield Department of Clinical Neurosciences, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Oxford, UK
| | - Sonia Benitez-Rivero
- Nuffield Department of Clinical Neurosciences, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Oxford, UK
| | - Miguel Fernandez Del-Olmo
- Department of Physical Education, Faculty of Sciences of Sport and Physical Education, University of A Coruña, A Coruña, Spain
| | - Michele Hu
- Nuffield Department of Clinical Neurosciences, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Oxford, UK
| | - Giacomo Koch
- Laboratorio di Neurologia Clinica e Comportamentale, Fondazione Santa Lucia IRCCS, Rome, Italy
- Stroke Unit, Dipartimento di Neuroscienze, Università di Roma Tor Vergata, Rome, Italy
| | - Binith Cheeran
- Nuffield Department of Clinical Neurosciences, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Oxford, UK.
| |
Collapse
|
31
|
Calabresi P, Pisani A, Rothwell J, Ghiglieri V, Obeso JA, Picconi B. Hyperkinetic disorders and loss of synaptic downscaling. Nat Neurosci 2016; 19:868-75. [DOI: 10.1038/nn.4306] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 04/18/2016] [Indexed: 12/14/2022]
|
32
|
Preliminary evidence for human globus pallidus pars interna neurons signaling reward and sensory stimuli. Neuroscience 2016; 328:30-9. [PMID: 27109924 PMCID: PMC4884665 DOI: 10.1016/j.neuroscience.2016.04.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 04/07/2016] [Accepted: 04/14/2016] [Indexed: 12/04/2022]
Abstract
Non-motor responses of human GPi neurons are described. Cells were identified that showed increased firing to reward-stimuli. Visual-sensory responses unrelated to reward also observed.
The globus pallidus pars interna (GPi) is a component of the basal ganglia, a network of subcortical nuclei that process motor, associative, and limbic information. While non-human primate studies have suggested a role for the GPi in non-motor functions, there have been no single-unit studies of non-motor electrophysiological behavior of human GPi neurons. We therefore sought to extend these findings by collecting single-unit recordings from awake patients during functional stereotactic neurosurgery targeting the GPi for deep brain stimulation. To assess cellular responses to non-motor information, patients performed a reward task where virtual money could be won, lost, or neither, depending on their performance while cellular activity was monitored. Changes in the firing rates of isolated GPi neurons after the presentation of reward-related stimuli were compared between different reward contingencies (win, loss, null). We observed neurons that modulated their firing rate significantly to the presentation of reward-related stimuli. We furthermore found neurons that responded to visual-stimuli more broadly. This is the first single-unit evidence of human GPi neurons carrying non-motor information. These results are broadly consistent with previous findings in the animal literature and suggest non-motor information may be represented in the single-unit activity of human GPi neurons.
Collapse
|
33
|
Lu GL, Lee CH, Chiou LC. Orexin A induces bidirectional modulation of synaptic plasticity: Inhibiting long-term potentiation and preventing depotentiation. Neuropharmacology 2016; 107:168-180. [PMID: 26965217 DOI: 10.1016/j.neuropharm.2016.03.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/19/2016] [Accepted: 03/01/2016] [Indexed: 01/30/2023]
Abstract
The orexin system consists of two peptides, orexin A and B and two receptors, OX1R and OX2R. It is implicated in learning and memory regulation while controversy remains on its role in modulating hippocampal synaptic plasticity in vivo and in vitro. Here, we investigated effects of orexin A on two forms of synaptic plasticity, long-term potentiation (LTP) and depotentiation of field excitatory postsynaptic potentials (fEPSPs), at the Schaffer Collateral-CA1 synapse of mouse hippocampal slices. Orexin A (≧30 nM) attenuated LTP induced by theta burst stimulation (TBS) in a manner antagonized by an OX1R (SB-334867), but not OX2R (EMPA), antagonist. Conversely, at 1 pM, co-application of orexin A prevented the induction of depotentiation induced by low frequency stimulation (LFS), i.e. restoring LTP. This re-potentiation effect of sub-nanomolar orexin A occurred at LFS of 1 Hz, but not 2 Hz, and with LTP induced by either TBS or tetanic stimulation. It was significantly antagonized by SB-334867, EMPA and TCS-1102, selective OX1R, OX2R and dual OXR antagonists, respectively, and prevented by D609, SQ22536 and H89, inhibitors of phospholipase C (PLC), adenylyl cyclase (AC) and protein kinase A (PKA), respectively. LFS-induced depotentiation was antagonized by blockers of NMDA, A1-adenosine and type 1/5 metabotropic glutamate (mGlu1/5) receptors, respectively. However, orexin A (1 pM) did not affect chemical-induced depotentiation by agonists of these receptors. These results suggest that orexin A bidirectionally modulates hippocampal CA1 synaptic plasticity, inhibiting LTP via OX1Rs at moderate concentrations while inducing re-potentiation via OX1Rs and OX2Rs, possibly through PLC and AC-PKA signaling at sub-nanomolar concentrations.
Collapse
Affiliation(s)
- Guan-Ling Lu
- Graduate Institute and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Hsu Lee
- Graduate Institute and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Lih-Chu Chiou
- Graduate Institute and College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan; Reserach Center for Chinese Medicine & Acupuncture, China Medical University, Taichung, Taiwan.
| |
Collapse
|
34
|
Calabresi P, Ghiglieri V, Mazzocchetti P, Corbelli I, Picconi B. Levodopa-induced plasticity: a double-edged sword in Parkinson's disease? Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0184. [PMID: 26009763 DOI: 10.1098/rstb.2014.0184] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The long-term replacement therapy with the dopamine (DA) precursor 3,4-dihydroxy-l-phenylalanine (L-DOPA) is a milestone in the treatment of Parkinson's disease (PD). Although this drug precursor can be metabolized into the active neurotransmitter DA throughout the brain, its therapeutic benefit is due to restoring extracellular DA levels within the dorsal striatum, which lacks endogenous DA as a consequence of the neurodegenerative process induced by the disease. In the early phases of PD, L-DOPA treatment is able to restore both long-term depression (LTD) and long-term potentiation (LTP), two major forms of corticostriatal synaptic plasticity that are altered by dopaminergic denervation. However, unlike physiological DA transmission, this therapeutic approach in the advanced phase of the disease leads to abnormal peaks of DA, non-synaptically released, which are supposed to trigger behavioural sensitization, namely L-DOPA-induced dyskinesia. This condition is characterized by a loss of synaptic depotentiation, an inability to reverse previously induced LTP. In the advanced stages of PD, L-DOPA can also induce non-motor fluctuations with cognitive dysfunction and neuropsychiatric symptoms such as compulsive behaviours and impulse control disorders. Although the mechanisms underlying the role of L-DOPA in both motor and behavioural symptoms are still incompletely understood, recent data from electrophysiological and imaging studies have increased our understanding of the function of the brain areas involved and of the mechanisms implicated in both therapeutic and adverse actions of L-DOPA in PD patients.
Collapse
Affiliation(s)
- Paolo Calabresi
- Clinica Neurologica, Dipartimento di Medicina, Università degli Studi di Perugia, Ospedale Santa Maria della Misericordia, S. Andrea delle Fratte, Via Gambuli, Perugia 06156, Italy Fondazione Santa Lucia, IRCCS, via del Fosso di Fiorano 64, Rome 00143, Italy
| | - Veronica Ghiglieri
- Dipartimento di Filosofia, Scienze Sociali, Umane e della Formazione, Università degli Studi di Perugia, Piazza Ermini 1, Perugia 06123, Italy Fondazione Santa Lucia, IRCCS, via del Fosso di Fiorano 64, Rome 00143, Italy
| | - Petra Mazzocchetti
- Clinica Neurologica, Dipartimento di Medicina, Università degli Studi di Perugia, Ospedale Santa Maria della Misericordia, S. Andrea delle Fratte, Via Gambuli, Perugia 06156, Italy Fondazione Santa Lucia, IRCCS, via del Fosso di Fiorano 64, Rome 00143, Italy
| | - Ilenia Corbelli
- Clinica Neurologica, Dipartimento di Medicina, Università degli Studi di Perugia, Ospedale Santa Maria della Misericordia, S. Andrea delle Fratte, Via Gambuli, Perugia 06156, Italy
| | - Barbara Picconi
- Fondazione Santa Lucia, IRCCS, via del Fosso di Fiorano 64, Rome 00143, Italy
| |
Collapse
|
35
|
Ghiglieri V, Mineo D, Vannelli A, Cacace F, Mancini M, Pendolino V, Napolitano F, di Maio A, Mellone M, Stanic J, Tronci E, Fidalgo C, Stancampiano R, Carta M, Calabresi P, Gardoni F, Usiello A, Picconi B. Modulation of serotonergic transmission by eltoprazine in L-DOPA-induced dyskinesia: Behavioral, molecular, and synaptic mechanisms. Neurobiol Dis 2016; 86:140-53. [DOI: 10.1016/j.nbd.2015.11.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/24/2015] [Accepted: 11/26/2015] [Indexed: 12/13/2022] Open
|
36
|
Bastide MF, Meissner WG, Picconi B, Fasano S, Fernagut PO, Feyder M, Francardo V, Alcacer C, Ding Y, Brambilla R, Fisone G, Jon Stoessl A, Bourdenx M, Engeln M, Navailles S, De Deurwaerdère P, Ko WKD, Simola N, Morelli M, Groc L, Rodriguez MC, Gurevich EV, Quik M, Morari M, Mellone M, Gardoni F, Tronci E, Guehl D, Tison F, Crossman AR, Kang UJ, Steece-Collier K, Fox S, Carta M, Angela Cenci M, Bézard E. Pathophysiology of L-dopa-induced motor and non-motor complications in Parkinson's disease. Prog Neurobiol 2015. [PMID: 26209473 DOI: 10.1016/j.pneurobio.2015.07.002] [Citation(s) in RCA: 359] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Involuntary movements, or dyskinesia, represent a debilitating complication of levodopa (L-dopa) therapy for Parkinson's disease (PD). L-dopa-induced dyskinesia (LID) are ultimately experienced by the vast majority of patients. In addition, psychiatric conditions often manifested as compulsive behaviours, are emerging as a serious problem in the management of L-dopa therapy. The present review attempts to provide an overview of our current understanding of dyskinesia and other L-dopa-induced dysfunctions, a field that dramatically evolved in the past twenty years. In view of the extensive literature on LID, there appeared a critical need to re-frame the concepts, to highlight the most suitable models, to review the central nervous system (CNS) circuitry that may be involved, and to propose a pathophysiological framework was timely and necessary. An updated review to clarify our understanding of LID and other L-dopa-related side effects was therefore timely and necessary. This review should help in the development of novel therapeutic strategies aimed at preventing the generation of dyskinetic symptoms.
Collapse
Affiliation(s)
- Matthieu F Bastide
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Wassilios G Meissner
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; Department of Neurology, University Hospital Bordeaux, France
| | - Barbara Picconi
- Laboratory of Neurophysiology, Fondazione Santa Lucia, IRCCS, Rome, Italy
| | - Stefania Fasano
- Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Pierre-Olivier Fernagut
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Michael Feyder
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Veronica Francardo
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Cristina Alcacer
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Yunmin Ding
- Department of Neurology, Columbia University, New York, USA
| | - Riccardo Brambilla
- Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Gilberto Fisone
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - A Jon Stoessl
- Pacific Parkinson's Research Centre and National Parkinson Foundation Centre of Excellence, University of British Columbia, Vancouver, Canada
| | - Mathieu Bourdenx
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Michel Engeln
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Sylvia Navailles
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Philippe De Deurwaerdère
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Wai Kin D Ko
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Nicola Simola
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, Cagliari University, 09124 Cagliari, Italy
| | - Micaela Morelli
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, Cagliari University, 09124 Cagliari, Italy
| | - Laurent Groc
- Univ. de Bordeaux, Institut Interdisciplinaire de neurosciences, UMR 5297, 33000 Bordeaux, France; CNRS, Institut Interdisciplinaire de neurosciences, UMR 5297, 33000 Bordeaux, France
| | - Maria-Cruz Rodriguez
- Department of Neurology, Hospital Universitario Donostia and Neuroscience Unit, Bio Donostia Research Institute, San Sebastian, Spain
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Maryka Quik
- Center for Health Sciences, SRI International, CA 94025, USA
| | - Michele Morari
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Manuela Mellone
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milano, Italy
| | - Fabrizio Gardoni
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milano, Italy
| | - Elisabetta Tronci
- Department of Biomedical Sciences, Physiology Section, Cagliari University, Cagliari, Italy
| | - Dominique Guehl
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - François Tison
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; Department of Neurology, University Hospital Bordeaux, France
| | | | - Un Jung Kang
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Kathy Steece-Collier
- Michigan State University, College of Human Medicine, Department of Translational Science and Molecular Medicine & The Udall Center of Excellence in Parkinson's Disease Research, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| | - Susan Fox
- Morton & Gloria Shulman Movement Disorders Center, Toronto Western Hospital, Toronto, Ontario M4T 2S8, Canada
| | - Manolo Carta
- Department of Biomedical Sciences, Physiology Section, Cagliari University, Cagliari, Italy
| | - M Angela Cenci
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Erwan Bézard
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; Motac Neuroscience Ltd, Manchester, UK.
| |
Collapse
|
37
|
Dyskinesias and motor symptoms onset in Parkinson disease. Parkinsonism Relat Disord 2014; 20:1427-9. [DOI: 10.1016/j.parkreldis.2014.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 09/08/2014] [Accepted: 10/02/2014] [Indexed: 11/19/2022]
|