1
|
van Rheede JJ, Alagapan S, Denison TJ, Riva-Posse P, Rozell CJ, Mayberg HS, Waters AC, Sharott A. Cortical signatures of sleep are altered following effective deep brain stimulation for depression. Transl Psychiatry 2024; 14:103. [PMID: 38378677 PMCID: PMC10879134 DOI: 10.1038/s41398-024-02816-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/17/2024] [Accepted: 02/01/2024] [Indexed: 02/22/2024] Open
Abstract
Deep brain stimulation (DBS) of the subcallosal cingulate cortex (SCC) is an experimental therapy for treatment-resistant depression (TRD). Chronic SCC DBS leads to long-term changes in the electrophysiological dynamics measured from local field potential (LFP) during wakefulness, but it is unclear how it impacts sleep-related brain activity. This is a crucial gap in knowledge, given the link between depression and sleep disturbances, and an emerging interest in the interaction between DBS, sleep, and circadian rhythms. We therefore sought to characterize changes in electrophysiological markers of sleep associated with DBS treatment for depression. We analyzed key electrophysiological signatures of sleep-slow-wave activity (SWA, 0.5-4.5 Hz) and sleep spindles-in LFPs recorded from the SCC of 9 patients who responded to DBS for TRD. This allowed us to compare the electrophysiological changes before and after 24 weeks of therapeutically effective SCC DBS. SWA power was highly correlated between hemispheres, consistent with a global sleep state. Furthermore, SWA occurred earlier in the night after chronic DBS and had a more prominent peak. While we found no evidence for changes to slow-wave power or stability, we found an increase in the density of sleep spindles. Our results represent a first-of-its-kind report on long-term electrophysiological markers of sleep recorded from the SCC in patients with TRD, and provides evidence of earlier NREM sleep and increased sleep spindle activity following clinically effective DBS treatment. Future work is needed to establish the causal relationship between long-term DBS and the neural mechanisms underlying sleep.
Collapse
Affiliation(s)
- Joram J van Rheede
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| | - Sankaraleengam Alagapan
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Timothy J Denison
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Institute for Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Patricio Riva-Posse
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Christopher J Rozell
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Helen S Mayberg
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Allison C Waters
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrew Sharott
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| |
Collapse
|
2
|
Differential Modulation of Dorsal Raphe Serotonergic Activity in Rat Brain by the Infralimbic and Prelimbic Cortices. Int J Mol Sci 2023; 24:ijms24054891. [PMID: 36902322 PMCID: PMC10003771 DOI: 10.3390/ijms24054891] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
The reciprocal connectivity between the medial prefrontal cortex (mPFC) and the dorsal raphe nucleus (DR) is involved in mood control and resilience to stress. The infralimbic subdivision (IL) of the mPFC is the rodent equivalent of the ventral anterior cingulate cortex, which is intimately related to the pathophysiology/treatment of major depressive disorder (MDD). Boosting excitatory neurotransmission in the IL-but not in the prelimbic cortex, PrL-evokes depressive-like or antidepressant-like behaviors in rodents, which are associated with changes in serotonergic (5-HT) neurotransmission. We therefore examined the control of 5-HT activity by both of the mPFC subdivisions in anesthetized rats. The electrical stimulation of IL and PrL at 0.9 Hz comparably inhibited 5-HT neurons (53% vs. 48%, respectively). However, stimulation at higher frequencies (10-20 Hz) revealed a greater proportion of 5-HT neurons sensitive to IL than to PrL stimulation (86% vs. 59%, at 20 Hz, respectively), together with a differential involvement of GABAA (but not 5-HT1A) receptors. Likewise, electrical and optogenetic stimulation of IL and PrL enhanced 5-HT release in DR in a frequency-dependent manner, with greater elevations after IL stimulation at 20 Hz. Hence, IL and PrL differentially control serotonergic activity, with an apparent superior role of IL, an observation that may help to clarify the brain circuits involved in MDD.
Collapse
|
3
|
Muroi Y, Ishii T. Glutamatergic neurons from the medial prefrontal cortex to the dorsal raphe nucleus regulate maternal aggression in lactating mice. Neurosci Res 2022; 183:50-60. [PMID: 35817229 DOI: 10.1016/j.neures.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/15/2022] [Accepted: 07/05/2022] [Indexed: 11/29/2022]
Abstract
Glutamatergic signals in the dorsal raphe nucleus (DRN) regulate maternal aggression and care in mice. We examined whether glutamatergic input from the medial prefrontal cortex (mPFC) to the DRN might regulate maternal aggression and care in mice. In the maternal aggression test, each dam was exposed to an identical intruder male twice for 5 min, 60 min apart. During the latter trial (opt trial), the terminals of glutamatergic neurons from the mPFC to the DRN were manipulated using optogenetic techniques. Compared to the former trial (pre-opt trial), the inhibition of glutamatergic input in the opt trial decreased bite frequency and prevented the shortening of biting latency. In contrast, the activation of glutamatergic input at 5 Hz increased the biting frequency. Meanwhile, the activation of glutamatergic input at 1, 10, and 20 Hz prevented the shortening of biting latency without affecting biting frequency. In the maternal care test, activation of glutamatergic input at 5 Hz did not affect maternal care. Our results suggest that glutamatergic neurons from the mPFC to the DRN differently regulate maternal aggression, depending on temporal patterns of their activation, and that the glutamatergic signals that enhance maternal aggression are not involved in the regulation of maternal care.
Collapse
Affiliation(s)
- Yoshikage Muroi
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan.
| | - Toshiaki Ishii
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan
| |
Collapse
|
4
|
Lin S, Du Y, Xia Y, Xie Y, Xiao L, Wang G. Advances in optogenetic studies of depressive-like behaviors and underlying neural circuit mechanisms. Front Psychiatry 2022; 13:950910. [PMID: 36159933 PMCID: PMC9492959 DOI: 10.3389/fpsyt.2022.950910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUNDS The neural circuit mechanisms underlying depression remain unclear. Recently optogenetics has gradually gained recognition as a novel technique to regulate the activity of neurons with light stimulation. Scientists are now transferring their focus to the function of brain regions and neural circuits in the pathogenic progress of depression. Deciphering the circuitry mechanism of depressive-like behaviors may help us better understand the symptomatology of depression. However, few studies have summarized current progress on optogenetic researches into the neural circuit mechanisms of depressive-like behaviors. AIMS This review aimed to introduce fundamental characteristics and methodologies of optogenetics, as well as how this technique achieves specific neuronal control with spatial and temporal accuracy. We mainly summarized recent progress in neural circuit discoveries in depressive-like behaviors using optogenetics and exhibited the potential of optogenetics as a tool to investigate the mechanism and possible optimization underlying antidepressant treatment such as ketamine and deep brain stimulation. METHODS A systematic review of the literature published in English mainly from 2010 to the present in databases was performed. The selected literature is then categorized and summarized according to their neural circuits and depressive-like behaviors. CONCLUSIONS Many important discoveries have been made utilizing optogenetics. These findings support optogenetics as a powerful and potential tool for studying depression. And our comprehension to the etiology of depression and other psychiatric disorders will also be more thorough with this rapidly developing technique in the near future.
Collapse
Affiliation(s)
- Shanshan Lin
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yiwei Du
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yujie Xia
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yumeng Xie
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ling Xiao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Zhang Z, Kouzani AZ. Resource-constrained FPGA/DNN co-design. Neural Comput Appl 2021; 33:14741-14751. [PMID: 34025038 PMCID: PMC8122185 DOI: 10.1007/s00521-021-06113-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 05/05/2021] [Indexed: 11/26/2022]
Abstract
Deep neural networks (DNNs) have demonstrated super performance in most learning tasks. However, a DNN typically contains a large number of parameters and operations, requiring a high-end processing platform for high-speed execution. To address this challenge, hardware-and-software co-design strategies, which involve joint DNN optimization and hardware implementation, can be applied. These strategies reduce the parameters and operations of the DNN, and fit it into a low-resource processing platform. In this paper, a DNN model is used for the analysis of the data captured using an electrochemical method to determine the concentration of a neurotransmitter and the recoding electrode. Next, a DNN miniaturization algorithm is introduced, involving combined pruning and compression, to reduce the DNN resource utilization. Here, the DNN is transformed to have sparse parameters by pruning a percentage of its weights. The Lempel-Ziv-Welch algorithm is then applied to compress the sparse DNN. Next, a DNN overlay is developed, combining the decompression of the DNN parameters and DNN inference, to allow the execution of the DNN on a FPGA on the PYNQ-Z2 board. This approach helps avoid the need for inclusion of a complex quantization algorithm. It compresses the DNN by a factor of 6.18, leading to about 50% reduction in the resource utilization on the FPGA.
Collapse
Affiliation(s)
- Zhichao Zhang
- School of Engineering, Deakin University, Geelong, VIC 3216 Australia
| | - Abbas Z. Kouzani
- School of Engineering, Deakin University, Geelong, VIC 3216 Australia
| |
Collapse
|
6
|
Ballester P, Richdale AL, Baker EK, Peiró AM. Sleep in autism: A biomolecular approach to aetiology and treatment. Sleep Med Rev 2020; 54:101357. [PMID: 32759030 DOI: 10.1016/j.smrv.2020.101357] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 01/24/2023]
Abstract
People with autism spectrum disorder (ASD) commonly experience other comorbidities. Studies indicate that between 50% and 83% of individuals with ASD have sleep problems or disorders. The most commonly reported sleep problems are: (a) insomnia symptoms including the inability to get to sleep or stay asleep; and (b) circadian rhythm sleep-wake disorders, defined as a misalignment between the timing of endogenous circadian rhythms and the external environment. The circadian system provides timing information for the sleep-wake cycle that is regulated by the interaction of an endogenous processes (circadian - Process C, and homeostatic - Process S) and synchronizing agents (neurohormones and neurotransmitters), which produce somnogenic activity. A clinical priority in ASD is understanding the cause of these sleep problems in order to improve treatment outcomes. This review approaches sleep in autism from several perspectives: Sleep-wake mechanisms and problems, and brain areas and molecules controlling sleep (e.g., GABA and melatonin) and wake maintenance (e.g., serotonin, acetylcholine and glutamate). Specifically, this review examines how altered sleep structure could be related to neurobiological alterations or genetic mutations and the implications this may have for potential pharmacological treatments in individuals with ASD.
Collapse
Affiliation(s)
- P Ballester
- Neuropharmacology on Pain and Functional Diversity (NED) Research Group, Alicante Institute of Sanitary and Biomedical Research (ISABIAL), Alicante, Spain; Department of Clinical Pharmacology, Organic Chemistry and Pediatrics, Miguel Hernández University of Elche, Elche, Spain.
| | - A L Richdale
- Olga Tennison Autism Research Centre, School of Psychology & Public Health, La Trobe University, Melbourne, Australia
| | - E K Baker
- Diagnosis and Development, Murdoch Children's Research Institute, Parkville, Australia; Department of Paediatrics, University of Melbourne, Parkville, Australia; School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - A M Peiró
- Neuropharmacology on Pain and Functional Diversity (NED) Research Group, Alicante Institute of Sanitary and Biomedical Research (ISABIAL), Alicante, Spain; Department of Clinical Pharmacology, Organic Chemistry and Pediatrics, Miguel Hernández University of Elche, Elche, Spain
| |
Collapse
|
7
|
Cheng Z, Cui R, Ge T, Yang W, Li B. Optogenetics: What it has uncovered in potential pathways of depression. Pharmacol Res 2020; 152:104596. [DOI: 10.1016/j.phrs.2019.104596] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/29/2019] [Accepted: 12/11/2019] [Indexed: 01/07/2023]
|
8
|
Abdalla A, West A, Jin Y, Saylor RA, Qiang B, Peña E, Linden DJ, Nijhout HF, Reed MC, Best J, Hashemi P. Fast serotonin voltammetry as a versatile tool for mapping dynamic tissue architecture: I. Responses at carbon fibers describe local tissue physiology. J Neurochem 2019; 153:33-50. [PMID: 31419307 DOI: 10.1111/jnc.14854] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/27/2019] [Accepted: 07/12/2019] [Indexed: 12/21/2022]
Abstract
It is important to monitor serotonin neurochemistry in the context of brain disorders. Specifically, a better understanding of biophysical alterations and associated biochemical functionality within subregions of the brain will enable better of understanding of diseases such as depression. Fast voltammetric tools at carbon fiber microelectrodes provide an opportunity to make direct evoked and ambient serotonin measurements in vivo in mice. In this study, we characterize novel stimulation and measurement circuitries for serotonin analyses in brain regions relevant to psychiatric disease. Evoked and ambient serotonin in these brain areas, the CA2 region of the hippocampus and the medial prefrontal cortex, are compared to ambient and evoked serotonin in the substantia nigra pars reticulata, an area well established previously for serotonin measurements with fast voltammetry. Stimulation of a common axonal location evoked serotonin in all three brain regions. Differences are observed in the serotonin release and reuptake profiles between these three brain areas which we hypothesize to arise from tissue physiology heterogeneity around the carbon fiber microelectrodes. We validate this hypothesis mathematically and via confocal imaging. We thereby show that fast voltammetric methods can provide accurate information about local physiology and highlight implications for chemical mapping. Cover Image for this issue: doi: 10.1111/jnc.14739.
Collapse
Affiliation(s)
- Aya Abdalla
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Alyssa West
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Yunju Jin
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rachel A Saylor
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Beidi Qiang
- Department of Mathematics and Statistics, Southern Illinois University Edwardsville, Edwardsville, Illinois, USA
| | - Edsel Peña
- Department of Statistics, University of South Carolina, Columbia, South Carolina, USA
| | - David J Linden
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Michael C Reed
- Department of Mathematics, Duke University, Durham, North Carolina, USA
| | - Janet Best
- Department of Mathematics, The Ohio State University, Columbus, Ohio, USA
| | - Parastoo Hashemi
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| |
Collapse
|
9
|
Li Y, Zu Y, Li X, Zhao S, Ou F, Li L, Zhang X, Wang W, He T, Liang Y, Sun X, Tang M. Acute corticosterone treatment elicits antidepressant-like actions on the hippocampal 5-HT and the immobility phenotype. Brain Res 2019; 1714:166-173. [DOI: 10.1016/j.brainres.2019.02.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/09/2019] [Accepted: 02/18/2019] [Indexed: 10/27/2022]
|
10
|
Hersey M, Berger SN, Holmes J, West A, Hashemi P. Recent Developments in Carbon Sensors for At-Source Electroanalysis. Anal Chem 2018; 91:27-43. [PMID: 30481001 DOI: 10.1021/acs.analchem.8b05151] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
11
|
Kohyama J. Possible neuronal mechanisms of sleep disturbances in patients with autism spectrum disorders and attention-deficit/hyperactivity disorder. Med Hypotheses 2016; 97:131-133. [PMID: 27876121 DOI: 10.1016/j.mehy.2016.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/02/2016] [Indexed: 12/28/2022]
Affiliation(s)
- Jun Kohyama
- Tokyo Bay Urayasu Ichikawa Medical Center, Japan.
| |
Collapse
|