1
|
Maková B, Mik V, Lišková B, Drašarová L, Medvedíková M, Hořínková A, Vojta P, Zatloukal M, Plíhalová L, Hönig M, Doležal K, Forejt K, Oždian T, Hajdúch M, Strnad M, Voller J. Correction of aberrant splicing of ELP1 pre-mRNA by kinetin derivatives - A structure activity relationship study. Eur J Med Chem 2025; 284:117176. [PMID: 39756144 DOI: 10.1016/j.ejmech.2024.117176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 12/14/2024] [Accepted: 12/15/2024] [Indexed: 01/07/2025]
Abstract
Familial dysautonomia is a debilitating congenital neurodegenerative disorder with no causative therapy. It is caused by a homozygous mutation in ELP1 gene, resulting in the production of the transcript lacking exon 20. The compounds studied as potential treatments include the clinical candidate kinetin, a plant hormone from the cytokinin family. We explored the relationship between the structure of a set of kinetin derivatives (N = 72) and their ability to correct aberrant splicing of the ELP1 gene. Active compounds can be obtained by the substitution of the purine ring with chlorine and fluorine at the C2 atom, with a small alkyl group at the N7 atom, or with diverse groups at the C8 atom. On the other hand, a substitution at the N3 or N9 atoms resulted in a loss of activity. We successfully tested a hypothesis inspired by the remarkable tolerance of the position C8 to substitution, postulating that the imidazole of the purine moiety is not required for the activity. We also evaluated the activity of phytohormones from other families, but none of them corrected ELP1 mRNA aberrant splicing. A panel of in vitro ADME assays, including evaluation of transport across model barriers, stability in plasma and in the presence of liver microsomal fraction as well as plasma protein binding, was used for an initial estimation of the potential bioavailability of the active compounds. Finally, a RNA-seq data suggest that 8-aminokinetin modulates expression spliceosome components.
Collapse
Affiliation(s)
- Barbara Maková
- Laboratory of Experimental Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Václav Mik
- Laboratory of Experimental Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Barbora Lišková
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 775 15 Olomouc, Czech Republic
| | - Lenka Drašarová
- Isotope Laboratory, Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 00 Prague 4, Czech Republic
| | - Martina Medvedíková
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 775 15 Olomouc, Czech Republic
| | - Alena Hořínková
- Laboratory of Experimental Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Petr Vojta
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 775 15 Olomouc, Czech Republic; University of Natural Resources and Life Sciences, Vienna, Department of Biotechnology, Institute of Computational Biology, Vienna, Austria
| | - Marek Zatloukal
- Department of Chemical Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Lucie Plíhalová
- Department of Chemical Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Martin Hönig
- Department of Chemical Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Karel Doležal
- Department of Chemical Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic; Laboratory of Growth Regulators, Institute of Experimental Botany AS CR & Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Kristýna Forejt
- Laboratory of Experimental Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Tomáš Oždian
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 775 15 Olomouc, Czech Republic
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 775 15 Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Institute of Experimental Botany AS CR & Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Jiří Voller
- Laboratory of Experimental Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 775 15 Olomouc, Czech Republic.
| |
Collapse
|
2
|
Gaik M, Kojic M, Wainwright BJ, Glatt S. Elongator and the role of its subcomplexes in human diseases. EMBO Mol Med 2022; 15:e16418. [PMID: 36448458 PMCID: PMC9906326 DOI: 10.15252/emmm.202216418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022] Open
Abstract
The Elongator complex was initially identified in yeast, and a variety of distinct cellular functions have been assigned to the complex. In the last decade, several research groups focussed on dissecting its structure, tRNA modification activity and role in translation regulation. Recently, Elongator emerged as a crucial factor for various human diseases, and its involvement has triggered a strong interest in the complex from numerous clinical groups. The Elongator complex is highly conserved among eukaryotes, with all six subunits (Elp1-6) contributing to its stability and function. Yet, recent studies have shown that the two subcomplexes, namely the catalytic Elp123 and accessory Elp456, may have distinct roles in the development of different neuronal subtypes. This Commentary aims to provide a brief overview and new perspectives for more systematic efforts to explore the functions of the Elongator in health and disease.
Collapse
Affiliation(s)
- Monika Gaik
- Malopolska Centre of BiotechnologyJagiellonian UniversityKrakowPoland
| | - Marija Kojic
- Faculty of Medicine, The University of Queensland Diamantina InstituteThe University of QueenslandWoolloongabbaQLDAustralia
| | - Brandon J Wainwright
- Faculty of Medicine, The University of Queensland Diamantina InstituteThe University of QueenslandWoolloongabbaQLDAustralia
| | - Sebastian Glatt
- Malopolska Centre of BiotechnologyJagiellonian UniversityKrakowPoland
| |
Collapse
|
3
|
Shilian M, Even A, Gast H, Nguyen L, Weil M. Elongator promotes neuritogenesis via regulation of tau stability through acly activity. Front Cell Dev Biol 2022; 10:1015125. [PMID: 36393857 PMCID: PMC9644021 DOI: 10.3389/fcell.2022.1015125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/05/2022] [Indexed: 11/23/2022] Open
Abstract
The six subunits (Elp1 to Elp6) Elongator complex promotes specific uridine modifications in tRNA’s wobble site. Moreover, this complex has been indirectly involved in the regulation of α-tubulin acetylation in microtubules (MTs) via the stabilization of ATP-Citrate Lyase (Acly), the main cytosolic source of acetyl-CoA production in cells, a key substrate used for global protein acetylation. Here, we report additional evidence that Elongator activity is important for proper cytoskeleton remodeling as cells lacking expression of Elp1 show morphology impairment; including distinct neurite process formation and disorganization and instability of MTs. Here, we show that loss of Elongator results in a reduction of expression of the microtubule associated protein Tau (MAPT). Tau, is a well-known key MT regulator in neurons whose lysines can be competitively acetylated or ubiquitylated. Therefore, we tested whether Tau is an indirect acetylation target of Elongator. We found that a reduction of Elongator activity leads to a decrease of lysine acetylation on Tau that favors its proteasomal degradation. This phenotype was prevented by using selective deacetylase or proteasomal inhibitors. Moreover, our data demonstrate that Acly’s activity regulates the mechanism underlying Tau mediated neurite morphology defects found in Elp1 KD since both Tau levels and neurites morphology are restored due to Acly overexpression. This suggests a possible involvement of both Tau and Acly dysfunction in Familial Dysautonomia (FD), which is an autosomal recessive peripheral neuropathy caused by mutation in the ELP1 gene that severely affects Elp1 expression levels in the nervous system in FD patients in a similar way as found previously in Elp1 KD neuroblastoma cells.
Collapse
Affiliation(s)
- Michal Shilian
- Laboratory for Neurodegenerative Diseases and Personalized Medicine, The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty for Life Sciences, Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Aviel Even
- Laboratory for Neurodegenerative Diseases and Personalized Medicine, The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty for Life Sciences, Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Hila Gast
- Laboratory for Neurodegenerative Diseases and Personalized Medicine, The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty for Life Sciences, Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Laurent Nguyen
- GIGA-Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGAR), University of Liège, C.H.U. Sart Tilman, Belgium, BIOMED Research Institute, Hasselt, Belgium
| | - Miguel Weil
- Laboratory for Neurodegenerative Diseases and Personalized Medicine, The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty for Life Sciences, Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
- *Correspondence: Miguel Weil,
| |
Collapse
|
4
|
Pernia C, Tobe BTD, O'Donnell R, Snyder EY. The Evolution of Stem Cells, Disease Modeling, and Drug Discovery for Neurological Disorders. Stem Cells Dev 2020; 29:1131-1141. [PMID: 32024446 DOI: 10.1089/scd.2019.0217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Human neurological disorders are among the most challenging areas of translational research. The difficulty of acquiring human neural samples or specific representative animal models has necessitated a multifaceted approach to understanding disease pathology and drug discovery. The dedifferentiation of somatic cells to human induced pluripotent stem cells (hiPSCs) for the generation of neural derivatives has broadened the capability of biomedical research to study human cell types in neurological disorders. The initial zeal for the potential of hiPSCs for immediate biomedical breakthroughs has evolved to more reasonable expectations. Over the past decade, hiPSC technology has demonstrated the capacity to successfully establish "disease in a dish" models of complex neurological disorders and to identify possible novel therapeutics. However, as hiPSCs are used more broadly, an increased understanding of the limitations of hiPSC studies is becoming more evident. In this study, we review the challenges of studying neurological disorders, the current limitations of stem cell-based disease modeling, and the degrees to which hiPSC studies to date have demonstrated the capacity to fill essential gaps in neurological research.
Collapse
Affiliation(s)
- Cameron Pernia
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, California, USA
| | - Brian T D Tobe
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, California, USA.,Department of Psychiatry, Veterans Administration Medical Center, La Jolla, California, USA
| | - Ryan O'Donnell
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, California, USA
| | - Evan Y Snyder
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, California, USA
| |
Collapse
|
5
|
Sinha R, Kim YJ, Nomakuchi T, Sahashi K, Hua Y, Rigo F, Bennett CF, Krainer AR. Antisense oligonucleotides correct the familial dysautonomia splicing defect in IKBKAP transgenic mice. Nucleic Acids Res 2019; 46:4833-4844. [PMID: 29672717 PMCID: PMC6007753 DOI: 10.1093/nar/gky249] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/28/2018] [Indexed: 12/19/2022] Open
Abstract
Familial dysautonomia (FD) is a rare inherited neurodegenerative disorder caused by a point mutation in the IKBKAP gene that results in defective splicing of its pre-mRNA. The mutation weakens the 5′ splice site of exon 20, causing this exon to be skipped, thereby introducing a premature termination codon. Though detailed FD pathogenesis mechanisms are not yet clear, correcting the splicing defect in the relevant tissue(s), thus restoring normal expression levels of the full-length IKAP protein, could be therapeutic. Splice-switching antisense oligonucleotides (ASOs) can be effective targeted therapeutics for neurodegenerative diseases, such as nusinersen (Spinraza), an approved drug for spinal muscular atrophy. Using a two-step screen with ASOs targeting IKBKAP exon 20 or the adjoining intronic regions, we identified a lead ASO that fully restored exon 20 splicing in FD patient fibroblasts. We also characterized the corresponding cis-acting regulatory sequences that control exon 20 splicing. When administered into a transgenic FD mouse model, the lead ASO promoted expression of full-length human IKBKAP mRNA and IKAP protein levels in several tissues tested, including the central nervous system. These findings provide insights into the mechanisms of IKBKAP exon 20 recognition, and pre-clinical proof of concept for an ASO-based targeted therapy for FD.
Collapse
Affiliation(s)
- Rahul Sinha
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Young Jin Kim
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Stony Brook University School of Medicine, Stony Brook, NY 11790, USA
| | - Tomoki Nomakuchi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Stony Brook University School of Medicine, Stony Brook, NY 11790, USA
| | - Kentaro Sahashi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yimin Hua
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Institute of Neuroscience, Soochow University, Suzhou, Jiangsu 215123, China
| | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, CA 92008, USA
| | | | - Adrian R Krainer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| |
Collapse
|
6
|
Saito-Diaz K, Zeltner N. Induced pluripotent stem cells for disease modeling, cell therapy and drug discovery in genetic autonomic disorders: a review. Clin Auton Res 2019; 29:367-384. [PMID: 30631982 DOI: 10.1007/s10286-018-00587-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 12/26/2018] [Indexed: 12/19/2022]
Abstract
The autonomic nervous system (ANS) regulates all organs in the body independent of consciousness, and is thus essential for maintaining homeostasis of the entire organism. Diseases of the ANS can arise due to environmental insults such as injury, toxins/drugs and infections or due to genetic lesions. Human studies and animal models have been instrumental to understanding connectivity and regulation of the ANS and its disorders. However, research into cellular pathologies and molecular mechanisms of ANS disorders has been hampered by the difficulties in accessing human patient-derived ANS cells in large numbers to conduct meaningful research, mainly because patient neurons cannot be easily biopsied and primary human neuronal cultures cannot be expanded.Human-induced pluripotent stem cell (hiPSC) technology can elegantly bridge these issues, allowing unlimited access of patient-derived ANS cell types for cellular, molecular and biochemical analysis, facilitating the discovery of novel therapeutic targets, and eventually leading to drug discovery. Additionally, such cells may provide a source for cell replacement therapy to replenish lost or injured ANS tissue in patients.Here, we first review the anatomy and embryonic development of the ANS, as this knowledge is crucial for understanding disease modeling approaches. We then review the current advances in human stem cell technology for modeling diseases of the ANS, recent strides toward cell replacement therapy and drug discovery initiatives.
Collapse
Affiliation(s)
- Kenyi Saito-Diaz
- Center for Molecular Medicine, University of Georgia, Athens, GA, USA
| | - Nadja Zeltner
- Center for Molecular Medicine, University of Georgia, Athens, GA, USA. .,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA. .,Department of Cellular Biology, University of Georgia, Athens, GA, USA.
| |
Collapse
|
7
|
Rubin BY, Anderson SL. IKBKAP/ELP1 gene mutations: mechanisms of familial dysautonomia and gene-targeting therapies. APPLICATION OF CLINICAL GENETICS 2017; 10:95-103. [PMID: 29290691 PMCID: PMC5735983 DOI: 10.2147/tacg.s129638] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The successful completion of the Human Genome Project led to the discovery of the molecular basis of thousands of genetic disorders. The identification of the mutations that cause familial dysautonomia (FD), an autosomal recessive disorder that impacts sensory and autonomic neurons, was aided by the release of the human DNA sequence. The identification and characterization of the genetic cause of FD have changed the natural history of this disease. Genetic testing programs, which were established shortly after the disease-causing mutations were identified, have almost completely eliminated the birth of children with this disorder. Characterization of the principal disease-causing mutation has led to the development of therapeutic modalities that ameliorate its effect, while the development of mouse models that recapitulate the impact of the mutation has allowed for the in-depth characterization of its impact on neuronal development and survival. The intense research focus on this disorder, while clearly benefiting the FD patient population, also serves as a model for the positive impact focused research efforts can have on the future of other genetic diseases. Here, we present the research advances and scientific breakthroughs that have changed and will continue to change the natural history of this centuries-old genetic disease.
Collapse
Affiliation(s)
- Berish Y Rubin
- Department of Biological Sciences, Fordham University, Bronx, NY, USA
| | - Sylvia L Anderson
- Department of Biological Sciences, Fordham University, Bronx, NY, USA
| |
Collapse
|
8
|
Animal and cellular models of familial dysautonomia. Clin Auton Res 2017; 27:235-243. [PMID: 28667575 DOI: 10.1007/s10286-017-0438-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/15/2017] [Indexed: 12/11/2022]
Abstract
Since Riley and Day first described the clinical phenotype of patients with familial dysautonomia (FD) over 60 years ago, the field has made considerable progress clinically, scientifically, and translationally in treating and understanding the etiology of FD. FD is classified as a hereditary sensory and autonomic neuropathy (HSAN type III) and is both a developmental and a progressive neurodegenerative condition that results from an autosomal recessive mutation in the gene IKBKAP, also known as ELP1. FD primarily impacts the peripheral nervous system but also manifests in central nervous system disruption, especially in the retina and optic nerve. While the disease is rare, the rapid progress being made in elucidating the molecular and cellular mechanisms mediating the demise of neurons in FD should provide insight into degenerative pathways common to many neurological disorders. Interestingly, the protein encoded by IKBKAP/ELP1, IKAP or ELP1, is a key scaffolding subunit of the six-subunit Elongator complex, and variants in other Elongator genes are associated with amyotrophic lateral sclerosis (ALS), intellectual disability, and Rolandic epilepsy. Here we review the recent model systems that are revealing the molecular and cellular pathophysiological mechanisms mediating FD. These powerful model systems can now be used to test targeted therapeutics for mitigating neuronal loss in FD and potentially other disorders.
Collapse
|