1
|
Abramian A, Hoogstraaten RI, Murphy FH, McDaniel KF, Toonen RF, Verhage M. Rabphilin-3A negatively regulates neuropeptide release, through its SNAP25 interaction. eLife 2024; 13:RP95371. [PMID: 39412498 PMCID: PMC11483123 DOI: 10.7554/elife.95371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
Neuropeptides and neurotrophins are stored in and released from dense core vesicles (DCVs). While DCVs and synaptic vesicles (SVs) share fundamental SNARE/SM proteins for exocytosis, a detailed understanding of DCV exocytosis remains elusive. We recently identified the RAB3-RIM1 pathway to be essential for DCV, but not SV exocytosis, highlighting a significant distinction between the SV and DCV secretory pathways. Whether RIM1 is the only RAB3 effector that is essential for DCV exocytosis is currently unknown. In this study, we show that rabphilin-3A (RPH3A), a known downstream effector of RAB3A, is a negative regulator of DCV exocytosis. Using live-cell imaging at single-vesicle resolution with RPH3A deficient hippocampal mouse neurons, we show that DCV exocytosis increased threefold in the absence of RPH3A. RAB3A-binding deficient RPH3A lost its punctate distribution, but still restored DCV exocytosis to WT levels when re-expressed. SNAP25-binding deficient RPH3A did not rescue DCV exocytosis. In addition, we show that RPH3A did not travel with DCVs, but remained stationary at presynapses. RPH3A null neurons also had longer neurites, which was partly restored when ablating all regulated secretion with tetanus neurotoxin. Taken together, these results show that RPH3A negatively regulates DCV exocytosis, potentially also affecting neuron size. Furthermore, RAB3A interaction is required for the synaptic enrichment of RPH3A, but not for limiting DCV exocytosis. Instead, the interaction of RPH3A with SNAP25 is relevant for inhibiting DCV exocytosis.
Collapse
Affiliation(s)
- Adlin Abramian
- Department of Functional Genomics, Faculty of Exact Science, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam and Vrije Universiteit Medical CenterAmsterdamNetherlands
| | - Rein I Hoogstraaten
- Department of Functional Genomics, Faculty of Exact Science, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam and Vrije Universiteit Medical CenterAmsterdamNetherlands
| | - Fiona H Murphy
- Department of Functional Genomics, Faculty of Exact Science, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam and Vrije Universiteit Medical CenterAmsterdamNetherlands
| | - Kathryn F McDaniel
- Department of Functional Genomics, Faculty of Exact Science, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam and Vrije Universiteit Medical CenterAmsterdamNetherlands
| | - Ruud F Toonen
- Department of Functional Genomics, Faculty of Exact Science, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam and Vrije Universiteit Medical CenterAmsterdamNetherlands
| | - Matthijs Verhage
- Department of Functional Genomics, Faculty of Exact Science, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam and Vrije Universiteit Medical CenterAmsterdamNetherlands
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Medical CenterAmsterdamNetherlands
| |
Collapse
|
2
|
Liu W, Lv H, Zhou Y, Zuo X, Wang X. Comprehensive Analysis of the Gene Expression Profiles of Rat Brain Tissues under Environmental Exposure to Nicotine. Pak J Biol Sci 2024; 27:547-566. [PMID: 39551957 DOI: 10.3923/pjbs.2024.547.566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
<b>Background and Objective:</b> Nicotine-relevant smoking causes many serious issues of environmental pollution and complicated harm to human health. The present study aimed to evaluate the experimental effects of exposure to nicotine on the gene expression profiles of rat brain tissues with differentially expressed genes (DEGs). <b>Materials and Methods:</b> The rat gene expression profiles of environmental exposure to nicotine were initially screened and retrieved from the microarray dataset GSE59895 in the GEO database. Next, it was analyzed with an integrated bioinformatics pipeline. The DEGs were analyzed in Limma and functional enrichment analyses of GO terms and KEGG pathways were performed with clusterProfiler. The STRING online tools and Cytoscape StringApp were subsequently employed to construct the protein-protein interaction (PPI) network, whereas key modules and hub genes were finally explored and visualized. <b>Results:</b> There was total of 382 shared DEGs between different case groups in the experiment, whereas 9 common shared DEGs were found among all three groups. The significant enrichments of 28 GO terms and 3 KEGG pathways were comprehensively analyzed with corresponding functionally enriched genes. Then, 3 key modules and 10 hub genes were further identified and explored in the resulted PPI network. In the disease-related signaling pathways, eleven potential neuropathic disease-related genes may complement the treatment of neurodegenerative diseases. <b>Conclusion:</b> The study found that chronic exposure to nicotine would result in the differential expression of the disease-related genes, whereas these DEGs might increase the environmental risks of Huntington's disease, Alzheimer's disease and other multiple neurodegenerative diseases.
Collapse
|
3
|
Sawant R, Godad A. An update on novel and emerging therapeutic targets in Parkinson's disease. Metab Brain Dis 2024; 39:1213-1225. [PMID: 39066989 DOI: 10.1007/s11011-024-01390-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024]
Abstract
Parkinson's Disease (PD) remains a significant focus of extensive research aimed at developing effective therapeutic strategies. Current treatments primarily target symptom management, with limited success in altering the course of the disease. This shortfall underscores the urgent need for novel therapeutic approaches that can modify the progression of PD.This review concentrates on emerging therapeutic targets poised to address the underlying mechanisms of PD. Highlighted novel and emerging targets include Protein Abelson, Rabphilin-3 A, Colony Stimulating Factor 1-Receptor, and Apelin, each showing promising potential in preclinical and clinical settings for their ability to modulate disease progression. By examining recent advancements and outcomes from trials focusing on these targets, the review aims to elucidate their efficacy and potential as disease-modifying therapies.Furthermore, the review explores the concept of multi-target approaches, emphasizing their relevance in tackling the complex pathology of PD. By providing comprehensive insights into these novel targets and their therapeutic implications, this review aims to guide future research directions and clinical developments toward more effective treatments for PD and related neurodegenerative disorders.
Collapse
Affiliation(s)
- Richa Sawant
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V M Road, Vile Parle (w), Mumbai, 400056, India
| | - Angel Godad
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V M Road, Vile Parle (w), Mumbai, 400056, India.
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India.
| |
Collapse
|
4
|
Bove F, Angeloni B, Sanginario P, Rossini PM, Calabresi P, Di Iorio R. Neuroplasticity in levodopa-induced dyskinesias: An overview on pathophysiology and therapeutic targets. Prog Neurobiol 2024; 232:102548. [PMID: 38040324 DOI: 10.1016/j.pneurobio.2023.102548] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/29/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Levodopa-induced dyskinesias (LIDs) are a common complication in patients with Parkinson's disease (PD). A complex cascade of electrophysiological and molecular events that induce aberrant plasticity in the cortico-basal ganglia system plays a key role in the pathophysiology of LIDs. In the striatum, multiple neurotransmitters regulate the different forms of physiological synaptic plasticity to provide it in a bidirectional and Hebbian manner. In PD, impairment of both long-term potentiation (LTP) and long-term depression (LTD) progresses with disease and dopaminergic denervation of striatum. The altered balance between LTP and LTD processes leads to unidirectional changes in plasticity that cause network dysregulation and the development of involuntary movements. These alterations have been documented, in both experimental models and PD patients, not only in deep brain structures but also at motor cortex. Invasive and non-invasive neuromodulation treatments, as deep brain stimulation, transcranial magnetic stimulation, or transcranial direct current stimulation, may provide strategies to modulate the aberrant plasticity in the cortico-basal ganglia network of patients affected by LIDs, thus restoring normal neurophysiological functioning and treating dyskinesias. In this review, we discuss the evidence for neuroplasticity impairment in experimental PD models and in patients affected by LIDs, and potential neuromodulation strategies that may modulate aberrant plasticity.
Collapse
Affiliation(s)
- Francesco Bove
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Benedetta Angeloni
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Pasquale Sanginario
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Paolo Maria Rossini
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Rome, Italy
| | - Paolo Calabresi
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Riccardo Di Iorio
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.
| |
Collapse
|
5
|
Pavinato L, Stanic J, Barzasi M, Gurgone A, Chiantia G, Cipriani V, Eberini I, Palazzolo L, Di Luca M, Costa A, Marcantoni A, Biamino E, Spada M, Hiatt SM, Kelley WV, Vestito L, Sisodiya SM, Efthymiou S, Chand P, Kaiyrzhanov R, Bruselles A, Cardaropoli S, Tartaglia M, De Rubeis S, Buxbaum JD, Smedley D, Ferrero GB, Giustetto M, Gardoni F, Brusco A. Missense variants in RPH3A cause defects in excitatory synaptic function and are associated with a clinically variable neurodevelopmental disorder. Genet Med 2023; 25:100922. [PMID: 37403762 DOI: 10.1016/j.gim.2023.100922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 06/22/2023] [Accepted: 06/25/2023] [Indexed: 07/06/2023] Open
Abstract
PURPOSE RPH3A encodes a protein involved in the stabilization of GluN2A subunit of N-methyl-D-aspartate (NMDA)-type glutamate receptors at the cell surface, forming a complex essential for synaptic plasticity and cognition. We investigated the effect of variants in RPH3A in patients with neurodevelopmental disorders. METHODS By using trio-based exome sequencing, GeneMatcher, and screening of 100,000 Genomes Project data, we identified 6 heterozygous variants in RPH3A. In silico and in vitro models, including rat hippocampal neuronal cultures, have been used to characterize the effect of the variants. RESULTS Four cases had a neurodevelopmental disorder with untreatable epileptic seizures [p.(Gln73His)dn; p.(Arg209Lys); p.(Thr450Ser)dn; p.(Gln508His)], and 2 cases [p.(Arg235Ser); p.(Asn618Ser)dn] showed high-functioning autism spectrum disorder. Using neuronal cultures, we demonstrated that p.(Thr450Ser) and p.(Asn618Ser) reduce the synaptic localization of GluN2A; p.(Thr450Ser) also increased the surface levels of GluN2A. Electrophysiological recordings showed increased GluN2A-dependent NMDA ionotropic glutamate receptor currents for both variants and alteration of postsynaptic calcium levels. Finally, expression of the Rph3AThr450Ser variant in neurons affected dendritic spine morphology. CONCLUSION Overall, we provide evidence that missense gain-of-function variants in RPH3A increase GluN2A-containing NMDA ionotropic glutamate receptors at extrasynaptic sites, altering synaptic function and leading to a clinically variable neurodevelopmental presentation ranging from untreatable epilepsy to autism spectrum disorder.
Collapse
Affiliation(s)
- Lisa Pavinato
- Department of Medical Sciences, University of Turin, Turin, Italy; Institute of Oncology Research (IOR), Bellinzona, Switzerland; Università della Svizzera Italiana, Lugano, Switzerland
| | - Jennifer Stanic
- Department of Pharmacological and Biomolecular Sciences, DiSFeB, University of the Studies of Milan, Milan, Italy
| | - Marta Barzasi
- Department of Pharmacological and Biomolecular Sciences, DiSFeB, University of the Studies of Milan, Milan, Italy
| | - Antonia Gurgone
- Department of Neuroscience, University of Turin, Turin, Italy
| | | | - Valentina Cipriani
- William Harvey Research Institute, Clinical Pharmacology Precision Medicine, Queen Mary University of London, Charterhouse Square, United Kingdom
| | - Ivano Eberini
- Department of Pharmacological and Biomolecular Sciences, DiSFeB, University of the Studies of Milan, Milan, Italy
| | - Luca Palazzolo
- Department of Pharmacological and Biomolecular Sciences, DiSFeB, University of the Studies of Milan, Milan, Italy
| | - Monica Di Luca
- Department of Pharmacological and Biomolecular Sciences, DiSFeB, University of the Studies of Milan, Milan, Italy
| | - Alex Costa
- Department of Biosciences, University of the Studies of Milan, Milan, Italy; Institute of Biophysics, Consiglio Nazionale delle Ricerche (CNR), Milan, Italy
| | - Andrea Marcantoni
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Elisa Biamino
- Department of Pediatrics, Regina Margherita Children Hospital, Turin, Italy
| | - Marco Spada
- Department of Pediatrics, Regina Margherita Children Hospital, Turin, Italy
| | - Susan M Hiatt
- HudsonAlpha Institute for Biotechnology, Huntsville, AL
| | | | - Letizia Vestito
- William Harvey Research Institute, Clinical Pharmacology Precision Medicine, Queen Mary University of London, Charterhouse Square, United Kingdom
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom; Chalfont Centre for Epilepsy Bucks, Chalfont St Peter, United Kingdom
| | - Stephanie Efthymiou
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Prem Chand
- Department of Paediatric and Child Health, Aga Khan University Hospital, Karachi, Pakistan
| | - Rauan Kaiyrzhanov
- University College London, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Alessandro Bruselles
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Simona Cardaropoli
- Department of Public Health and Pediatric Sciences, University of Torino, Torino, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY; The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Joseph D Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY; The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Damian Smedley
- William Harvey Research Institute, Clinical Pharmacology Precision Medicine, Queen Mary University of London, Charterhouse Square, United Kingdom
| | | | | | - Fabrizio Gardoni
- Department of Pharmacological and Biomolecular Sciences, DiSFeB, University of the Studies of Milan, Milan, Italy
| | - Alfredo Brusco
- Department of Medical Sciences, University of Turin, Turin, Italy; Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Turin, Italy.
| |
Collapse
|
6
|
Wang H, Dou S, Wang C, Gao W, Cheng B, Yan F. Identification and Experimental Validation of Parkinson's Disease with Major Depressive Disorder Common Genes. Mol Neurobiol 2023; 60:6092-6108. [PMID: 37418066 DOI: 10.1007/s12035-023-03451-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 06/17/2023] [Indexed: 07/08/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease that affects about 10 million people worldwide. Non-motor and motor symptoms usually accompany PD. Major depressive disorder (MDD) is one of the non-motor manifestations of PD it remains unrecognized and undertreated effectively. MDD in PD has complicated pathophysiologies and remains unclear. The study aimed to explore the candidate genes and molecular mechanisms of PD with MDD. PD (GSE6613) and MDD (GSE98793) gene expression profiles were downloaded from Gene Expression Omnibus (GEO). Above all, the data of the two datasets were standardized separately, and differentially expressed genes (DEGs) were obtained by using the Limma package of R. Take the intersection of the two differential genes and remove the genes with inconsistent expression trends. Subsequently, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were investigated to explore the function of the common DEGs. Additionally, the construction of the protein-protein interaction (PPI) network was to search the hub genes, and then the least absolute shrinkage and selection operator (LASSO) regression was used to further identify the key genes. GSE99039 for PD and GSE201332 for MDD were performed to validate the hub genes by the violin plot and receiver operating characteristic (ROC) curve. Last but not least, immune cell dysregulation in PD was investigated by immune cell infiltration. As a result, a total of 45 common genes with the same trend. Functional analysis revealed that they were enriched in neutrophil degranulation, secretory granule membrane, and leukocyte activation. LASSO was performed on 8 candidate hub genes after CytoHubba filtered 14 node genes. Finally, AQP9, SPI1, and RPH3A were validated by GSE99039 and GSE201332. Additionally, the three genes were also detected by the qPCR in vivo model and all increased compared to the control. The co-occurrence of PD and MDD can be attributed to AQP9, SPI1, and RPH3A genes. Neutrophils and monocyte infiltration play important roles in the development of PD and MDD. Novel insights may be gained from the findings for the study of mechanisms.
Collapse
Affiliation(s)
- Huiqing Wang
- School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Shanshan Dou
- College of Basic Medicine, Jining Medical University, Jining, 272067, People's Republic of China
| | - Chunmei Wang
- Neurobiology Institute, Jining Medical University, Jining, 272067, China
| | - Wenming Gao
- College of Basic Medicine, Jining Medical University, Jining, 272067, People's Republic of China
| | - Baohua Cheng
- College of Basic Medicine, Jining Medical University, Jining, 272067, People's Republic of China.
- Neurobiology Institute, Jining Medical University, Jining, 272067, China.
| | - Fuling Yan
- Department of Neurology, School of Medicine, Affiliated ZhongDa Hospital, Southeast University, No. 87 Dingjiaqiao Road, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
7
|
Meheronnisha SK, Thekkekkara D, Babu A, Tausif YM, Manjula SN. Novel therapeutic targets to halt the progression of Parkinson's disease: an in-depth review on molecular signalling cascades. 3 Biotech 2023; 13:218. [PMID: 37265542 PMCID: PMC10229523 DOI: 10.1007/s13205-023-03637-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023] Open
Abstract
Recent research has focused mostly on understanding and combating the neurodegenerative mechanisms and symptoms of Parkinson's disease (PD). Moreover, developing novel therapeutic targets to halt the progression of PD remains a key focus for researchers. As yet, no agents have been found to have unambiguous evidence of disease-modifying actions in PD. The primary objective of this review is to summarize the promising targets that have recently been uncovered which include histamine 4 receptors, beta2 adrenergic receptor, phosphodiesterase 4, sphingosine-1-phosphate receptor subtype 1, angiotensin receptors, high-mobility group box 1, rabphilin-3A, purinergic 2Y type 12 receptor, colony-stimulating factor-1 receptor, transient receptor potential vanilloid 4, alanine-serine-cysteine transporter 2, G protein-coupled oestrogen receptor, a mitochondrial antiviral signalling protein, glucocerebrosidase, indolamine-2,3-dioxygenase-1, soluble epoxy hydroxylase and dual specificity phosphatase 6. We have also reviewed the molecular signalling cascades of those novel targets which cause the initiation and progression of PD and gathered some emerging disease-modifying agents that could slow the progression of PD. These approaches will assist in the discovery of novel target molecules, for curing disease symptoms and may provide a glimmer of hope for the treatment of PD. As of now, there is no drug available that will completely prevent the progression of PD by inhibiting the pathogenesis involved in PD, and thus, the newer targets and their inhibitors or activators are the major focus for researchers to suppress PD symptomatology. And the major limitations of these targets are the lack of clinical data and less number pre-clinical data, as we have majorly discussed the different targets which all have well reported for other disease pathogenesis. Thus, finding the disease-drug interactions, the molecular mechanisms, and the major side effects will be major challenges for the researchers.
Collapse
Affiliation(s)
- S. K. Meheronnisha
- Department of Pharmacology, JSS College of Pharmacy, JSSAHER, SS Nagar, Mysore, Karnataka 570015 India
| | - Dithu Thekkekkara
- Department of Pharmacology, JSS College of Pharmacy, JSSAHER, SS Nagar, Mysore, Karnataka 570015 India
| | - Amrita Babu
- Department of Pharmacology, JSS College of Pharmacy, JSSAHER, SS Nagar, Mysore, Karnataka 570015 India
| | - Y. Mohammed Tausif
- Department of Pharmacology, JSS College of Pharmacy, JSSAHER, SS Nagar, Mysore, Karnataka 570015 India
| | - S. N. Manjula
- Department of Pharmacology, JSS College of Pharmacy, JSSAHER, SS Nagar, Mysore, Karnataka 570015 India
| |
Collapse
|
8
|
Ferrari E, Salvadè M, Zianni E, Brumana M, DiLuca M, Gardoni F. Detrimental effects of soluble α-synuclein oligomers at excitatory glutamatergic synapses. Front Aging Neurosci 2023; 15:1152065. [PMID: 37009450 PMCID: PMC10060538 DOI: 10.3389/fnagi.2023.1152065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
Introduction Oligomeric and fibrillar species of the synaptic protein α-synuclein are established key players in the pathophysiology of Parkinson's disease and other synucleinopathies. Increasing evidence in the literature points to prefibrillar oligomers as the main cytotoxic species driving dysfunction in diverse neurotransmitter systems even at early disease stages. Of note, soluble oligomers have recently been shown to alter synaptic plasticity mechanisms at the glutamatergic cortico-striatal synapse. However, the molecular and morphological detrimental events triggered by soluble α-synuclein aggregates that ultimately lead to excitatory synaptic failure remain mostly elusive. Methods In the present study, we aimed to clarify the effects of soluble α-synuclein oligomers (sOligo) in the pathophysiology of synucleinopathies at cortico-striatal and hippocampal excitatory synapses. To investigate early defects of the striatal synapse in vivo, sOligo were inoculated in the dorsolateral striatum of 2-month-old wild-type C57BL/6J mice, and molecular and morphological analyses were conducted 42 and 84 days post-injection. In parallel, primary cultures of rat hippocampal neurons were exposed to sOligo, and molecular and morphological analyses were performed after 7 days of treatment. Results In vivo sOligo injection impaired the post-synaptic retention of striatal ionotropic glutamate receptors and decreased the levels of phosphorylated ERK at 84 days post-injection. These events were not correlated with morphological alterations at dendritic spines. Conversely, chronic in vitro administration of sOligo caused a significant decrease in ERK phosphorylation but did not significantly alter post-synaptic levels of ionotropic glutamate receptors or spine density in primary hippocampal neurons. Conclusion Overall, our data indicate that sOligo are involved in pathogenic molecular changes at the striatal glutamatergic synapse, confirming the detrimental effect of these species in an in vivo synucleinopathy model. Moreover, sOligo affects the ERK signaling pathway similarly in hippocampal and striatal neurons, possibly representing an early mechanism that anticipates synaptic loss.
Collapse
Affiliation(s)
| | | | | | | | | | - Fabrizio Gardoni
- Department of Pharmacological and Biomolecular Sciences (DiSFeB) “Rodolfo Paoletti”, University of Milan, Milan, Italy
| |
Collapse
|
9
|
A Proteome-Wide Effect of PHF8 Knockdown on Cortical Neurons Shows Downregulation of Parkinson's Disease-Associated Protein Alpha-Synuclein and Its Interactors. Biomedicines 2023; 11:biomedicines11020486. [PMID: 36831023 PMCID: PMC9953648 DOI: 10.3390/biomedicines11020486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Synaptic dysfunction may underlie the pathophysiology of Parkinson's disease (PD), a presently incurable condition characterized by motor and cognitive symptoms. Here, we used quantitative proteomics to study the role of PHD Finger Protein 8 (PHF8), a histone demethylating enzyme found to be mutated in X-linked intellectual disability and identified as a genetic marker of PD, in regulating the expression of PD-related synaptic plasticity proteins. Amongst the list of proteins found to be affected by PHF8 knockdown were Parkinson's-disease-associated SNCA (alpha synuclein) and PD-linked genes DNAJC6 (auxilin), SYNJ1 (synaptojanin 1), and the PD risk gene SH3GL2 (endophilin A1). Findings in this study show that depletion of PHF8 in cortical neurons affects the activity-induced expression of proteins involved in synaptic plasticity, synaptic structure, vesicular release and membrane trafficking, spanning the spectrum of pre-synaptic and post-synaptic transmission. Given that the depletion of even a single chromatin-modifying enzyme can affect synaptic protein expression in such a concerted manner, more in-depth studies will be needed to show whether such a mechanism can be exploited as a potential disease-modifying therapeutic drug target in PD.
Collapse
|
10
|
Yang L, Wei M, Wang Y, Zhang J, Liu S, Liu M, Wang S, Li K, Dong Z, Zhang C. Rabphilin-3A undergoes phase separation to regulate GluN2A mobility and surface clustering. Nat Commun 2023; 14:379. [PMID: 36693856 PMCID: PMC9873702 DOI: 10.1038/s41467-023-36046-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 01/13/2023] [Indexed: 01/25/2023] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are essential for excitatory neurotransmission and synaptic plasticity. GluN2A and GluN2B, two predominant Glu2N subunits of NMDARs in the hippocampus and the cortex, display distinct clustered distribution patterns and mobility at synaptic and extrasynaptic sites. However, how GluN2A clusters are specifically organized and stabilized remains poorly understood. Here, we found that the previously reported GluN2A-specific binding partner Rabphilin-3A (Rph3A) has the ability to undergo phase separation, which relies on arginine residues in its N-terminal domain. Rph3A phase separation promotes GluN2A clustering by binding GluN2A's C-terminal domain. A complex formed by Rph3A, GluN2A, and the scaffolding protein PSD95 promoted Rph3A phase separation. Disrupting Rph3A's phase separation suppressed the synaptic and extrasynaptic surface clustering, synaptic localization, stability, and synaptic response of GluN2A in hippocampal neurons. Together, our results reveal the critical role of Rph3A phase separation in determining the organization and stability of GluN2A in the neuronal surface.
Collapse
Affiliation(s)
- Lei Yang
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Mengping Wei
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Yangzhen Wang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jingtao Zhang
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Sen Liu
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Mengna Liu
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Shanshan Wang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Ke Li
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Zhaoqi Dong
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Chen Zhang
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China. .,Chinese Institute for Brain Research, Beijing, 102206, China. .,State Key Laboratory of Translational Medicine and Innovative Drug Development, Nanjing, 210000, Jiangsu, China. .,Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
11
|
Liu D, Huang Y, Mao J, Jiang C, Zheng L, Wu Q, Cai H, Liu X, Dai J. A nanohybrid synthesized by polymeric assembling Au(I)-peptide precursor for anti-wrinkle function. Front Bioeng Biotechnol 2022; 10:1087363. [PMID: 36578506 PMCID: PMC9790933 DOI: 10.3389/fbioe.2022.1087363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
A major sign of aging is wrinkles (dynamic lines and static lines) on the surface of the skin. In spite of Botulinum toxin's favorable therapeutic effect today, there have been several reports of its toxicity and side effects. Therefore, the development of an effective and safe wrinkle-fighting compound is imperative. An antioxidant-wrinkle effect was demonstrated by the peptide that we developed and synthesized, termed Skin Peptide. Aiming at the intrinsic defects of the peptide such as hydrolysis and poor membrane penetration, we developed a general approach to transform the Skin Peptide targeting intracellular protein-protein interaction into a bioavailable peptide-gold spherical nano-hybrid, Skin Pcluster. As expected, the results revealed that Skin Pcluster reduced the content of acetylcholine released by neurons in vitro, and then inhibit neuromuscular signal transmission. Additionally, human experiments demonstrated a significant de-wrinkle effect. Moreover, Skin Pcluster is characterized by a reliable safety profile. Consequently, anti-wrinkle peptides and Skin Pcluster nanohybrids demonstrated innovative anti-wrinkle treatments and have significant potential applications.
Collapse
Affiliation(s)
- Dan Liu
- Department of Talent Highland, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yinong Huang
- Shaanxi Institute of Pediatric Diseases, Xi’an Children’s Hospital, Xi’an, China,*Correspondence: Yinong Huang, ; Hong Cai, ; Xiaojing Liu, ; Jingyao Dai,
| | - Jian Mao
- Graduate School of China Medical University, Shenyang, China,Air Force Medical Center, Beijing, China
| | - Cheng Jiang
- Graduate School of China Medical University, Shenyang, China,Air Force Medical Center, Beijing, China
| | - Lei Zheng
- Graduate School of China Medical University, Shenyang, China,Air Force Medical Center, Beijing, China
| | - Qimei Wu
- Graduate School of China Medical University, Shenyang, China,Air Force Medical Center, Beijing, China
| | - Hong Cai
- Air Force Medical Center, Beijing, China,*Correspondence: Yinong Huang, ; Hong Cai, ; Xiaojing Liu, ; Jingyao Dai,
| | - Xiaojing Liu
- Department of Talent Highland, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,*Correspondence: Yinong Huang, ; Hong Cai, ; Xiaojing Liu, ; Jingyao Dai,
| | - Jingyao Dai
- Air Force Medical Center, Beijing, China,Air Force Medical Center, Fourth Military Medical University, Xi’an, China,*Correspondence: Yinong Huang, ; Hong Cai, ; Xiaojing Liu, ; Jingyao Dai,
| |
Collapse
|
12
|
Levodopa-Induced Dyskinesia in Parkinson's Disease: Pathogenesis and Emerging Treatment Strategies. Cells 2022; 11:cells11233736. [PMID: 36496996 PMCID: PMC9736114 DOI: 10.3390/cells11233736] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
The most commonly used treatment for Parkinson's disease (PD) is levodopa, prescribed in conjunction with carbidopa. Virtually all patients with PD undergo dopamine replacement therapy using levodopa during the course of the disease's progression. However, despite the fact that levodopa is the "gold standard" in PD treatments and has the ability to significantly alleviate PD symptoms, it comes with side effects in advanced PD. Levodopa replacement therapy remains the current clinical treatment of choice for Parkinson's patients, but approximately 80% of the treated PD patients develop levodopa-induced dyskinesia (LID) in the advanced stages of the disease. A better understanding of the pathological mechanisms of LID and possible means of improvement would significantly improve the outcome of PD patients, reduce the complexity of medication use, and lower adverse effects, thus, improving the quality of life of patients and prolonging their life cycle. This review assesses the recent advancements in understanding the underlying mechanisms of LID and the therapeutic management options available after the emergence of LID in patients. We summarized the pathogenesis and the new treatments for LID-related PD and concluded that targeting pathways other than the dopaminergic pathway to treat LID has become a new possibility, and, currently, amantadine, drugs targeting 5-hydroxytryptamine receptors, and surgery for PD can target the Parkinson's symptoms caused by LID.
Collapse
|
13
|
Cesaroni V, Blandini F, Cerri S. Dyskinesia and Parkinson's disease: animal model, drug targets, and agents in preclinical testing. Expert Opin Ther Targets 2022; 26:837-851. [PMID: 36469635 DOI: 10.1080/14728222.2022.2153036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease. PD patients exhibit a classic spectrum of motor symptoms, arising when dopamine neurons in the substantia nigra pars compacta are reduced by 60%. The dopamine precursor L-DOPA represents the most effective therapy for improving PD motor dysfunctions, thus far available. Unfortunately, long-term treatment with L-DOPA is associated with the development of severe side effects, resulting in abnormal involuntary movements termed levodopa-induced dyskinesia (LID). Amantadine is the only drug currently approved for the treatment of LID indicating that LID management is still an unmet need in PD and encouraging the search for novel anti-dyskinetic drugs or the assessment of combined therapies with different molecular targets. AREAS COVERED This review provides an overview of the main preclinical models used to study LID and of the latest preclinical evidence on experimental and clinically available pharmacological approaches targeting non-dopaminergic systems. EXPERT OPINION LIDs are supported by complex molecular and neurobiological mechanisms that are still being studied today. This complexity suggests the need of developing personalized pharmacological approach to obtain an effective amelioration of LID condition and improve the quality of life of PD patients.
Collapse
Affiliation(s)
- Valentina Cesaroni
- Unit of Cellular and Molecular Neurobiology, IRCCS Mondino Foundation 27100, Pavia, Italy
| | - Fabio Blandini
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico 20122, Milan, Italy
| | - Silvia Cerri
- Unit of Cellular and Molecular Neurobiology, IRCCS Mondino Foundation 27100, Pavia, Italy
| |
Collapse
|
14
|
Yang MC, Wu D, Sun H, Wang LK, Chen XF. A Metabolic Plasticity-Based Signature for Molecular Classification and Prognosis of Lower-Grade Glioma. Brain Sci 2022; 12:brainsci12091138. [PMID: 36138874 PMCID: PMC9497112 DOI: 10.3390/brainsci12091138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/09/2022] [Accepted: 08/22/2022] [Indexed: 12/17/2022] Open
Abstract
Background: Glioma is one of the major health problems worldwide. Biomarkers for predicting the prognosis of Glioma are still needed. Methods: The transcriptome data and clinic information on Glioma were obtained from the CGGA, TCGA, GDC, and GEO databases. The immune infiltration status in the clusters was compared. The genes with differential expression were identified, and a prognostic model was developed. Several assays were used to detect RPH3A’s role in Glioma cells, including CCK-8, colony formation, wound healing, and transwell migration assay. Results: Lower Grade Glioma (LGG) was divided into two clusters. The immune infiltration difference was observed between the two clusters. We screened for genes that differed between the two groups. WGCNA was used to construct a co-expressed network using the DEGs, and four co-expressed modules were identified, which are blue, green, grey, and yellow modules. High-risk patients have a lower overall survival rate than low-risk patients. In addition, the risk score is associated with histological subtypes. Finally, the role of RPH3A was detected. The overexpression of RPH3A in LGG cells can significantly inhibit cell proliferation and migration and regulate EMT-regulated proteins. Conclusion: Our study developed a metabolic-related model for the prognosis of Glioma cells. RPH3A is a potential therapeutic target for Glioma.
Collapse
Affiliation(s)
- Ming-Chun Yang
- Department of Neurosurgery, 1st Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Di Wu
- Department of Obstetrics and Gynecology, 1st Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Hui Sun
- Pharmaceutical Experiment Teaching Center, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Lian-Kun Wang
- Department of Neurology, Heilongjiang Province Hospital, Harbin 150001, China
| | - Xiao-Feng Chen
- Department of Neurosurgery, 1st Affiliated Hospital, Harbin Medical University, Harbin 150001, China
- Correspondence: ; Tel./Fax: +86-451-8555-5644
| |
Collapse
|
15
|
Identification and Validation of Prognostic Markers for Lung Squamous Cell Carcinoma Associated with Chronic Obstructive Pulmonary Disease. JOURNAL OF ONCOLOGY 2022; 2022:4254195. [PMID: 36035311 PMCID: PMC9402374 DOI: 10.1155/2022/4254195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/28/2022] [Accepted: 07/03/2022] [Indexed: 12/04/2022]
Abstract
Background Globally, the incidence and associated mortality of chronic obstructive pulmonary disease (COPD) and lung carcinoma are showing a worsening trend. There is increasing evidence that COPD is an independent risk factor for the occurrence and progression of lung carcinoma. This study aimed to identify and validate the gene signatures associated with COPD, which may serve as potential new biomarkers for the prediction of prognosis in patients with lung carcinoma. Methods A total of 111 COPD patient samples and 40 control samples were obtained from the GSE76925 cohort, and a total of 4933 genes were included in the study. The weighted gene coexpression network analysis (WGCNA) was performed to identify the modular genes that were significantly associated with COPD. The KEGG pathway and GO functional enrichment analyses were also performed. The RNAseq and clinicopathological data of 490 lung squamous cell carcinoma patients were obtained from the TCGA database. Further, univariate Cox regression and Lasso analyses were performed to screen for marker genes and construct a survival analysis model. Finally, the Human Protein Atlas (HPA) database was used to assess the gene expression in normal and tumor tissues of the lungs. Results A 6-gene signature (DVL1, MRPL4, NRTN, NSUN3, RPH3A, and SNX32) was identified based on the Cox proportional risk analysis to construct the prognostic RiskScore survival model associated with COPD. Kaplan–Meier survival analysis indicated that the model could significantly differentiate between the prognoses of patients with lung carcinoma, wherein higher RiskScore samples were associated with a worse prognosis. Additionally, the model had a good predictive performance and reliability, as indicated by a high AUC, and these were validated in both internal and external sets. The 6-gene signature had a good predictive ability across clinical signs and could be considered an independent factor of prognostic risk. Finally, the protein expressions of the six genes were analyzed based on the HPA database. The expressions of DVL1, MRPL4, and NSUN3 were relatively higher, while that of RPH3A was relatively lower in the tumor tissues. The expression of SNX32 was high in both the tumor and paracarcinoma tissues. Results of the analyses using TCGA and GSE31446 databases were consistent with the expressions reported in the HPA database. Conclusion Novel COPD-associated gene markers for lung carcinoma were identified and validated in this study. The genes may be considered potential biomarkers to evaluate the prognostic risk of patients with lung carcinoma. Furthermore, some of these genes may have implications as new therapeutic targets and can be used to guide clinical applications.
Collapse
|
16
|
Ferrari E, Scheggia D, Zianni E, Italia M, Brumana M, Palazzolo L, Parravicini C, Pilotto A, Padovani A, Marcello E, Eberini I, Calabresi P, Diluca M, Gardoni F. Rabphilin-3A as a Novel Target to Reverse α-synuclein-induced Synaptic Loss in Parkinson's Disease. Pharmacol Res 2022; 183:106375. [PMID: 35918045 DOI: 10.1016/j.phrs.2022.106375] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/24/2022] [Accepted: 07/27/2022] [Indexed: 10/16/2022]
Abstract
Toxic aggregates of α-synuclein (αsyn) are considered key drivers of Parkinson's disease (PD) pathology. In early PD, αsyn induces synaptic dysfunction also modulating the glutamatergic neurotransmission. However, a more detailed understanding of the molecular mechanisms underlying αsyn-triggered synaptic failure is required to design novel therapeutic interventions. Here, we described the role of Rabphilin-3A (Rph3A) as novel target to counteract αsyn-induced synaptic loss in PD. Rph3A is a synaptic protein interacting with αsyn and involved in stabilizing dendritic spines and in promoting the synaptic retention of NMDA-type glutamate receptors. We found that in vivo intrastriatal injection of αsyn-preformed fibrils in mice induces the early loss of striatal synapses associated with decreased synaptic levels of Rph3A and impaired Rph3A/NMDA receptors interaction. Modulating Rph3A striatal expression or interfering with the Rph3A/αsyn complex with a small molecule prevented dendritic spine loss and rescued associated early motor defects in αsyn-injected mice. Notably, the same experimental approaches prevented αsyn-induced synaptic loss in vitro in primary hippocampal neurons. Overall, these findings indicate that approaches aimed at restoring Rph3A synaptic functions can slow down the early synaptic detrimental effects of αsyn aggregates in PD.
Collapse
Affiliation(s)
- Elena Ferrari
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, 20133 Milan, Italy.
| | - Diego Scheggia
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, 20133 Milan, Italy.
| | - Elisa Zianni
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, 20133 Milan, Italy.
| | - Maria Italia
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, 20133 Milan, Italy.
| | - Marta Brumana
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, 20133 Milan, Italy.
| | - Luca Palazzolo
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, 20133 Milan, Italy.
| | - Chiara Parravicini
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, 20133 Milan, Italy.
| | - Andrea Pilotto
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, 25123, Brescia, Italy.
| | - Alessandro Padovani
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, 25123, Brescia, Italy.
| | - Elena Marcello
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, 20133 Milan, Italy.
| | - Ivano Eberini
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, 20133 Milan, Italy.
| | - Paolo Calabresi
- Sezione di Neurologia, Dipartimento di Neuroscienze, Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, Rome, Italy; Clinica Neurologica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.
| | - Monica Diluca
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, 20133 Milan, Italy.
| | - Fabrizio Gardoni
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, 20133 Milan, Italy.
| |
Collapse
|
17
|
Zhu X, Li H, You W, Yu Z, Wang Z, Shen H, Li X, Yu H, Wang Z, Chen G. Role of Rph3A in brain injury induced by experimental cerebral ischemia-reperfusion model in rats. CNS Neurosci Ther 2022; 28:1124-1138. [PMID: 35467084 PMCID: PMC9160444 DOI: 10.1111/cns.13850] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/09/2022] [Accepted: 04/13/2022] [Indexed: 01/01/2023] Open
Abstract
Aim The aim was to study the role of Rph3A in neuronal injury induced by cerebral ischemia‐reperfusion. Methods The protein and mRNA levels of Rph3A in penumbra were detected by Western blot. The localization of Rph3A in different cell types in penumbra was detected by immunofluorescence. Apoptosis in the brain was detected by TUNEL staining. We tested neurobehavioral evaluation using rotarod test, adhesive‐removal test, and Morris Water maze test. We examined the expression and localization of Rph3A in cultured neurons and astrocytes in vitro by Western blot and ELISA, respectively. Results The mRNA and protein levels of Rph3A had significantly increased in brain penumbra of the rat MCAO/R model. Rph3A was mainly distributed in neurons and astrocytes and was significantly increased by MCAO/R. We downregulated Rph3A and found that it further worsened the cerebral infarct, neuronal death and behavioral, cognitive, and memory impairments in rats after MCAO/R. We also found that ischemia‐reperfusion upregulated the in vitro protein level and secretion of Rph3A in astrocytes but led to a decrease in the protein level of Rph3A in neurons. Conclusion The increase in Rph3A in the brain penumbra may be an endogenous protective mechanism against ischemia‐reperfusion injury, which is mainly dominated by astrocytes.
Collapse
Affiliation(s)
- Xianlong Zhu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.,Institute of Stroke Research, Soochow University, Suzhou, Jiangsu, China.,Department of Neurosurgery, The Second People's Hospital of Lianyungang City, Lianyungang, Jiangsu, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.,Institute of Stroke Research, Soochow University, Suzhou, Jiangsu, China
| | - Wanchun You
- Department of Neurosurgery & Brain and Nerve Research Laboratory, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.,Institute of Stroke Research, Soochow University, Suzhou, Jiangsu, China
| | - Zhengquan Yu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.,Institute of Stroke Research, Soochow University, Suzhou, Jiangsu, China
| | - Zongqi Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.,Institute of Stroke Research, Soochow University, Suzhou, Jiangsu, China
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.,Institute of Stroke Research, Soochow University, Suzhou, Jiangsu, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.,Institute of Stroke Research, Soochow University, Suzhou, Jiangsu, China
| | - Hao Yu
- Department of Neurosurgery, The First People's Hospital of Nantong city, Nantong, Jiangsu, China
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.,Institute of Stroke Research, Soochow University, Suzhou, Jiangsu, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.,Institute of Stroke Research, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
18
|
Franchini L, Stanic J, Barzasi M, Zianni E, Mauceri D, Diluca M, Gardoni F. Rabphilin-3A Drives Structural Modifications of Dendritic Spines Induced by Long-Term Potentiation. Cells 2022; 11:1616. [PMID: 35626653 PMCID: PMC9139176 DOI: 10.3390/cells11101616] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/01/2022] [Accepted: 05/10/2022] [Indexed: 01/09/2023] Open
Abstract
The interaction of Rabphilin-3A (Rph3A) with the NMDA receptor (NMDAR) in hippocampal neurons plays a pivotal role in the synaptic retention of this receptor. The formation of a Rph3A/NMDAR complex is needed for the induction of long-term potentiation and NMDAR-dependent hippocampal behaviors, such as spatial learning. Moreover, Rph3A can also interact with AMPA receptors (AMPARs) through the formation of a complex with myosin Va. Here, we used a confocal imaging approach to show that Rph3A overexpression in primary hippocampal neuronal cultures is sufficient to promote increased dendritic spine density. This morphological event is correlated with an increase in GluN2A-containing NMDARs at synaptic membranes and a decrease in the surface levels of GluA1-containing AMPARs. These molecular and morphological modifications of dendritic spines are sufficient to occlude the spine formation induced by long-term potentiation, but do not prevent the spine loss induced by long-term depression. Overall, our results demonstrate a key role for Rph3A in the modulation of structural synaptic plasticity at hippocampal synapses that correlates with its interactions with both NMDARs and AMPARs.
Collapse
Affiliation(s)
- Luca Franchini
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy; (L.F.); (J.S.); (M.B.); (E.Z.); (M.D.)
| | - Jennifer Stanic
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy; (L.F.); (J.S.); (M.B.); (E.Z.); (M.D.)
| | - Marta Barzasi
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy; (L.F.); (J.S.); (M.B.); (E.Z.); (M.D.)
| | - Elisa Zianni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy; (L.F.); (J.S.); (M.B.); (E.Z.); (M.D.)
| | - Daniela Mauceri
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, INF 366, 69120 Heidelberg, Germany;
| | - Monica Diluca
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy; (L.F.); (J.S.); (M.B.); (E.Z.); (M.D.)
| | - Fabrizio Gardoni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy; (L.F.); (J.S.); (M.B.); (E.Z.); (M.D.)
| |
Collapse
|
19
|
Bove F, Calabresi P. Plasticity, genetics, and epigenetics in l-dopa-induced dyskinesias. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:167-184. [PMID: 35034732 DOI: 10.1016/b978-0-12-819410-2.00009-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
l-Dopa-induced dyskinesias (LIDs) are a frequent complication in l-dopa-treated patients affected by Parkinson's disease (PD). In the last years, several progresses in the knowledge of LIDs mechanisms have led to the identification of several molecular and electrophysiologic events. A complex cascade of intracellular events underlies the pathophysiology of LIDs, and, among these, aberrant plasticity in the cortico-basal ganglia system, at striatal and cortical level, plays a key role. Furthermore, several recent studies have investigated genetic susceptibility and epigenetic modifications in LIDs pathophysiology that might have future relevance in clinical practice and pharmacologic research. These progresses might lead to the development of specific strategies not only to treat, but also to prevent or delay the development of LIDs in PD.
Collapse
Affiliation(s)
- Francesco Bove
- UOC Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Paolo Calabresi
- UOC Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy.
| |
Collapse
|
20
|
Dopaminergic Axons: Key Recitalists in Parkinson's Disease. Neurochem Res 2021; 47:234-248. [PMID: 34637100 DOI: 10.1007/s11064-021-03464-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 12/20/2022]
Abstract
Parkinson's disease (PD) is associated with dopamine depletion in the striatum owing to the selective and progressive loss of the nigrostriatal dopaminergic neurons, which results in motor dysfunction and secondary clinical manifestations. The dopamine level in the striatum is preserved because of the innervation of the substantia nigra (SN) dopaminergic neurons into it. Therefore, protection of the SN neurons is crucial for maintaining the dopamine level in the striatum and for ensuring the desired motor coordination. Several strategies have been devised to protect the degenerating dopaminergic neurons or to restore the dopamine levels for treating PD. Most of the methods focus exclusively on preventing cell body death in the neurons. Although advances have been made in understanding the disease, the search for disease-modifying drugs is an ongoing process. The present review describes the evidence from studies involving patients with PD as well as PD models that axon terminals are highly vulnerable to exogenous and endogenous insults and degenerate at the early stage of the disease. Impairment of mitochondrial dynamics, Ca2+ homeostasis, axonal transport, and loss of plasticity of axon terminals appear before the neuronal degeneration in PD. Furthermore, distortion of synaptic morphology and reduction of postsynaptic dendritic spines are the neuropathological hallmarks of early-stage disease. Thus, the review proposes a shift in focus from discerning the mechanism of neuronal cell body loss and targeting it to an entirely different approach of preventing axonal degeneration. The review also suggests appropriate strategies to prevent the loss of synaptic terminals, which could induce regrowth of the axon and its auxiliary fibers and might offer relief from the symptomatic features of PD.
Collapse
|
21
|
Hutny M, Hofman J, Klimkowicz-Mrowiec A, Gorzkowska A. Current Knowledge on the Background, Pathophysiology and Treatment of Levodopa-Induced Dyskinesia-Literature Review. J Clin Med 2021; 10:jcm10194377. [PMID: 34640395 PMCID: PMC8509231 DOI: 10.3390/jcm10194377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/02/2021] [Accepted: 09/22/2021] [Indexed: 02/07/2023] Open
Abstract
Levodopa remains the primary drug for controlling motor symptoms in Parkinson’s disease through the whole course, but over time, complications develop in the form of dyskinesias, which gradually become more frequent and severe. These abnormal, involuntary, hyperkinetic movements are mainly characteristic of the ON phase and are triggered by excess exogenous levodopa. They may also occur during the OFF phase, or in both phases. Over the past 10 years, the issue of levodopa-induced dyskinesia has been the subject of research into both the substrate of this pathology and potential remedial strategies. The purpose of the present study was to review the results of recent research on the background and treatment of dyskinesia. To this end, databases were reviewed using a search strategy that included both relevant keywords related to the topic and appropriate filters to limit results to English language literature published since 2010. Based on the selected papers, the current state of knowledge on the morphological, functional, genetic and clinical features of levodopa-induced dyskinesia, as well as pharmacological, genetic treatment and other therapies such as deep brain stimulation, are described.
Collapse
Affiliation(s)
- Michał Hutny
- Students’ Scientific Society, Department of Neurorehabilitation, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland;
- Correspondence:
| | - Jagoda Hofman
- Students’ Scientific Society, Department of Neurorehabilitation, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland;
| | - Aleksandra Klimkowicz-Mrowiec
- Department of Internal Medicine and Gerontology, Faculty of Medicine, Medical College, Jagiellonian University, 30-688 Kraków, Poland;
| | - Agnieszka Gorzkowska
- Department of Neurorehabilitation, Faculty of Medical Sciences, School of Medicine, Medical University of Silesia, 40-752 Katowice, Poland;
| |
Collapse
|
22
|
Gardoni F, Di Luca M. Protein-protein interactions at the NMDA receptor complex: From synaptic retention to synaptonuclear protein messengers. Neuropharmacology 2021; 190:108551. [PMID: 33819458 DOI: 10.1016/j.neuropharm.2021.108551] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/17/2021] [Accepted: 03/26/2021] [Indexed: 12/18/2022]
Abstract
N-methyl-d-aspartate receptors (NMDARs) are glutamate-gated ion channels that support essential functions throughout the brain. NMDARs are tetramers composed of the GluN1 subunit in complex with GluN2- and GluN3-type regulatory subunits, resulting in the formation of various receptor subtypes throughout the central nervous system (CNS), characterised by different kinetics, biophysical and pharmacological properties, and the abilities to interact with specific partners at dendritic spines. NMDARs are expressed at high levels, are widely distributed throughout the brain, and are involved in several physiological and pathological conditions. Here, we will focus on the GluN2A- and GluN2B-containing NMDARs found at excitatory synapses and their interactions with plasticity-relevant proteins, such as the postsynaptic density family of membrane-associated guanylate kinases (PSD-MAGUKs), Ca2+/calmodulin-dependent kinase II (CaMKII) and synaptonuclear protein messengers. The dynamic interactions between NMDAR subunits and various proteins regulating synaptic receptor retention and synaptonuclear signalling mediated by protein messengers suggest that the NMDAR serves as a key molecular player that coordinates synaptic activity and cell-wide events that require gene transcription. Importantly, protein-protein interactions at the NMDAR complex can also contribute to synaptic dysfunction in several brain disorders. Therefore, the modulation of the molecular composition of the NMDAR complex might represent a novel pharmacological approach for the treatment of certain disease states.
Collapse
Affiliation(s)
- Fabrizio Gardoni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy
| | - Monica Di Luca
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy.
| |
Collapse
|
23
|
Deffains M, Canron MH, Teil M, Li Q, Dehay B, Bezard E, Fernagut PO. L-DOPA regulates α-synuclein accumulation in experimental parkinsonism. Neuropathol Appl Neurobiol 2020; 47:532-543. [PMID: 33275784 DOI: 10.1111/nan.12678] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 10/09/2020] [Accepted: 11/28/2020] [Indexed: 11/30/2022]
Abstract
AIMS Widespread accumulation of misfolded α-synuclein aggregates is a key feature of Parkinson's disease (PD). Although the pattern and extent of α-synuclein accumulation through PD brains is known, the impact of chronic dopamine-replacement therapy (the gold-standard pharmacological treatment of PD) on the fate of α-synuclein is still unknown. Here, we investigated the distribution and accumulation of α-synuclein in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) non-human primate model of PD and determined the effect of chronic L-DOPA treatment on MPTP-induced α-synuclein pathology. METHODS We measured the density of α-synuclein and tau immuno-positive neurons in the substantia nigra, putamen, hippocampal CA1 region, temporal cortex and dentate nucleus of control, MPTP and MPTP+L-DOPA-treated monkeys. Moreover, we also extracted and quantified Triton-X (TX) soluble and insoluble α-synuclein in putamen and hippocampus samples from a separate cohort of control, MPTP and MPTP+L-DOPA-treated monkeys. RESULTS MPTP-induced α-synuclein accumulation in NHP model of PD was not limited to the substantia nigra but also occurred in the putamen, hippocampal CA1 region and temporal cortex. Tau was increased only in the temporal cortex. Moreover, increased intraneuronal TX insoluble α-synuclein was truncated, but not in the structural form of Lewy bodies. The MPTP-induced increase in α-synuclein levels was abolished in animals having received L-DOPA in all the brain regions, except in the substantia nigra. CONCLUSIONS Dopamine replacement therapy can dramatically ameliorate α-synuclein pathology in the MPTP NHP model of PD. Therefore, patient's dopaminergic medication should be systematically considered when assessing α-synuclein as a biomarker for diagnosis, monitoring disease progression and response to disease-modifying treatments.
Collapse
Affiliation(s)
- Marc Deffains
- Univ. Bordeaux, CNRS, IMN, UMR 5293, Bordeaux, France
| | | | - Margaux Teil
- Univ. Bordeaux, CNRS, IMN, UMR 5293, Bordeaux, France
| | - Qin Li
- Motac Neuroscience, Manchester, United Kingdom.,Institute of Laboratory Animal Sciences, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | | | - Erwan Bezard
- Univ. Bordeaux, CNRS, IMN, UMR 5293, Bordeaux, France.,Motac Neuroscience, Manchester, United Kingdom.,Institute of Laboratory Animal Sciences, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Pierre-Olivier Fernagut
- Univ. Bordeaux, CNRS, IMN, UMR 5293, Bordeaux, France.,Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, INSERM UMR_S 1084, Poitiers, France
| |
Collapse
|
24
|
Olanow CW, Calabresi P, Obeso JA. Continuous Dopaminergic Stimulation as a Treatment for Parkinson's Disease: Current Status and Future Opportunities. Mov Disord 2020; 35:1731-1744. [DOI: 10.1002/mds.28215] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/05/2020] [Accepted: 06/15/2020] [Indexed: 12/21/2022] Open
Affiliation(s)
- C. Warren Olanow
- Department of Neurology and Department of Neuroscience Mount Sinai School of Medicine New York New York USA
- Clintrex Research Corporation Sarasota Florida USA
| | - Paolo Calabresi
- Neurology Fondazione Policlinico Universitario Agostino Gemelli IRCCS Rome Italy
- Dipartimento Neuroscienze Università Cattolica del Sacro Cuore Rome Italy
| | - Jose A. Obeso
- CINAC, Hospital Universitario HM Puerta del Sur, Universidad CEU‐San Pablo Móstoles Madrid Spain
- CIBERNED, Instituto de Salud Carlos III Madrid Spain
| |
Collapse
|
25
|
Rosenblad C, Li Q, Pioli EY, Dovero S, Antunes AS, Agúndez L, Bardelli M, Linden RM, Henckaerts E, Björklund A, Bezard E, Björklund T. Vector-mediated l-3,4-dihydroxyphenylalanine delivery reverses motor impairments in a primate model of Parkinson's disease. Brain 2020; 142:2402-2416. [PMID: 31243443 PMCID: PMC6658866 DOI: 10.1093/brain/awz176] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/19/2019] [Accepted: 04/24/2019] [Indexed: 02/06/2023] Open
Abstract
Ever since its introduction 40 years ago l-3,4-dihydroxyphenylalanine (l-DOPA) therapy has retained its role as the leading standard medication for patients with Parkinson's disease. With time, however, the shortcomings of oral l-DOPA treatment have become apparent, particularly the motor fluctuations and troublesome dyskinetic side effects. These side effects, which are caused by the excessive swings in striatal dopamine caused by intermittent oral delivery, can be avoided by delivering l-DOPA in a more continuous manner. Local gene delivery of the l-DOPA synthesizing enzymes, tyrosine hydroxylase and guanosine-tri-phosphate-cyclohydrolase-1, offers a new approach to a more refined dopaminergic therapy where l-DOPA is delivered continuously at the site where it is needed i.e. the striatum. In this study we have explored the therapeutic efficacy of adeno-associated viral vector-mediated l-DOPA delivery to the putamen in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated rhesus monkeys, the standard non-human primate model of Parkinson's disease. Viral vector delivery of the two enzymes, tyrosine hydroxylase and guanosine-5'-tri-phosphate-cyclohydrolase-1, bilaterally into the dopamine-depleted putamen, induced a significant, dose-dependent improvement of motor behaviour up to a level identical to that obtained with the optimal dose of peripheral l-DOPA. Importantly, this improvement in motor function was obtained without any adverse dyskinetic effects. These results provide proof-of-principle for continuous vector-mediated l-DOPA synthesis as a novel therapeutic strategy for Parkinson's disease. The constant, local supply of l-DOPA obtained with this approach holds promise as an efficient one-time treatment that can provide long-lasting clinical improvement and at the same time prevent the appearance of motor fluctuations and dyskinetic side effects associated with standard oral dopaminergic medication.
Collapse
Affiliation(s)
- Carl Rosenblad
- Division of Neurology, Department of Clinical Sciences, Lund University, Skane University Hospital, 221 84 Lund, Sweden.,Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden
| | - Qin Li
- Motac Neuroscience, Manchester, UK
| | | | - Sandra Dovero
- Université de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France.,Centre National de la Recherche Scientifique Unité Mixte de Recherche 5293, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - André Slm Antunes
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Leticia Agúndez
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Martino Bardelli
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - R Michael Linden
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Els Henckaerts
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Anders Björklund
- Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden
| | - Erwan Bezard
- Motac Neuroscience, Manchester, UK.,Université de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France.,Centre National de la Recherche Scientifique Unité Mixte de Recherche 5293, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - Tomas Björklund
- Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden.,Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| |
Collapse
|
26
|
Chen X, Wang Y, Wu H, Cheng C, Le W. Research advances on L-DOPA-induced dyskinesia: from animal models to human disease. Neurol Sci 2020; 41:2055-2065. [DOI: 10.1007/s10072-020-04333-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 03/07/2020] [Indexed: 02/06/2023]
|
27
|
Sciaccaluga M, Mazzocchetti P, Bastioli G, Ghiglieri V, Cardinale A, Mosci P, Caccia C, Keywood C, Melloni E, Padoani G, Vailati S, Picconi B, Calabresi P, Tozzi A. Effects of safinamide on the glutamatergic striatal network in experimental Parkinson's disease. Neuropharmacology 2020; 170:108024. [PMID: 32142791 DOI: 10.1016/j.neuropharm.2020.108024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/03/2020] [Accepted: 02/27/2020] [Indexed: 01/01/2023]
Abstract
OBJECTIVE The aim of the study was to evaluate electrophysiological effects of safinamide on the intrinsic and synaptic properties of striatal spiny projection neurons (SPNs) and to characterize the possible therapeutic antiparkinsonian effect of this drug in dopamine (DA) denervated rats before and during levodopa (l-DOPA) treatment. BACKGROUND Current therapeutic options in Parkinson's disease (PD) are primarily DA replacement strategies that usually cause progressive motor fluctuations and l-DOPA-induced dyskinesia (LIDs) as a consequence of SPNs glutamate-induced hyperactivity. As a reversible and use-dependent inhibitor of voltage-gated sodium channels, safinamide reduces the release of glutamate and possibly optimize the effect of l-DOPA therapy in PD. METHODS Electrophysiological effects of safinamide (1-100 μM) were investigated by patch-clamp recordings in striatal slices of naïve, 6-hydroxydopamine (6-OHDA)-lesioned DA-denervated rats and DA-denervated animals chronically treated with l-DOPA. LIDs were assessed in vivo with and without chronic safinamide treatment and measured by scoring the l-DOPA-induced abnormal involuntary movements (AIMs). Motor deficit was evaluated with the stepping test. RESULTS Safinamide reduced the SPNs firing rate and glutamatergic synaptic transmission in all groups, showing a dose-dependent effect with half maximal inhibitory concentration (IC50) values in the therapeutic range (3-5 μM). Chronic co-administration of safinamide plus l-DOPA in DA-denervated animals favored the recovery of corticostriatal long-term synaptic potentiation (LTP) and depotentiation of excitatory synaptic transmission also reducing motor deficits before the onset of LIDs. CONCLUSIONS Safinamide, at a clinically relevant dose, optimizes the effect of l-DOPA therapy in experimental PD reducing SPNs excitability and modulating synaptic transmission. Co-administration of safinamide and l-DOPA ameliorates motor deficits.
Collapse
Affiliation(s)
- Miriam Sciaccaluga
- Neurological Clinic, Department of Medicine, University of Perugia, Santa Maria della Misericordia Hospital, via Gambuli, 1, 06132, Perugia, Italy
| | - Petra Mazzocchetti
- Neurological Clinic, Department of Medicine, University of Perugia, Santa Maria della Misericordia Hospital, via Gambuli, 1, 06132, Perugia, Italy
| | - Guendalina Bastioli
- Neurological Clinic, Department of Medicine, University of Perugia, Santa Maria della Misericordia Hospital, via Gambuli, 1, 06132, Perugia, Italy
| | - Veronica Ghiglieri
- Department of Philosophy, Human, Social and Educational Sciences, University of Perugia, Piazza G. Ermini, 1, 06123, Perugia, Italy; Laboratory of Neurophysiology, Santa Lucia Foundation IRCCS, Via del Fosso di Fiorano, 64, 00143, Rome, Italy
| | - Antonella Cardinale
- Neurological Clinic, Department of Medicine, University of Perugia, Santa Maria della Misericordia Hospital, via Gambuli, 1, 06132, Perugia, Italy; Laboratory of Experimental Neurophysiology, IRCCS San Raffaele Pisana, Via Val Cannuta 247, 00166, Rome, Italy
| | - Paolo Mosci
- Department of Veterinary, University of Perugia, Via San Costanzo, 4, 06126, Perugia, Italy
| | - Carla Caccia
- Open R&D Department, Zambon SpA, Via Lillo del Duca, 10, 20091, Bresso, Milan, Italy
| | - Charlotte Keywood
- Open R&D Department, Zambon SpA, Via Lillo del Duca, 10, 20091, Bresso, Milan, Italy
| | - Elsa Melloni
- Open R&D Department, Zambon SpA, Via Lillo del Duca, 10, 20091, Bresso, Milan, Italy
| | - Gloria Padoani
- Open R&D Department, Zambon SpA, Via Lillo del Duca, 10, 20091, Bresso, Milan, Italy
| | - Silvia Vailati
- Open R&D Department, Zambon SpA, Via Lillo del Duca, 10, 20091, Bresso, Milan, Italy
| | - Barbara Picconi
- Laboratory of Experimental Neurophysiology, IRCCS San Raffaele Pisana, Via Val Cannuta 247, 00166, Rome, Italy; University San Raffaele, Via Val Cannuta, 247, 00166, Rome, Italy
| | - Paolo Calabresi
- Clinica Neurologica, Dipartimento di Neuroscienze, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, Largo Agostino Gemelli, 8, 00168, Roma, Italy
| | - Alessandro Tozzi
- Department of Experimental Medicine, Section of Physiology and Biochemistry, University of Perugia, via Gambuli, 1, 06132, Perugia, Italy.
| |
Collapse
|
28
|
Synaptic GluN2A-Containing NMDA Receptors: From Physiology to Pathological Synaptic Plasticity. Int J Mol Sci 2020; 21:ijms21041538. [PMID: 32102377 PMCID: PMC7073220 DOI: 10.3390/ijms21041538] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/16/2022] Open
Abstract
N-Methyl-d-Aspartate Receptors (NMDARs) are ionotropic glutamate-gated receptors. NMDARs are tetramers composed by several homologous subunits of GluN1-, GluN2-, or GluN3-type, leading to the existence in the central nervous system of a high variety of receptor subtypes with different pharmacological and signaling properties. NMDAR subunit composition is strictly regulated during development and by activity-dependent synaptic plasticity. Given the differences between GluN2 regulatory subunits of NMDAR in several functions, here we will focus on the synaptic pool of NMDARs containing the GluN2A subunit, addressing its role in both physiology and pathological synaptic plasticity as well as the contribution in these events of different types of GluN2A-interacting proteins.
Collapse
|
29
|
Leta V, Jenner P, Chaudhuri KR, Antonini A. Can therapeutic strategies prevent and manage dyskinesia in Parkinson’s disease? An update. Expert Opin Drug Saf 2019; 18:1203-1218. [DOI: 10.1080/14740338.2019.1681966] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Valentina Leta
- King’s College London, Department of Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, London, UK
- Parkinson’s Foundation Centre of Excellence, King’s College Hospital, London, UK
| | - Peter Jenner
- Neurodegenerative Diseases Research Group, School of Cancer and Pharmaceutical Sciences, Faculty of Life Science and Medicine, King’s College London, London, UK
| | - K. Ray Chaudhuri
- King’s College London, Department of Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, London, UK
- Parkinson’s Foundation Centre of Excellence, King’s College Hospital, London, UK
| | - Angelo Antonini
- Department of Neuroscience, University of Padova, Padua, Italy
| |
Collapse
|
30
|
Linking NMDA Receptor Synaptic Retention to Synaptic Plasticity and Cognition. iScience 2019; 19:927-939. [PMID: 31518901 PMCID: PMC6742927 DOI: 10.1016/j.isci.2019.08.036] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/24/2019] [Accepted: 08/21/2019] [Indexed: 11/29/2022] Open
Abstract
NMDA receptor (NMDAR) subunit composition plays a pivotal role in synaptic plasticity at excitatory synapses. Still, the mechanisms responsible for the synaptic retention of NMDARs following induction of plasticity need to be fully elucidated. Rabphilin3A (Rph3A) is involved in the stabilization of NMDARs at synapses through the formation of a complex with GluN2A and PSD-95. Here we used different protocols to induce synaptic plasticity in the presence or absence of agents modulating Rph3A function. The use of Forskolin/Rolipram/Picrotoxin cocktail to induce chemical LTP led to synaptic accumulation of Rph3A and formation of synaptic GluN2A/Rph3A complex. Notably, Rph3A silencing or use of peptides interfering with the GluN2A/Rph3A complex blocked LTP induction. Moreover, in vivo disruption of GluN2A/Rph3A complex led to a profound alteration of spatial memory. Overall, our results demonstrate a molecular mechanism needed for NMDAR stabilization at synapses after plasticity induction and to trigger downstream signaling events necessary for cognitive behavior. LTP induces trafficking of Rph3A at synapses and formation of GluN2A/Rph3A complex Disruption of Rph3A/GluN2A complex leads to LTP impairment Rph3A/GluN2A complex is needed for modifications of dendritic spines induced by LTP Disruption of Rph3A/GluN2A complex leads to spatial memory impairment
Collapse
|
31
|
The levels of the NMDA receptor co-agonist D-serine are reduced in the substantia nigra of MPTP-lesioned macaques and in the cerebrospinal fluid of Parkinson's disease patients. Sci Rep 2019; 9:8898. [PMID: 31222058 PMCID: PMC6586824 DOI: 10.1038/s41598-019-45419-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/03/2019] [Indexed: 01/31/2023] Open
Abstract
Dysfunction of NMDA receptor (NMDAR)-mediated transmission is supposed to contribute to the motor and non-motor symptoms of Parkinson’s Disease (PD), and to L-DOPA-induced dyskinesia. Besides the main agonist L-glutamate, two other amino acids in the atypical D-configuration, D-serine and D-aspartate, activate NMDARs. In the present work, we investigated the effect of dopamine depletion on D-amino acids metabolism in the brain of MPTP-lesioned Macaca mulatta, and in the serum and cerebrospinal fluid of PD patients. We found that MPTP treatment increases D-aspartate and D-serine in the monkey putamen while L-DOPA rescues both D-amino acids levels. Conversely, dopaminergic denervation is associated with selective D-serine reduction in the substantia nigra. Such decrease suggests that the beneficial effect of D-serine adjuvant therapy previously reported in PD patients may derive from the normalization of endogenous D-serine levels and consequent improvement of nigrostriatal hypoglutamatergic transmission at glycine binding site. We also found reduced D-serine concentration in the cerebrospinal fluid of L-DOPA-free PD patients. These results further confirm the existence of deep interaction between dopaminergic and glutamatergic neurotransmission in PD and disclose a possible direct influence of D-amino acids variations in the changes of NMDAR transmission occurring under dopamine denervation and L-DOPA therapy.
Collapse
|
32
|
Quevedo MF, Bustos MA, Masone D, Roggero CM, Bustos DM, Tomes CN. Grab recruitment by Rab27A-Rabphilin3a triggers Rab3A activation in human sperm exocytosis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2019; 1866:612-622. [PMID: 30599141 DOI: 10.1016/j.bbamcr.2018.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/30/2018] [Accepted: 12/09/2018] [Indexed: 12/12/2022]
Abstract
Sperm must undergo the regulated exocytosis of its dense core granule (the acrosome reaction, AR) to fertilize the egg. We have previously described that Rabs3 and 27 are organized in a RabGEF cascade within the signaling pathway elicited by exocytosis stimuli in human sperm. Here, we report the identity and the role of two molecules that link these secretory Rabs in the RabGEF cascade: Rabphilin3a and GRAB. Like Rab3 and Rab27, GRAB and Rabphilin3a are present, localize to the acrosomal region and are required for calcium-triggered exocytosis in human sperm. Sequestration of either protein with specific antibodies introduced into streptolysin O-permeabilized sperm impairs the activation of Rab3 in the acrosomal region elicited by calcium, but not that of Rab27. Biochemical and functional assays indicate that Rabphilin3a behaves as a Rab27 effector during the AR and that GRAB exhibits GEF activity toward Rab3A. Recombinant, active Rab27A pulls down Rabphilin3a and GRAB from human sperm extracts. Conversely, immobilized Rabphilin3a recruits Rab27 and GRAB; the latter promotes Rab3A activation. The enzymatic activity of GRAB toward Rab3A was also suggested by in silico and in vitro assays with purified proteins. In summary, we describe here a signaling module where Rab27A-GTP interacts with Rabphilin3a, which in turn recruits a guanine nucleotide-exchange activity toward Rab3A. This is the first description of the interaction of Rabphilin3a with a GEF. Because the machinery that drives exocytosis is highly conserved, it is tempting to hypothesize that the RabGEF cascade unveiled here might be part of the molecular mechanisms that drive exocytosis in other secretory systems.
Collapse
Affiliation(s)
- María Florencia Quevedo
- Instituto de Histologia y Embriologia de Mendoza (IHEM) Dr. Mario H. Burgos-CONICET, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina
| | - Matías Alberto Bustos
- Instituto de Histologia y Embriologia de Mendoza (IHEM) Dr. Mario H. Burgos-CONICET, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina
| | - Diego Masone
- Instituto de Histologia y Embriologia de Mendoza (IHEM) Dr. Mario H. Burgos-CONICET, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina; Facultad de Ingeniería, Universidad Nacional de Cuyo, Argentina
| | | | - Diego Martín Bustos
- Instituto de Histologia y Embriologia de Mendoza (IHEM) Dr. Mario H. Burgos-CONICET, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Argentina
| | - Claudia Nora Tomes
- Instituto de Histologia y Embriologia de Mendoza (IHEM) Dr. Mario H. Burgos-CONICET, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Argentina; Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Argentina.
| |
Collapse
|
33
|
Mellone M, Zianni E, Stanic J, Campanelli F, Marino G, Ghiglieri V, Longhi A, Thiolat ML, Li Q, Calabresi P, Bezard E, Picconi B, Di Luca M, Gardoni F. NMDA receptor GluN2D subunit participates to levodopa-induced dyskinesia pathophysiology. Neurobiol Dis 2019; 121:338-349. [DOI: 10.1016/j.nbd.2018.09.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/11/2018] [Accepted: 09/23/2018] [Indexed: 12/17/2022] Open
|
34
|
Gardoni F, Morari M, Kulisevsky J, Brugnoli A, Novello S, Pisanò CA, Caccia C, Mellone M, Melloni E, Padoani G, Sosti V, Vailati S, Keywood C. Safinamide Modulates Striatal Glutamatergic Signaling in a Rat Model of Levodopa-Induced Dyskinesia. J Pharmacol Exp Ther 2018; 367:442-451. [PMID: 30291173 DOI: 10.1124/jpet.118.251645] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 09/17/2018] [Indexed: 03/08/2025] Open
Abstract
Safinamide (Xadago) is a novel dual-mechanism drug that has been approved in the European Union and United States as add-on treatment to levodopa in Parkinson's disease therapy. In addition to its selective and reversible monoamine oxidase B inhibition, safinamide through use-dependent sodium channel blockade reduces overactive glutamatergic transmission in basal ganglia, which is believed to contribute to motor symptoms and complications including levodopa-induced dyskinesia (LID). The present study investigated the effects of safinamide on the development of LID in 6-hydroxydopamine (6-OHDA)-lesioned rats, evaluating behavioral, molecular, and neurochemical parameters associated with LID appearance. 6-OHDA-lesioned rats were treated with saline, levodopa (6 mg/kg), or levodopa plus safinamide (15 mg/kg) for 21 days. Abnormal involuntary movements, motor performance, molecular composition of the striatal glutamatergic synapse, glutamate, and GABA release were analyzed. In the striatum, safinamide prevented the rearrangement of the subunit composition of N-methyl-d-aspartate receptors and the levodopa-induced increase of glutamate release associated with dyskinesia without affecting the levodopa-stimulated motor performance and dyskinesia. Overall, these findings suggest that the striatal glutamate-modulating component of safinamide's activity may contribute to its clinical effects, where its long-term use as levodopa add-on therapy significantly improves motor function and "on" time without troublesome dyskinesia.
Collapse
Affiliation(s)
- F Gardoni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy (F.G., M.Me.); Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Ferrara, Italy (M.Mo., A.B., S.N., C.A.P.); Sant Pau Institute of Biomedical Research, Barcelona, Spain (J.K.); Universitat Autònoma de Barcelona, Universitat Oberta de Catalunya, Barcelona, Spain (J.K.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain (J.K., V.S.); Department of R&D, Zambon SpA, Bresso, Milan, Italy (C.C., E.M., G.P., S.V., C.K.); and Neuropsychopharmacology Laboratory, Movement Disorders Unit, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (V.S.)
| | - M Morari
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy (F.G., M.Me.); Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Ferrara, Italy (M.Mo., A.B., S.N., C.A.P.); Sant Pau Institute of Biomedical Research, Barcelona, Spain (J.K.); Universitat Autònoma de Barcelona, Universitat Oberta de Catalunya, Barcelona, Spain (J.K.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain (J.K., V.S.); Department of R&D, Zambon SpA, Bresso, Milan, Italy (C.C., E.M., G.P., S.V., C.K.); and Neuropsychopharmacology Laboratory, Movement Disorders Unit, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (V.S.)
| | - J Kulisevsky
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy (F.G., M.Me.); Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Ferrara, Italy (M.Mo., A.B., S.N., C.A.P.); Sant Pau Institute of Biomedical Research, Barcelona, Spain (J.K.); Universitat Autònoma de Barcelona, Universitat Oberta de Catalunya, Barcelona, Spain (J.K.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain (J.K., V.S.); Department of R&D, Zambon SpA, Bresso, Milan, Italy (C.C., E.M., G.P., S.V., C.K.); and Neuropsychopharmacology Laboratory, Movement Disorders Unit, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (V.S.)
| | - A Brugnoli
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy (F.G., M.Me.); Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Ferrara, Italy (M.Mo., A.B., S.N., C.A.P.); Sant Pau Institute of Biomedical Research, Barcelona, Spain (J.K.); Universitat Autònoma de Barcelona, Universitat Oberta de Catalunya, Barcelona, Spain (J.K.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain (J.K., V.S.); Department of R&D, Zambon SpA, Bresso, Milan, Italy (C.C., E.M., G.P., S.V., C.K.); and Neuropsychopharmacology Laboratory, Movement Disorders Unit, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (V.S.)
| | - S Novello
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy (F.G., M.Me.); Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Ferrara, Italy (M.Mo., A.B., S.N., C.A.P.); Sant Pau Institute of Biomedical Research, Barcelona, Spain (J.K.); Universitat Autònoma de Barcelona, Universitat Oberta de Catalunya, Barcelona, Spain (J.K.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain (J.K., V.S.); Department of R&D, Zambon SpA, Bresso, Milan, Italy (C.C., E.M., G.P., S.V., C.K.); and Neuropsychopharmacology Laboratory, Movement Disorders Unit, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (V.S.)
| | - C A Pisanò
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy (F.G., M.Me.); Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Ferrara, Italy (M.Mo., A.B., S.N., C.A.P.); Sant Pau Institute of Biomedical Research, Barcelona, Spain (J.K.); Universitat Autònoma de Barcelona, Universitat Oberta de Catalunya, Barcelona, Spain (J.K.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain (J.K., V.S.); Department of R&D, Zambon SpA, Bresso, Milan, Italy (C.C., E.M., G.P., S.V., C.K.); and Neuropsychopharmacology Laboratory, Movement Disorders Unit, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (V.S.)
| | - C Caccia
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy (F.G., M.Me.); Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Ferrara, Italy (M.Mo., A.B., S.N., C.A.P.); Sant Pau Institute of Biomedical Research, Barcelona, Spain (J.K.); Universitat Autònoma de Barcelona, Universitat Oberta de Catalunya, Barcelona, Spain (J.K.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain (J.K., V.S.); Department of R&D, Zambon SpA, Bresso, Milan, Italy (C.C., E.M., G.P., S.V., C.K.); and Neuropsychopharmacology Laboratory, Movement Disorders Unit, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (V.S.)
| | - M Mellone
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy (F.G., M.Me.); Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Ferrara, Italy (M.Mo., A.B., S.N., C.A.P.); Sant Pau Institute of Biomedical Research, Barcelona, Spain (J.K.); Universitat Autònoma de Barcelona, Universitat Oberta de Catalunya, Barcelona, Spain (J.K.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain (J.K., V.S.); Department of R&D, Zambon SpA, Bresso, Milan, Italy (C.C., E.M., G.P., S.V., C.K.); and Neuropsychopharmacology Laboratory, Movement Disorders Unit, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (V.S.)
| | - E Melloni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy (F.G., M.Me.); Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Ferrara, Italy (M.Mo., A.B., S.N., C.A.P.); Sant Pau Institute of Biomedical Research, Barcelona, Spain (J.K.); Universitat Autònoma de Barcelona, Universitat Oberta de Catalunya, Barcelona, Spain (J.K.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain (J.K., V.S.); Department of R&D, Zambon SpA, Bresso, Milan, Italy (C.C., E.M., G.P., S.V., C.K.); and Neuropsychopharmacology Laboratory, Movement Disorders Unit, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (V.S.)
| | - G Padoani
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy (F.G., M.Me.); Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Ferrara, Italy (M.Mo., A.B., S.N., C.A.P.); Sant Pau Institute of Biomedical Research, Barcelona, Spain (J.K.); Universitat Autònoma de Barcelona, Universitat Oberta de Catalunya, Barcelona, Spain (J.K.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain (J.K., V.S.); Department of R&D, Zambon SpA, Bresso, Milan, Italy (C.C., E.M., G.P., S.V., C.K.); and Neuropsychopharmacology Laboratory, Movement Disorders Unit, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (V.S.)
| | - V Sosti
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy (F.G., M.Me.); Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Ferrara, Italy (M.Mo., A.B., S.N., C.A.P.); Sant Pau Institute of Biomedical Research, Barcelona, Spain (J.K.); Universitat Autònoma de Barcelona, Universitat Oberta de Catalunya, Barcelona, Spain (J.K.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain (J.K., V.S.); Department of R&D, Zambon SpA, Bresso, Milan, Italy (C.C., E.M., G.P., S.V., C.K.); and Neuropsychopharmacology Laboratory, Movement Disorders Unit, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (V.S.)
| | - S Vailati
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy (F.G., M.Me.); Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Ferrara, Italy (M.Mo., A.B., S.N., C.A.P.); Sant Pau Institute of Biomedical Research, Barcelona, Spain (J.K.); Universitat Autònoma de Barcelona, Universitat Oberta de Catalunya, Barcelona, Spain (J.K.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain (J.K., V.S.); Department of R&D, Zambon SpA, Bresso, Milan, Italy (C.C., E.M., G.P., S.V., C.K.); and Neuropsychopharmacology Laboratory, Movement Disorders Unit, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (V.S.)
| | - C Keywood
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy (F.G., M.Me.); Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Ferrara, Italy (M.Mo., A.B., S.N., C.A.P.); Sant Pau Institute of Biomedical Research, Barcelona, Spain (J.K.); Universitat Autònoma de Barcelona, Universitat Oberta de Catalunya, Barcelona, Spain (J.K.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain (J.K., V.S.); Department of R&D, Zambon SpA, Bresso, Milan, Italy (C.C., E.M., G.P., S.V., C.K.); and Neuropsychopharmacology Laboratory, Movement Disorders Unit, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (V.S.)
| |
Collapse
|
35
|
Espay AJ, Morgante F, Merola A, Fasano A, Marsili L, Fox SH, Bezard E, Picconi B, Calabresi P, Lang AE. Levodopa-induced dyskinesia in Parkinson disease: Current and evolving concepts. Ann Neurol 2018; 84:797-811. [DOI: 10.1002/ana.25364] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Alberto J. Espay
- UC Gardner Neuroscience Institute and Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology; University of Cincinnati; Cincinnati OH
| | - Francesca Morgante
- Institute of Molecular and Clinical Sciences; St George's University of London; London United Kingdom
| | - Aristide Merola
- UC Gardner Neuroscience Institute and Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology; University of Cincinnati; Cincinnati OH
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Division of Neurology; University of Toronto; Toronto Ontario Canada
- Krembil Brain Institute; Toronto Ontario Canada
| | - Luca Marsili
- UC Gardner Neuroscience Institute and Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology; University of Cincinnati; Cincinnati OH
| | - Susan H. Fox
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Division of Neurology; University of Toronto; Toronto Ontario Canada
- Krembil Brain Institute; Toronto Ontario Canada
| | - Erwan Bezard
- University of Bordeaux, Institute of Neurodegenerative Diseases; Bordeaux France
- National Center for Scientific Research, Institute of Neurodegenerative Diseases; Bordeaux France
| | - Barbara Picconi
- Experimental Neurophysiology Laboratory; IRCCS San Raffaele Pisana, University San Raffaele; Rome Italy
| | - Paolo Calabresi
- Neurological Clinic; University of Perugia, Santa Maria della Misericordia Hospital; Perugia Italy
| | - Anthony E. Lang
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Division of Neurology; University of Toronto; Toronto Ontario Canada
- Krembil Brain Institute; Toronto Ontario Canada
| |
Collapse
|
36
|
Fox SH, Brotchie JM. Viewpoint: Developing drugs for levodopa-induced dyskinesia in PD: Lessons learnt, what does the future hold? Eur J Neurosci 2018; 49:399-409. [PMID: 30269407 DOI: 10.1111/ejn.14173] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/27/2018] [Accepted: 08/01/2018] [Indexed: 12/21/2022]
Abstract
The drive to develop drugs to treat PD starts and ends with the patient. Herein, we discuss how the experience with drug development for LID has led the field in translational studies in PD with advancing ground-breaking science via rigorous clinical trial design, to deliver clinical proof-of-concepts across multiple therapeutic targets. However, issues remain in advancing drugs efficacious preclinically to the clinic, and future studies need to learn from past successes and failures. Such lessons include implementing better early indicators of tolerability, for instance evaluating non-motor symptoms in preclinical models; improving patient-related outcome measures in clinical trials, as well as considering the unique nature of dyskinesia in an individual patient. The field of translational studies needs to become more patient focused to improve successful outcomes.
Collapse
Affiliation(s)
- Susan H Fox
- The Edmond J Safra Program in Parkinson Disease and Movement Disorder Clinic, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Jonathan M Brotchie
- Krembil Research Institute, Toronto Western Hospital, Toronto, Ontario, Canada.,Atuka Inc, Toronto, Ontario, Canada
| |
Collapse
|
37
|
Yasuda Y, Iwama S, Kiyota A, Izumida H, Nakashima K, Iwata N, Ito Y, Morishita Y, Goto M, Suga H, Banno R, Enomoto A, Takahashi M, Arima H, Sugimura Y. Critical role of rabphilin-3A in the pathophysiology of experimental lymphocytic neurohypophysitis. J Pathol 2018; 244:469-478. [PMID: 29377134 DOI: 10.1002/path.5046] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 01/04/2018] [Accepted: 01/09/2018] [Indexed: 12/17/2023]
Abstract
Autoimmune hypophysitis (AH) is thought to be an autoimmune disease characterized by lymphocytic infiltration of the pituitary gland. Among AH pathologies, lymphocytic infundibulo-neurohypophysitis (LINH) involves infiltration of the neurohypophysis and/or the hypothalamic infundibulum, causing central diabetes insipidus resulting from insufficiency of arginine vasopressin secretion. The pathophysiological and pathogenetic mechanisms underlying LINH are largely unknown. Clinically, differentiating LINH from other pituitary diseases accompanied by mass lesions, including tumours, has often been difficult, because of similar clinical manifestations. We recently reported that rabphilin-3A is an autoantigen and that anti-rabphilin-3A antibodies constitute a possible diagnostic marker for LINH. However, the involvement of rabphilin-3A in the pathogenesis of LINH remains to be elucidated. This study was undertaken to explore the role of rabphilin-3A in lymphocytic neurohypophysitis and to investigate the mechanism. We found that immunization of mice with rabphilin-3A led to neurohypophysitis. Lymphocytic infiltration was observed in the neurohypophysis and supraoptic nucleus 1 month after the first immunization. Mice immunized with rabphilin-3A showed an increase in the volume of urine that was hypotonic as compared with control mice. Administration of a cocktail of monoclonal anti-rabphilin-3A antibodies did not induce neurohypophysitis. However, abatacept, which is a chimeric protein that suppresses T-cell activation, decreased the number of T cells specific for rabphilin-3A in peripheral blood mononuclear cells (PBMCs). It ameliorated lymphocytic infiltration of CD3+ T cells in the neurohypophysis of mice that had been immunized with rabphilin-3A. Additionally, there was a linear association between the number of T cells specific for rabphilin-3A in PBMCs and the number of CD3+ T cells infiltrating the neurohypophysis. In conclusion, we suggest that rabphilin-3A is a pathogenic antigen, and that T cells specific for rabphilin-3A are involved in the pathogenesis of neurohypophysitis in mice. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yoshinori Yasuda
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shintaro Iwama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Research Centre of Health, Physical Fitness and Sports, Nagoya University, Japan
| | - Atsushi Kiyota
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hisakazu Izumida
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kohtaro Nakashima
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naoko Iwata
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshihiro Ito
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshiaki Morishita
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Motomitsu Goto
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hidetaka Suga
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryoichi Banno
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Atsushi Enomoto
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahide Takahashi
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Arima
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshihisa Sugimura
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Fujita Health University, Toyoake, Japan
| |
Collapse
|
38
|
Mellone M, Gardoni F. Glutamatergic mechanisms in l-DOPA-induced dyskinesia and therapeutic implications. J Neural Transm (Vienna) 2018; 125:1225-1236. [DOI: 10.1007/s00702-018-1846-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 01/23/2018] [Indexed: 02/01/2023]
|