1
|
Rusin T, Villavicencio ALCH, Araújo WMC, Faiad C. How Argentinian Consumers Perceive the Safety of Irradiated Foods. Foods 2024; 13:3891. [PMID: 39682962 DOI: 10.3390/foods13233891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/22/2024] [Accepted: 11/30/2024] [Indexed: 12/18/2024] Open
Abstract
Food irradiation is a process used for various purposes, the main function of which is food safety. Although food irradiation has been used to ensure food safety, most consumers are unaware of the basic concepts of irradiation, misinterpreting information and showing a negative perception towards food treated with ionizing radiation. This research aimed to develop the cross-cultural adaptation and validation of the Awareness Scale on Consumption of Irradiated Foods (ASCIF) for the Argentine population and culture. The scale included 31 items covering 4 factors: safety of irradiated foods (S), concepts (C), labeling (L), and awareness (A), which were able to assess the Argentine population's knowledge of irradiated foods. The total number of respondents was 500 and the data were collected by means of an electronic survey. Statistical tests were carried out which met the validity assumptions and confirmed the validity and consistency of the psychometric scale by means of confirmatory factor analysis (CFA), Cronbach's alpha coefficient, and exploratory structural equation modelling (ESEM). Analysis of the results showed that the majority of consumers are unaware of the benefits of irradiated foods. It was found that the scale met the criteria for evidence of validity and consistency, proving to be an efficient tool for assessing potential challenges and opportunities in the Argentinian market for irradiated foods. The process was approved by the Research Ethics Committees of Brazil and Argentina and followed the adaptation methodologies of the International Test Commission (ITC) with processes of translations and retranslations and application of the scale in Argentina.
Collapse
Affiliation(s)
- Tiago Rusin
- Radiation Technology Center, Nuclear and Energy Research Institute, IPEN-CNEN, Cidade Universitária, São Paulo 05508-000, SP, Brazil
| | | | - Wilma Maria Coelho Araújo
- College of Health Sciences, University of Brasília, Campus Darcy Ribeiro, Brasília 70910-900, DF, Brazil
| | - Cristiane Faiad
- Department of Clinical Psychology, Institute of Psychology, University of Brasília, Campus Darcy Ribeiro, Brasília 70910-900, DF, Brazil
| |
Collapse
|
2
|
Wang J, Gao C, Fu C, Li K. Dysphagia in schizophrenia: pathological mechanisms and treatment recommendations. Front Psychiatry 2024; 15:1448623. [PMID: 39359857 PMCID: PMC11445750 DOI: 10.3389/fpsyt.2024.1448623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/27/2024] [Indexed: 10/04/2024] Open
Abstract
Schizophrenia is a chronic, severe, and disabling mental disorder that significantly impacts individuals' lives. Long-term treatment with antipsychotic drugs, coupled with the complications of the disease itself, increases the risk of dysphagia in patients. These disorders further heighten the likelihood of choking and asphyxia death among this population. This project aims to comprehensively review the pathological mechanisms behind dysphagia in schizophrenia, alongside proposing early screening and evaluation methods. It also suggests treatment recommendations to mitigate the risks and complications associated with dysphagia in these patients.
Collapse
Affiliation(s)
- Jiahui Wang
- Shandong Daizhuang Hospital, Jining, Shandong, China
| | - Caifeng Gao
- Shandong Daizhuang Hospital, Jining, Shandong, China
| | - Cuiyuan Fu
- Shandong Daizhuang Hospital, Jining, Shandong, China
| | - Kun Li
- Shandong Daizhuang Hospital, Jining, Shandong, China
| |
Collapse
|
3
|
Bracher KM, Wohlschlaeger A, Koch K, Knolle F. Cognitive subgroups of affective and non-affective psychosis show differences in medication and cortico-subcortical brain networks. Sci Rep 2024; 14:20314. [PMID: 39223185 PMCID: PMC11369100 DOI: 10.1038/s41598-024-71316-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
Cognitive deficits are prevalent in individuals with psychosis and are associated with neurobiological changes, potentially serving as an endophenotype for psychosis. Using the HCP-Early-Psychosis-dataset (n = 226), we aimed to investigate cognitive subtypes (deficit/intermediate/spared) through data-driven clustering in affective (AP) and non-affective psychosis patients (NAP) and controls (HC). We explored differences between three clusters in symptoms, cognition, medication, and grey matter volume. Applying principal component analysis, we selected features for clustering. Features that explained most variance were scores for intelligence, verbal recognition and comprehension, auditory attention, working memory, reasoning and executive functioning. Fuzzy K-Means clustering on those features revealed that the subgroups significantly varied in cognitive impairment, clinical symptoms, and, importantly, also in medication and grey matter volume in fronto-parietal and subcortical networks. The spared cluster (86%HC, 37%AP, 17%NAP) exhibited unimpaired cognition, lowest symptoms/medication, and grey matter comparable to controls. The deficit cluster (4%HC, 10%AP, 47%NAP) had impairments across all domains, highest symptoms scores/medication dosage, and pronounced grey matter alterations. The intermediate deficit cluster (11%HC, 54%AP, 36%NAP) showed fewer deficits than the second cluster, but similar symptoms/medication/grey matter to the spared cluster. Controlling for medication, cognitive scores correlated with grey matter changes and negative symptoms across all patients. Our findings generally emphasize the interplay between cognition, brain structure, symptoms, and medication in AP and NAP, and specifically suggest a possible mediating role of cognition, highlighting the potential of screening cognitive changes to aid tailoring treatments and interventions.
Collapse
Affiliation(s)
- Katharina M Bracher
- Division of Neurobiology, Faculty of Biology, LMU Munich, 82152, Martinsried, Germany
| | - Afra Wohlschlaeger
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Kathrin Koch
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Franziska Knolle
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany.
| |
Collapse
|
4
|
Guimond S, Van Rheenen TE. Editorial: Progress in understanding cognitive dysfunction in severe psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 2024; 132:110989. [PMID: 38458345 DOI: 10.1016/j.pnpbp.2024.110989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Affiliation(s)
- Synthia Guimond
- Department of Psychoeducation and Psychology, University of Quebec in Outaouais, Gatineau, Canada; The Royal's Institute of Mental Health Research, Department of Psychiatry, University of Ottawa, Ottawa, Canada.
| | - Tamsyn E Van Rheenen
- Department of Psychiatry, University of Melbourne, Melbourne, Australia; Centre for Mental Health and Brain Sciences, Swinburne University, Melbourne, Australia
| |
Collapse
|
5
|
Guimond S, Alftieh A, Devenyi GA, Mike L, Chakravarty MM, Shah JL, Parker DA, Sweeney JA, Pearlson G, Clementz BA, Tamminga CA, Keshavan M. Enlarged pituitary gland volume: a possible state rather than trait marker of psychotic disorders. Psychol Med 2024; 54:1835-1843. [PMID: 38357733 PMCID: PMC11132920 DOI: 10.1017/s003329172300380x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
BACKGROUND Enlarged pituitary gland volume could be a marker of psychotic disorders. However, previous studies report conflicting results. To better understand the role of the pituitary gland in psychosis, we examined a large transdiagnostic sample of individuals with psychotic disorders. METHODS The study included 751 participants (174 with schizophrenia, 114 with schizoaffective disorder, 167 with psychotic bipolar disorder, and 296 healthy controls) across six sites in the Bipolar-Schizophrenia Network on Intermediate Phenotypes consortium. Structural magnetic resonance images were obtained, and pituitary gland volumes were measured using the MAGeT brain algorithm. Linear mixed models examined between-group differences with controls and among patient subgroups based on diagnosis, as well as how pituitary volumes were associated with symptom severity, cognitive function, antipsychotic dose, and illness duration. RESULTS Mean pituitary gland volume did not significantly differ between patients and controls. No significant effect of diagnosis was observed. Larger pituitary gland volume was associated with greater symptom severity (F = 13.61, p = 0.0002), lower cognitive function (F = 4.76, p = 0.03), and higher antipsychotic dose (F = 5.20, p = 0.02). Illness duration was not significantly associated with pituitary gland volume. When all variables were considered, only symptom severity significantly predicted pituitary gland volume (F = 7.54, p = 0.006). CONCLUSIONS Although pituitary volumes were not increased in psychotic disorders, larger size may be a marker associated with more severe symptoms in the progression of psychosis. This finding helps clarify previous inconsistent reports and highlights the need for further research into pituitary gland-related factors in individuals with psychosis.
Collapse
Affiliation(s)
- Synthia Guimond
- Department of Psychiatry, The Royal’s Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
- Department of Psychoeducation and Psychology, Université du Québec en Outaouais, Gatineau, QC, Canada
- Department of Psychiatry, Massachusetts Mental Health Center and Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ahmad Alftieh
- Department of Psychiatry, The Royal’s Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
| | - Gabriel A. Devenyi
- Department of Psychiatry, McGill University, Montréal, QC, Canada
- Douglas Mental Health University Institute, Verdun, QC, Canada
| | - Luke Mike
- Department of Psychiatry, Massachusetts Mental Health Center and Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - M. Mallar Chakravarty
- Department of Psychiatry, McGill University, Montréal, QC, Canada
- Douglas Mental Health University Institute, Verdun, QC, Canada
- Department of Biomedical Engineering, McGill University Montréal, QC, Canada
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Verdun, QC, Canada
| | - Jai L. Shah
- Department of Psychiatry, McGill University, Montréal, QC, Canada
- Douglas Mental Health University Institute, Verdun, QC, Canada
| | - David A. Parker
- Department of Psychology, BioImaging Research Center, University of Georgia, Athens, GA, USA
- Department of and Neuroscience, BioImaging Research Center, University of Georgia, Athens, GA, USA
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - John A. Sweeney
- Department of Psychiatry, University of Cincinnati, Cincinnati, OH, USA
| | - Godfrey Pearlson
- Department of Psychiatry, Yale University, New Haven, CT, USA
- Department of Neuroscience, Yale University, New Haven, CT, USA
| | - Brett A. Clementz
- Department of Psychology, BioImaging Research Center, University of Georgia, Athens, GA, USA
- Department of and Neuroscience, BioImaging Research Center, University of Georgia, Athens, GA, USA
| | - Carol A. Tamminga
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Matcheri Keshavan
- Department of Psychiatry, Massachusetts Mental Health Center and Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Voineskos AN, Hawco C, Neufeld NH, Turner JA, Ameis SH, Anticevic A, Buchanan RW, Cadenhead K, Dazzan P, Dickie EW, Gallucci J, Lahti AC, Malhotra AK, Öngür D, Lencz T, Sarpal DK, Oliver LD. Functional magnetic resonance imaging in schizophrenia: current evidence, methodological advances, limitations and future directions. World Psychiatry 2024; 23:26-51. [PMID: 38214624 PMCID: PMC10786022 DOI: 10.1002/wps.21159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2024] Open
Abstract
Functional neuroimaging emerged with great promise and has provided fundamental insights into the neurobiology of schizophrenia. However, it has faced challenges and criticisms, most notably a lack of clinical translation. This paper provides a comprehensive review and critical summary of the literature on functional neuroimaging, in particular functional magnetic resonance imaging (fMRI), in schizophrenia. We begin by reviewing research on fMRI biomarkers in schizophrenia and the clinical high risk phase through a historical lens, moving from case-control regional brain activation to global connectivity and advanced analytical approaches, and more recent machine learning algorithms to identify predictive neuroimaging features. Findings from fMRI studies of negative symptoms as well as of neurocognitive and social cognitive deficits are then reviewed. Functional neural markers of these symptoms and deficits may represent promising treatment targets in schizophrenia. Next, we summarize fMRI research related to antipsychotic medication, psychotherapy and psychosocial interventions, and neurostimulation, including treatment response and resistance, therapeutic mechanisms, and treatment targeting. We also review the utility of fMRI and data-driven approaches to dissect the heterogeneity of schizophrenia, moving beyond case-control comparisons, as well as methodological considerations and advances, including consortia and precision fMRI. Lastly, limitations and future directions of research in the field are discussed. Our comprehensive review suggests that, in order for fMRI to be clinically useful in the care of patients with schizophrenia, research should address potentially actionable clinical decisions that are routine in schizophrenia treatment, such as which antipsychotic should be prescribed or whether a given patient is likely to have persistent functional impairment. The potential clinical utility of fMRI is influenced by and must be weighed against cost and accessibility factors. Future evaluations of the utility of fMRI in prognostic and treatment response studies may consider including a health economics analysis.
Collapse
Affiliation(s)
- Aristotle N Voineskos
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Colin Hawco
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Nicholas H Neufeld
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jessica A Turner
- Department of Psychiatry and Behavioral Health, Wexner Medical Center, Ohio State University, Columbus, OH, USA
| | - Stephanie H Ameis
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Cundill Centre for Child and Youth Depression and McCain Centre for Child, Youth and Family Mental Health, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Alan Anticevic
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Robert W Buchanan
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kristin Cadenhead
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Paola Dazzan
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Erin W Dickie
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Julia Gallucci
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Adrienne C Lahti
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Anil K Malhotra
- Institute for Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Department of Psychiatry, Zucker Hillside Hospital Division of Northwell Health, Glen Oaks, NY, USA
| | - Dost Öngür
- McLean Hospital/Harvard Medical School, Belmont, MA, USA
| | - Todd Lencz
- Institute for Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Department of Psychiatry, Zucker Hillside Hospital Division of Northwell Health, Glen Oaks, NY, USA
| | - Deepak K Sarpal
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lindsay D Oliver
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| |
Collapse
|
7
|
Xu L, Zhu T, Tang Y, Tang X, Qian Z, Wei Y, Cui H, Hu Y, Zhang D, Wang Y, Zhu J, Li H, Liu X, Zhang T, Hong X, Wang J. Impaired insight and error-monitoring deficits among outpatients with attenuated psychosis syndrome and first-episode psychosis. J Psychiatr Res 2024; 170:33-41. [PMID: 38101208 DOI: 10.1016/j.jpsychires.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/23/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
We aimed to determine the relationship between electrophysiological signatures of error monitoring and clinical insight among outpatients with attenuated psychosis syndrome (APS) and first-episode psychosis (FEP). Error-related negativity (ERN), error positivity (Pe), and correct response negativity (CRN) were recorded during a modified flanker task for patients with FEP (n = 32), APS individuals (n = 58), and healthy controls (HC, n = 49). Clinical insight was measured using the Schedule of Assessment of Insight (SAI) and included awareness of illness (SAI-illness), relabeling of specific symptoms (SAI-symptoms), and treatment compliance (SAI-treatment). Compared with HC, patients with FEP showed smaller ERN (p < 0.001) and Pe (p = 0.011) amplitudes and individuals with APS showed smaller ERN amplitude (p = 0.009). No significant difference in CRN amplitude was observed among the groups. A smaller negative amplitude of ERN correlated with a lower score on SAI-symptoms (b = -0.032, 95% CI: 0.062 to -0.002, p = 0.035) and a decreased total score of SAI (b = -0.096, 95% CI: 0.182 to -0.010, p = 0.029). This links were adjusted for age, education, and diagnosis (a dummy variable with FEP = 1 and APS = 0), and was independent of positive symptoms. SAI-illness was predominantly influenced by diagnosis, whereas SAI-treatment was additionally affected by disorganized communications. Neither Pe nor CRN amplitude exhibited an association with clinical insight. Unconscious error detection, as indicated by ERN, may aid individuals at the preliminary stage of psychosis in recognizing the unusual symptoms.
Collapse
Affiliation(s)
- LiHua Xu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, PR China
| | - TianYuan Zhu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, PR China
| | - YingYing Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, PR China
| | - XiaoChen Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, PR China
| | - ZhenYing Qian
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, PR China
| | - YanYan Wei
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, PR China
| | - HuiRu Cui
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, PR China
| | - YeGang Hu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, PR China
| | - Dan Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, PR China
| | - YingChan Wang
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, PR China
| | - JunJuan Zhu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, PR China
| | - Hui Li
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, PR China
| | - XiaoHua Liu
- Department of Early Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, PR China
| | - TianHong Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, PR China; Shanghai Intelligent Psychological Evaluation and Intervention Engineering Technology Research Center, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, PR China.
| | - XiangFei Hong
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, PR China.
| | - JiJun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, PR China; CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science, Shanghai, 201203, PR China; Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, 200030, PR China.
| |
Collapse
|
8
|
Mohan V, Parekh P, Lukose A, Moirangthem S, Saini J, Schretlen DJ, John JP. Patterns of Impaired Neurocognitive Performance on the Global Neuropsychological Assessment, and Their Brain Structural Correlates in Recent-onset and Chronic Schizophrenia. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2023; 21:340-358. [PMID: 37119227 PMCID: PMC10157005 DOI: 10.9758/cpn.2023.21.2.340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 09/19/2022] [Accepted: 10/12/2022] [Indexed: 05/01/2023]
Abstract
Objective Schizophrenia is associated with impairment in multiple cognitive domains. There is a paucity of research on the effect of prolonged illness duration (≥ 15 years) on cognitive performance along multiple domains. In this pilot study, we used the Global Neuropsychological Assessment (GNA), a brief cognitive battery, to explore the patterns of cognitive impairment in recent-onset (≤ 2 years) compared to chronic schizophrenia (≥ 15 years), and correlate cognitive performance with brain morphometry in patients and healthy adults. Methods We assessed cognitive performance in patients with recent-onset (n = 17, illness duration ≤ 2 years) and chronic schizophrenia (n = 14, duration ≥ 15 years), and healthy adults (n = 16) using the GNA and examined correlations between cognitive scores and gray matter volumes computed from T1-weighted magnetic resonance imaging images. Results We observed cognitive deficits affecting multiple domains in the schizophrenia samples. Selectively greater impairment of perceptual comparison speed was found in adults with chronic schizophrenia (p = 0.009, η2partial = 0.25). In the full sample (n = 47), perceptual comparison speed correlated significantly with gray matter volumes in the anterior and medial temporal lobes (TFCE, FWE p < 0.01). Conclusion Along with generalized deficit across multiple cognitive domains, selectively greater impairment of perceptual comparison speed appears to characterize chronic schizophrenia. This pattern might indicate an accelerated or premature cognitive aging. Anterior-medial temporal gray matter volumes especially of the left hemisphere might underlie the impairment noted in this domain in schizophrenia.
Collapse
Affiliation(s)
- Vineeth Mohan
- Multimodal Brain Image Analysis Laboratory (MBIAL), Bangalore, India
- Department of Clinical Neurosciences, Bangalore, India
| | - Pravesh Parekh
- Multimodal Brain Image Analysis Laboratory (MBIAL), Bangalore, India
- ADBS Neuroimaging Centre (ANC), Bangalore, India
- Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Ammu Lukose
- Multimodal Brain Image Analysis Laboratory (MBIAL), Bangalore, India
| | - Sydney Moirangthem
- Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Jitender Saini
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - David J. Schretlen
- Department of Psychiatry and Behavioral Sciences, MD, USA
- Russel M. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - John P. John
- Multimodal Brain Image Analysis Laboratory (MBIAL), Bangalore, India
- ADBS Neuroimaging Centre (ANC), Bangalore, India
- Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| |
Collapse
|
9
|
Khan MM, Parikh V. Prospects for Neurotrophic Factor-Based Early Intervention in Schizophrenia: Lessons Learned from the Effects of Antipsychotic Drugs on Cognition, Neurogenesis, and Neurotrophic Factors. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2023; 22:289-303. [PMID: 35366786 DOI: 10.2174/1871527321666220401124151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/13/2022] [Accepted: 02/18/2022] [Indexed: 12/16/2022]
Abstract
Although reducing psychotic symptoms in schizophrenia has been a major focus of therapeutic interventions for decades, improving cognition is considered a better predictor of functional outcomes. However, the most commonly prescribed antipsychotic drugs (APDs) show only marginal beneficial effects on cognition in patients with schizophrenia. The neural mechanisms underlying cognitive disturbances in schizophrenia remain unknown that making drug development efforts very challenging. Since neurotrophic factors are the primary architects of neurogenesis, synaptic plasticity, learning, and memory, the findings from preclinical and clinical studies that assess changes in neurogenesis and neurotrophic factors and their relationship to cognitive performance in schizophrenia, and how these mechanisms might be impacted by APD treatment, may provide valuable clues in developing therapies to combat cognitive deficit in schizophrenia. Numerous evidence produced over the years suggests a deficit in a wide spectrum of neurotrophic factors in schizophrenia. Since schizophrenia is considered a neurodevelopmental disorder, early intervention with neurotrophic factors may be more effective in ameliorating the cognitive deficits and psychopathological symptoms associated with this pathology. In this context, results from initial clinical trials with neurotrophic factors and their future potential to improve cognition and psychosocial functioning in schizophrenia are discussed.
Collapse
Affiliation(s)
- Mohammad M Khan
- Laboratory of Translational Neurology and Molecular Psychiatry, Department of Biotechnology, Era\'s Lucknow Medical College and Hospital, and Faculty of Science, Era University, Lucknow, UP, India
| | - Vinay Parikh
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, USA
| |
Collapse
|
10
|
Okasha TA, Omar AN, Elserafy D, Serry S, Rabie ES. Violence in relation to cognitive deficits and symptom severity in a sample of Egyptian patients with schizophrenia. Int J Soc Psychiatry 2022; 69:689-699. [PMID: 36331135 DOI: 10.1177/00207640221132706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Patient with schizophrenia are significantly more likely to be violent than general population; and the consequences of this violence risk are often very serious for the patients, their caregivers, and the entire community. AIM To assess the risk of violence in patients with schizophrenia and its correlation with severity of symptoms and cognitive functions. METHODS A cross-sectional comparative study conducted in Okasha institute of psychiatry including 50 patients with schizophrenia compared to 50 healthy control group regarding violence risk as assessed by Historical, Clinical, and Risk Management-20 (HCR-20), case group was assessed using Structured Clinical Interview for DSM-IV (SCID-I), Positive and Negative Syndrome Scale (PANSS), cognitive functions were assessed by Wechsler Adult Intelligence Scale (WAIS), Trail Making Test (TMT) Part A and B, the Wisconsin Card Sorting Test (WCST), and the Wechsler Memory Scale (WMS). RESULTS There was a statistically significant difference between case and control groups regarding risk of violence where 58% of the case group were found to have risk of violence compared to only 18% in the control group. There was a significant correlation between this risk of violence and period of untreated psychosis, no of episodes, and history of substance use; also was significantly correlated with PANSS and Wisconsin card sorting test subscales. Regarding logistic regression analysis for factors affecting violence risk; total PANSS score and history of substance use were significant independent factors that increase violence risk. CONCLUSION Violence risk in patient with schizophrenia is a cardinal factor that may affect life of the patients, their family, and society; this risk can be affected by different factors including severity of symptoms, no of episodes, history of substance use, and cognitive function of the patients.
Collapse
Affiliation(s)
| | | | - Doha Elserafy
- Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Samar Serry
- Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Eman S Rabie
- Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
11
|
Zhao X, Yao J, Lv Y, Zhang X, Han C, Chen L, Ren F, Zhou Q, Jin Z, Li Y, Du Y, Sui Y. Facial emotion perception abilities are related to grey matter volume in the culmen of cerebellum anterior lobe in drug-naïve patients with first-episode schizophrenia. Brain Imaging Behav 2022; 16:2072-2085. [PMID: 35751735 DOI: 10.1007/s11682-022-00677-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2022] [Indexed: 11/02/2022]
Abstract
Impaired capability for understanding and interpreting the expressions on other people's faces manifests itself as a core feature of schizophrenia, contributing to social dysfunction. With the purpose of better understanding of the neurobiological basis of facial emotion perception deficits in schizophrenia, we investigated facial emotion perception abilities and regional structural brain abnormalities in drug-naïve patients with first-episode schizophrenia, and then examined the correlation between them. Fifty-two drug-naive patients with first-episode schizophrenia and 29 group-matched healthy controls were examined for facial emotion perception abilities assessed with the Facial Emotion Categorization and performed magnetic resonance imaging. The Facial Emotion Categorization data were inserted into a logistic function model so as to calculate shift point and slope as outcome measurements. Voxel-based morphometry was applied to investigate regional grey matter volume (GMV) alterations. The relationship between facial emotion perception and GMV was explored in patients using voxel-wise correlation analysis within brain regions that showed a significant GMV alterations in patients compared with controls. The schizophrenic patients performed differently on Facial Emotion Categorization tasks from the controls and presented a higher shift point and a steeper slope. Relative to the controls, patients showed GMV reductions in the superior temporal gyrus, middle occipital gyrus, parahippocampa gyrus, posterior cingulate, the culmen of cerebellum anterior lobe, cerebellar tonsil, and the declive of cerebellum posterior lobe. Importantly, abnormal performance on Facial Emotion Categorization was found correlated with GMV alterations in the culmen of cerebellum anterior lobe in schizophrenia. This study suggests that reduced GMV in the culmen of cerebellum anterior lobe occurs in first-episode schizophrenia, constituting a potential neuropathological basis for the impaired facial emotion perception in schizophrenia.
Collapse
Affiliation(s)
- Xiaoxin Zhao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | | | - Yiding Lv
- Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | | | - Chongyang Han
- Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Lijun Chen
- Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Fangfang Ren
- Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Qun Zhou
- Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Zhuma Jin
- Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Yuan Li
- Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Yasong Du
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Yuxiu Sui
- Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
12
|
Patel S, Sharma D, Uniyal A, Gadepalli A, Tiwari V. Recent advancements in biomarker research in schizophrenia: mapping the road from bench to bedside. Metab Brain Dis 2022; 37:2197-2211. [PMID: 35239143 DOI: 10.1007/s11011-022-00926-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 02/04/2022] [Indexed: 10/19/2022]
Abstract
Schizophrenia (SZ) is a severe progressive neurodegenerative as well as disruptive behavior disorder affecting innumerable people throughout the world. The discovery of potential biomarkers in the clinical scenario would lead to the development of effective methods of diagnosis and would provide an understanding of the prognosis of the disease. Moreover, breakthrough inventions for the treatment and prevention of this mysterious disease could evolve as a result of a thorough understanding of the clinical biomarkers. In this review, we have discussed about specific biomarkers of SZ an emphasis has been laid to delineate (1) diagnostic biomarkers like neuroimmune biomarkers, metabolic biomarkers, oligodendrocyte biomarkers and biomarkers of negative and cognitive symptoms, (2) therapeutic biomarkers like various neurotransmitter systems and (3) prognostic biomarkers. All the biomarkers were evaluated in drug-naïve (at least for 4 weeks) patients in order to achieve a clear comparison between schizophrenic patients and healthy controls. Also, an attempt has been made to elucidate the potential genes which serve as predictors and tools for the determination of biomarkers and would ultimately help in the prevention and treatment of this deadly illness.
Collapse
Affiliation(s)
- Shivangi Patel
- Department of Pharmacology, Bombay College of Pharmacy, 400098, Mumbai, India
| | - Dilip Sharma
- Rutgers New Jersey Medical School, 07103, Newark, NJ, United States
| | - Ankit Uniyal
- Department of Pharmaceutical Engineering, Indian Institute of Technology (Banaras Hindu University), 221005, Varanasi, U.P, India
| | - Anagha Gadepalli
- Department of Pharmaceutical Engineering, Indian Institute of Technology (Banaras Hindu University), 221005, Varanasi, U.P, India
| | - Vinod Tiwari
- Department of Pharmaceutical Engineering, Indian Institute of Technology (Banaras Hindu University), 221005, Varanasi, U.P, India.
| |
Collapse
|
13
|
Vanes LD, Murray RM, Nosarti C. Adult outcome of preterm birth: Implications for neurodevelopmental theories of psychosis. Schizophr Res 2022; 247:41-54. [PMID: 34006427 DOI: 10.1016/j.schres.2021.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/22/2022]
Abstract
Preterm birth is associated with an elevated risk of developmental and adult psychiatric disorders, including psychosis. In this review, we evaluate the implications of neurodevelopmental, cognitive, motor, and social sequelae of preterm birth for developing psychosis, with an emphasis on outcomes observed in adulthood. Abnormal brain development precipitated by early exposure to the extra-uterine environment, and exacerbated by neuroinflammation, neonatal brain injury, and genetic vulnerability, can result in alterations of brain structure and function persisting into adulthood. These alterations, including abnormal regional brain volumes and white matter macro- and micro-structure, can critically impair functional (e.g. frontoparietal and thalamocortical) network connectivity in a manner characteristic of psychotic illness. The resulting executive, social, and motor dysfunctions may constitute the basis for behavioural vulnerability ultimately giving rise to psychotic symptomatology. There are many pathways to psychosis, but elucidating more precisely the mechanisms whereby preterm birth increases risk may shed light on that route consequent upon early neurodevelopmental insult.
Collapse
Affiliation(s)
- Lucy D Vanes
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, King's College London, UK; Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK.
| | - Robin M Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Chiara Nosarti
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, King's College London, UK; Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| |
Collapse
|
14
|
Fett AKJ, Reichenberg A, Velthorst E. Lifespan evolution of neurocognitive impairment in schizophrenia - A narrative review. Schizophr Res Cogn 2022; 28:100237. [PMID: 35242606 PMCID: PMC8861413 DOI: 10.1016/j.scog.2022.100237] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 01/28/2023]
Abstract
Cognitive impairment is a well-recognized key feature of schizophrenia. Here we review the evidence on (1) the onset and sensitive periods of change in cognitive impairment before and after the first psychotic episode, and (2) heterogeneity in neurocognitive presentations across cognitive domains between and within individuals. Overall, studies suggest that mild cognitive impairment in individuals who develop schizophrenia or related disorders is already present during early childhood. Cross-sectional studies further suggest increasing cognitive impairments from pre- to post-psychosis onset, with the greatest declines between adolescence, the prodrome, and the first psychotic episode and with some variability between domains. Longitudinal studies with more than 10 years of observation time are scarce but support mild cognitive declines after psychosis onset until late adulthood. Whether and how much this cognitive decline exceeds normal aging, proceeds further in older patients, and is specific to certain cognitive domains and subpopulations of patients remains to be investigated. Finally, studies show substantial heterogeneity in cognitive performance in schizophrenia and suggest a variety of impairment profiles. This review highlights a clear need for long-term studies that include a control group and individuals from adolescence to old age to better understand critical windows of cognitive change and their predictors. The available evidence stresses the importance of interventions that aim to counter cognitive decline during the prodromal years, as well as careful assessment of cognition in order to determine who will profit most from which cognitive training.
Collapse
Affiliation(s)
- Anne-Kathrin J Fett
- Department of Psychology, City, University of London, London, UK.,Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Abraham Reichenberg
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, NY, USA.,Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Eva Velthorst
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, NY, USA.,Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, NY, USA
| |
Collapse
|
15
|
Adam Yaple Z, Tolomeo S, Yu R. Spatial and chronic differences in neural activity in medicated and unmedicated schizophrenia patients. Neuroimage Clin 2022; 35:103029. [PMID: 35569228 PMCID: PMC9112098 DOI: 10.1016/j.nicl.2022.103029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/10/2022] [Accepted: 04/28/2022] [Indexed: 11/07/2022]
Abstract
The medicated schizophrenia group yielded concordant activity among three right lateralized frontal clusters and a left lateralized parietal cluster. The unmedicated schizophrenia group yielded concordant activity among right lateralized frontal-parietal regions. A neural compensatory mechanism in schizophrenia.
A major caveat with investigations on schizophrenic patients is the difficulty to control for medication usage across samples as disease-related neural differences may be confounded by medication usage. Following a thorough literature search (632 records identified), we included 37 studies with a total of 740 medicated schizophrenia patients and 367 unmedicated schizophrenia patients. Here, we perform several meta-analyses to assess the neurofunctional differences between medicated and unmedicated schizophrenic patients across fMRI studies to determine systematic regions associated with medication usage. Several clusters identified by the meta-analysis on the medicated group include three right lateralized frontal clusters and a left lateralized parietal cluster, whereas the unmedicated group yielded concordant activity among right lateralized frontal-parietal regions. We further explored the prevalence of activity within these regions across illness duration and task type. These findings suggest a neural compensatory mechanism across these regions both spatially and chronically, offering new insight into the spatial and temporal dynamic neural differences among medicated and unmedicated schizophrenia patients.
Collapse
Affiliation(s)
| | - Serenella Tolomeo
- Social and Cognitive Computing Department, Institute of High Performance Computing, Agency for Science, Technology and Research, Singapore, Singapore
| | - Rongjun Yu
- Department of Management, Hong Kong Baptist University, Hong Kong, China; Department of Sport, Physical Education and Health, Hong Kong Baptist University, Hong Kong, China; Department of Physics, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
16
|
Oliver LD, Hawco C, Viviano JD, Voineskos AN. From the Group to the Individual in Schizophrenia Spectrum Disorders: Biomarkers of Social Cognitive Impairments and Therapeutic Translation. Biol Psychiatry 2022; 91:699-708. [PMID: 34799097 DOI: 10.1016/j.biopsych.2021.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/11/2021] [Accepted: 09/11/2021] [Indexed: 12/23/2022]
Abstract
People with schizophrenia spectrum disorders (SSDs) often experience persistent social cognitive impairments, associated with poor functional outcome. There are currently no approved treatment options for these debilitating symptoms, highlighting the need for novel therapeutic strategies. Work to date has elucidated differential social processes and underlying neural circuitry affected in SSDs, which may be amenable to modulation using neurostimulation. Further, advances in functional connectivity mapping and electric field modeling may be used to identify individualized treatment targets to maximize the impact of brain stimulation on social cognitive networks. Here, we review literature supporting a roadmap for translating functional connectivity biomarker discovery to individualized treatment development for social cognitive impairments in SSDs. First, we outline the relevance of social cognitive impairments in SSDs. We review machine learning approaches for dimensional brain-behavior biomarker discovery, emphasizing the importance of individual differences. We synthesize research showing that brain stimulation techniques, such as repetitive transcranial magnetic stimulation, can be used to target relevant networks. Further, functional connectivity-based individualized targeting may enhance treatment response. We then outline recent approaches to account for neuroanatomical variability and optimize coil positioning to individually maximize target engagement. Overall, the synthesized literature provides support for the utility and feasibility of this translational approach to precision treatment. The proposed roadmap to translate biomarkers of social cognitive impairments to individualized treatment is currently under evaluation in precision-guided trials. Such a translational approach may also be applicable across conditions and generalizable for the development of individualized neurostimulation targeting other behavioral deficits.
Collapse
Affiliation(s)
- Lindsay D Oliver
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Colin Hawco
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Joseph D Viviano
- Mila-Quebec Artificial Intelligence Institute, Montreal, Quebec, Canada
| | - Aristotle N Voineskos
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
17
|
Lavigne KM, Sauvé G, Raucher-Chéné D, Guimond S, Lecomte T, Bowie CR, Menon M, Lal S, Woodward TS, Bodnar MD, Lepage M. Remote cognitive assessment in severe mental illness: a scoping review. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:14. [PMID: 35249112 PMCID: PMC8897553 DOI: 10.1038/s41537-022-00219-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 12/16/2021] [Indexed: 11/16/2022]
Abstract
Many individuals living with severe mental illness, such as schizophrenia, present cognitive deficits and reasoning biases negatively impacting clinical and functional trajectories. Remote cognitive assessment presents many opportunities for advancing research and treatment but has yet to be widely used in psychiatric populations. We conducted a scoping review of remote cognitive assessment in severe mental illness to provide an overview of available measures and guide best practices. Overall, 34 studies (n = 20,813 clinical participants) were reviewed and remote measures, psychometrics, facilitators, barriers, and future directions were synthesized using a logic model. We identified 82 measures assessing cognition in severe mental illness across 11 cognitive domains and four device platforms. Remote measures were generally comparable to traditional versions, though psychometric properties were infrequently reported. Facilitators included standardized procedures and wider recruitment, whereas barriers included imprecise measure adaptations, technology inaccessibility, low patient engagement, and poor digital literacy. Our review identified several remote cognitive measures in psychiatry across all cognitive domains. However, there is a need for more rigorous validation of these measures and consideration of potentially influential factors, such as sex and gender. We provide recommendations for conducting remote cognitive assessment in psychiatry and fostering high-quality research using digital technologies.
Collapse
Affiliation(s)
- Katie M Lavigne
- Department of psychiatry, McGill University, Montreal, QC, Canada
| | - Geneviève Sauvé
- Department of psychology, University of Quebec in Montreal, Montreal, QC, Canada
| | - Delphine Raucher-Chéné
- Department of psychiatry, McGill University, Montreal, QC, Canada
- Department of psychiatry, University Hospital of Reims, EPSM Marne, Reims, France
- Cognition, Health, and Society Laboratory (EA 6291), University of Reims Champagne-Ardenne, Reims, France
| | - Synthia Guimond
- Department of psychiatry, University of Ottawa, The Royal's Institute of Mental Health Research, Ottawa, ON, Canada
- Department of psychoeducation and psychology, University of Quebec in Outaouais, Gatineau, QC, Canada
| | - Tania Lecomte
- Department of psychology, University of Montreal, Montreal, QC, Canada
| | | | - Mahesh Menon
- Department of psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Shalini Lal
- School of Rehabilitation, University of Montreal, Montreal, QC, Canada
| | - Todd S Woodward
- Department of psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Michael D Bodnar
- Department of psychiatry, University of Ottawa, The Royal's Institute of Mental Health Research, Ottawa, ON, Canada
| | - Martin Lepage
- Department of psychiatry, McGill University, Montreal, QC, Canada.
| |
Collapse
|
18
|
Schroeder AH, Bogie BJM, Rahman TT, Thérond A, Matheson H, Guimond S. Feasibility and Efficacy of Virtual Reality Interventions to Improve Psychosocial Functioning in Psychosis: Systematic Review. JMIR Ment Health 2022; 9:e28502. [PMID: 35179501 PMCID: PMC8900915 DOI: 10.2196/28502] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 08/31/2021] [Accepted: 09/20/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Functional recovery in psychosis remains a challenge despite current evidence-based treatment approaches. To address this problem, innovative interventions using virtual reality (VR) have recently been developed. VR technologies have enabled the development of realistic environments in which individuals with psychosis can receive psychosocial treatment interventions in more ecological settings than traditional clinics. These interventions may therefore increase the transfer of learned psychosocial skills to real-world environments, thereby promoting long-term functional recovery. However, the overall feasibility and efficacy of such interventions within the psychosis population remain unclear. OBJECTIVE This systematic review aims to investigate whether VR-based psychosocial interventions are feasible and enjoyable for individuals with psychosis, synthesize current evidence on the efficacy of VR-based psychosocial interventions for psychosis, and identify the limitations in the current literature to guide future research. METHODS This research followed the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Literature searches were conducted in PubMed and PsycINFO in May 2021. We searched for peer-reviewed English articles that used a psychosocial intervention with a VR component. Participants in the included studies were diagnosed with schizophrenia, schizoaffective disorder, or another psychotic disorder. The included studies were divided into four categories as follows: cognitive remediation interventions, social skills interventions, vocational skills interventions, and auditory verbal hallucinations and paranoia interventions. The risk of bias assessment was performed for each study. RESULTS A total of 18 studies were included in this systematic review. Of these 18 studies, 4 (22%) studies used a cognitive remediation intervention, 4 (22%) studies used a social skills intervention, 3 (17%) studies used a vocational skills intervention, and 7 (39%) studies implemented an intervention aimed at improving auditory verbal hallucinations or paranoia. A total of 745 individuals with psychosis were included in the study. All the studies that evaluated feasibility showed that VR-based psychosocial interventions were feasible and enjoyable for individuals with psychosis. The preliminary evidence on efficacy included in this review suggests that VR-based psychosocial interventions can improve cognitive, social, and vocational skills in individuals with psychosis. VR-based interventions may also improve the symptoms of auditory verbal hallucinations and paranoia. The skills that participants learned through these interventions were durable, transferred into real-world environments, and led to improved functional outcomes, such as autonomy, managing housework, and work performance. CONCLUSIONS VR-based interventions may represent a novel and efficacious approach for improving psychosocial functioning in psychosis. Therefore, VR-based psychosocial interventions represent a promising adjunctive therapy for the treatment of psychosis, which may be used to improve psychosocial skills, community functioning, and quality of life.
Collapse
Affiliation(s)
- Alexandra H Schroeder
- The Royal's Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Bryce J M Bogie
- The Royal's Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Tabassum T Rahman
- The Royal's Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
| | - Alexandra Thérond
- The Royal's Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
- Department of Psychology, Université du Québec à Montréal, Montréal, QC, Canada
| | - Hannah Matheson
- The Royal's Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
- Department of Psychology, Carleton University, Ottawa, ON, Canada
| | - Synthia Guimond
- The Royal's Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Psychology, Carleton University, Ottawa, ON, Canada
- Department of Psychoeducation and Psychology, University of Quebec in Outaouais, Gatineau, QC, Canada
- Department of Psychiatry, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
19
|
Shvetz C, Gu F, Drodge J, Torous J, Guimond S. Validation of an ecological momentary assessment to measure processing speed and executive function in schizophrenia. NPJ SCHIZOPHRENIA 2021; 7:64. [PMID: 34934063 PMCID: PMC8692600 DOI: 10.1038/s41537-021-00194-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 11/03/2021] [Indexed: 11/08/2022]
Abstract
Cognitive impairments are a core feature of schizophrenia that have negative impacts on functional outcomes. However, it remains challenging to assess these impairments in clinical settings. Smartphone apps provide the opportunity to measure cognitive impairments in an accessible way; however, more research is needed to validate these cognitive assessments in schizophrenia. We assessed the initial accessibility, validity, and reliability of a smartphone-based cognitive test to measure cognition in schizophrenia. A total of 29 individuals with schizophrenia and 34 controls were included in the analyses. Participants completed the standard pen-and-paper Trail Making Tests (TMT) A and B, and smartphone-based versions, Jewels Trail Tests (JTT) A and B, at the single in-lab visit. Participants were asked to complete the JTT remotely once per week for three months. We also investigated how subjective sleep quality and mood may affect cognitive performance longitudinally. In-lab and remote JTT scores moderately and positively correlated with in-lab TMT scores. Moderate test-retest reliability was observed across the in-lab, first remote, and last remote completion times of the JTT. Additionally, individuals with schizophrenia had significantly lower performance compared to controls on both the in-lab JTT and TMT. Self-reported mood had a significant effect on JTT A performance over time but no other significant relationships were found remotely. Our results support the initial accessibility, validity and reliability of using the JTT to measure cognition in schizophrenia. Future research to develop additional smartphone-based cognitive tests as well as with larger samples and in other psychiatric populations are warranted.
Collapse
Affiliation(s)
- Cecelia Shvetz
- The Royal's Institute of Mental Health Research, Ottawa, ON, Canada
| | - Feng Gu
- The Royal's Institute of Mental Health Research, Ottawa, ON, Canada
| | - Jessica Drodge
- The Royal's Institute of Mental Health Research, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - John Torous
- Department of Psychiatry and Division of Clinical Informatics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Synthia Guimond
- The Royal's Institute of Mental Health Research, Ottawa, ON, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.
- Department of Psychiatry, University of Ottawa, Ottawa, ON, Canada.
- Département de Psychoéducation et Psychologie, Université du Québec en Outaouais, Gatineau, QC, Canada.
| |
Collapse
|
20
|
Zhao Q, Li J, Xiao Y, Cao H, Wang X, Zhang W, Li S, Liao W, Gong Q, Lui S. Distinct neuroanatomic subtypes in antipsychotic-treated patients with schizophrenia classified by the predefined classification in a never-treated sample. PSYCHORADIOLOGY 2021; 1:212-224. [PMID: 38666223 PMCID: PMC11025559 DOI: 10.1093/psyrad/kkab018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/17/2021] [Accepted: 12/01/2021] [Indexed: 02/05/2023]
Abstract
Background Distinct neuroanatomic subtypes have been identified in never-treated patients with schizophrenia based on cerebral structural abnormalities, but whether antipsychotic-treated patients would be stratified under the guidance of such previously formed classification remains unclear. Objective The present study aimed to investigate alterations of brain structures in antipsychotic-treated patients with schizophrenia based on a predefined morphological classification and their relationships with cognitive performance. Methods Cortical thickness, surface area, and subcortical volume were extracted from 147 antipsychotic-treated patients with schizophrenia using structural magnetic resonance imaging for classification. The Brief Assessment of Cognition in Schizophrenia (BACS) and Positive and Negative Syndrome Scale (PANSS) were used to assess cognition and symptoms. Results Antipsychotic-treated patients were categorized into three subtypes with distinct patterns of brain morphological alterations. Subtypes 1 and 2 were characterized by widespread deficits in cortical thickness but relatively limited deficits in surface area. In contrast, subtype 3 demonstrated cortical thickening mainly in parietal-occipital regions and widespread deficits in surface area. All three subgroups demonstrated cognitive deficits compared with healthy controls. Significant associations between neuroanatomic and cognitive abnormalities were only observed in subtype 1, where cortical thinning in the left lingual gyrus was conversely related to symbol coding performance. Conclusions Similar to drug-naïve patients, neuroanatomic heterogeneity exists in antipsychotic-treated patients, with disparate associations with cognition. These findings promote our understanding of relationships between neuroanatomic abnormalities and cognitive performance in the context of heterogeneity. Moreover, these results suggest that neurobiological heterogeneity needs to be considered in cognitive research in schizophrenia.
Collapse
Affiliation(s)
- Qiannan Zhao
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jiao Li
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yuan Xiao
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Hengyi Cao
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
- Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY 11030, United States
- Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY 11004, United States
| | - Xiao Wang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Wenjing Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Siyi Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Wei Liao
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
21
|
Khalil M, Hollander P, Raucher-Chéné D, Lepage M, Lavigne KM. Structural brain correlates of cognitive function in schizophrenia: A meta-analysis. Neurosci Biobehav Rev 2021; 132:37-49. [PMID: 34822878 DOI: 10.1016/j.neubiorev.2021.11.034] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 11/18/2021] [Accepted: 11/21/2021] [Indexed: 12/20/2022]
Abstract
Schizophrenia is characterized by cognitive impairments and widespread structural brain abnormalities. Brain structure-cognition associations have been extensively studied in schizophrenia, typically involving individual cognitive domains or brain regions of interest. Findings in overlapping and diffuse brain regions may point to structural alterations in large-scale brain networks. We performed a systematic review and meta-analysis examining whether brain structure-cognition associations can be explained in terms of biologically meaningful brain networks. Of 7,261 screened articles, 88 were included in a series of meta-analyses assessing publication bias, heterogeneity, and study quality. Significant associations were found between overall brain structure and eight MATRICS-inspired cognitive domains. Brain structure mapped onto the seven Yeo functionally defined networks and extraneous structures (amygdala, hippocampus, and cerebellum) typically showed associations with conceptually related cognitive domains, with higher-level domains (e.g., executive function, social cognition) associated with more networks. These findings synthesize the extensive literature on brain structure and cognition in schizophrenia from a contemporary network neuroscience perspective and suggest that brain structure-cognition associations in schizophrenia may follow functional network architecture.
Collapse
Affiliation(s)
- Marianne Khalil
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| | - Philippine Hollander
- Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada; Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Delphine Raucher-Chéné
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada; Department of Psychiatry, University Hospital of Reims, EPSM Marne, Reims, France; Cognition, Health, and Society Laboratory (EA 6291), University of Reims, Champagne-Ardenne, Reims, France
| | - Martin Lepage
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| | - Katie M Lavigne
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada; Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
22
|
Guimond S, Gu F, Shannon H, Kelly S, Mike L, Devenyi GA, Chakravarty MM, Sweeney JA, Pearlson G, Clementz BA, Tamminga C, Keshavan M. A Diagnosis and Biotype Comparison Across the Psychosis Spectrum: Investigating Volume and Shape Amygdala-Hippocampal Differences from the B-SNIP Study. Schizophr Bull 2021; 47:1706-1717. [PMID: 34254147 PMCID: PMC8530385 DOI: 10.1093/schbul/sbab071] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
OBJECTIVE Brain-based Biotypes for psychotic disorders have been developed as part of the B-SNIP consortium to create neurobiologically distinct subgroups within idiopathic psychosis, independent from traditional phenomenological diagnostic methods. In the current study, we aimed to validate the Biotype model by assessing differences in volume and shape of the amygdala and hippocampus contrasting traditional clinical diagnoses with Biotype classification. METHODS A total of 811 participants from 6 sites were included: probands with schizophrenia (n = 199), schizoaffective disorder (n = 122), psychotic bipolar disorder with psychosis (n = 160), and healthy controls (n = 330). Biotype classification, previously developed using cognitive and electrophysiological data and K-means clustering, was used to categorize psychosis probands into 3 Biotypes, with Biotype-1 (B-1) showing reduced neural salience and severe cognitive impairment. MAGeT-Brain segmentation was used to determine amygdala and hippocampal volumetric data and shape deformations. RESULTS When using Biotype classification, B-1 showed the strongest reductions in amygdala-hippocampal volume and the most widespread shape abnormalities. Using clinical diagnosis, probands with schizophrenia and schizoaffective disorder showed the most significant reductions of amygdala and hippocampal volumes and the most abnormal hippocampal shape compared with healthy controls. Biotype classification provided the strongest neuroanatomical differences compared with conventional DSM diagnoses, with the best discrimination seen using bilateral amygdala and right hippocampal volumes in B-1. CONCLUSION These findings characterize amygdala and hippocampal volumetric and shape abnormalities across the psychosis spectrum. Grouping individuals by Biotype showed greater between-group discrimination, suggesting a promising approach and a favorable target for characterizing biological heterogeneity across the psychosis spectrum.
Collapse
Affiliation(s)
- Synthia Guimond
- Department of Psychiatry, The Royal’s Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
- Department of Psychoeducation and Psychology, Université du Québec en Outaouais, Gatineau, QC, Canada
- Department of Psychiatry, Massachusetts Mental Health Center and Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Feng Gu
- Department of Psychiatry, The Royal’s Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
| | - Holly Shannon
- Department of Psychiatry, The Royal’s Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Sinead Kelly
- Department of Psychiatry, Massachusetts Mental Health Center and Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Luke Mike
- Department of Psychiatry, Massachusetts Mental Health Center and Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Gabriel A Devenyi
- Department of Psychiatry, McGill University, Montréal, QC, Canada
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Verdun, QC, Canada
| | - M Mallar Chakravarty
- Department of Psychiatry, McGill University, Montréal, QC, Canada
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Verdun, QC, Canada
| | - John A Sweeney
- Department of Psychiatry, University of Cincinnati, Cincinnati, OH, USA
| | - Godfrey Pearlson
- Department of Psychiatry, Yale University, New Haven, CT, USA
- Department of Neuroscience, Yale University, New Haven, CT, USA
| | - Brett A Clementz
- Department of Psychology, BioImaging Research Center, University of Georgia, Athens, GA, USA
- Department of and Neuroscience, BioImaging Research Center, University of Georgia, Athens, GA, USA
| | - Carol Tamminga
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Matcheri Keshavan
- Department of Psychiatry, Massachusetts Mental Health Center and Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
23
|
Wang Y, He Y, Yang F, Abame MA, Wu C, Peng Y, Feng L, Shen J, Wang Z, He L. TPN672: A Novel Serotonin-Dopamine Receptor Modulator for the Treatment of Schizophrenia. J Pharmacol Exp Ther 2021; 378:20-30. [PMID: 33975897 DOI: 10.1124/jpet.120.000414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 05/04/2021] [Indexed: 11/22/2022] Open
Abstract
TPN672 [7-(2-(4-(benzothiophen-4-yl) piperazin-1-yl)ethyl)quinolin-2(1H)-one maleate] is a novel antipsychotic candidate with high affinity for serotonin and dopamine receptors that is currently in clinical trial for the treatment of psychiatric disorders. In vitro binding study showed that TPN672 exhibited extremely high affinity for serotonin 1A receptor (5-HT1AR) (K i = 0.23 nM) and 5-HT2AR (K i = 2.58 nM) as well as moderate affinity for D3R (K i = 11.55 nM) and D2R (K i = 17.91 nM). In vitro functional assays demonstrated that TPN672 acted as a potent 5-HT1AR agonist, D2R/D3R partial agonist, and 5-HT2AR antagonist. TPN672 displayed robust antipsychotic efficacy in rodent models (e.g., blocking phencyclidine-induced hyperactivity), significantly better than aripiprazole, and ameliorated negative symptoms and cognitive deficits in the sociability test, dark avoidance response, Morris water maze test, and novel object recognition test. The results of electrophysiological experiments showed that TPN672 might inhibit the excitability of the glutamate system through activating 5-HT1AR in medial prefrontal cortex, thereby improving cognitive and negative symptoms. Moreover, the safety margin (the ratio of minimum catalepsy-inducing dose to minimum effective dose) of TPN672 was about 10-fold, which was superior to aripiprazole. In conclusion, TPN672 is a promising new drug candidate for the treatment of schizophrenia and has been shown to be more effective in attenuating negative symptoms and cognitive deficits while having lower risk of extrapyramidal symptoms and hyperprolactinemia. SIGNIFICANCE STATEMENT: TPN672 is a promising new drug candidate for the treatment of schizophrenia and has been shown to be more effective in attenuating negative symptoms and cognitive deficits while having a lower risk of extrapyramidal symptoms and hyperprolactinemia. A phase I clinical trial is now under way to test its tolerance, pharmacokinetics, and pharmacodynamic effects in human volunteers. Accordingly, the present results will have significant impact on the development of new antischizophrenia drugs.
Collapse
Affiliation(s)
- Yu Wang
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China (Y.W., L.H.); CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, China (Y.W., Y.H., F.Y., M.A.A., L.F., J.S., Z.W.); Department of Pharmacology, Topharman Shanghai Co., Ltd., Shanghai, China (C.W.); and Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China (Y.P.)
| | - Yang He
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China (Y.W., L.H.); CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, China (Y.W., Y.H., F.Y., M.A.A., L.F., J.S., Z.W.); Department of Pharmacology, Topharman Shanghai Co., Ltd., Shanghai, China (C.W.); and Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China (Y.P.)
| | - Feipu Yang
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China (Y.W., L.H.); CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, China (Y.W., Y.H., F.Y., M.A.A., L.F., J.S., Z.W.); Department of Pharmacology, Topharman Shanghai Co., Ltd., Shanghai, China (C.W.); and Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China (Y.P.)
| | - Melkamu Alemu Abame
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China (Y.W., L.H.); CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, China (Y.W., Y.H., F.Y., M.A.A., L.F., J.S., Z.W.); Department of Pharmacology, Topharman Shanghai Co., Ltd., Shanghai, China (C.W.); and Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China (Y.P.)
| | - Chunhui Wu
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China (Y.W., L.H.); CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, China (Y.W., Y.H., F.Y., M.A.A., L.F., J.S., Z.W.); Department of Pharmacology, Topharman Shanghai Co., Ltd., Shanghai, China (C.W.); and Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China (Y.P.)
| | - Yanmin Peng
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China (Y.W., L.H.); CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, China (Y.W., Y.H., F.Y., M.A.A., L.F., J.S., Z.W.); Department of Pharmacology, Topharman Shanghai Co., Ltd., Shanghai, China (C.W.); and Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China (Y.P.)
| | - Linyin Feng
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China (Y.W., L.H.); CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, China (Y.W., Y.H., F.Y., M.A.A., L.F., J.S., Z.W.); Department of Pharmacology, Topharman Shanghai Co., Ltd., Shanghai, China (C.W.); and Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China (Y.P.)
| | - Jingshan Shen
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China (Y.W., L.H.); CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, China (Y.W., Y.H., F.Y., M.A.A., L.F., J.S., Z.W.); Department of Pharmacology, Topharman Shanghai Co., Ltd., Shanghai, China (C.W.); and Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China (Y.P.)
| | - Zhen Wang
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China (Y.W., L.H.); CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, China (Y.W., Y.H., F.Y., M.A.A., L.F., J.S., Z.W.); Department of Pharmacology, Topharman Shanghai Co., Ltd., Shanghai, China (C.W.); and Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China (Y.P.)
| | - Ling He
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China (Y.W., L.H.); CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, China (Y.W., Y.H., F.Y., M.A.A., L.F., J.S., Z.W.); Department of Pharmacology, Topharman Shanghai Co., Ltd., Shanghai, China (C.W.); and Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China (Y.P.)
| |
Collapse
|
24
|
Atagun MI, Drukker M, Hall MH, Altun IK, Tatli SZ, Guloksuz S, van Os J, van Amelsvoort T. Meta-analysis of auditory P50 sensory gating in schizophrenia and bipolar disorder. Psychiatry Res Neuroimaging 2020; 300:111078. [PMID: 32361172 DOI: 10.1016/j.pscychresns.2020.111078] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/16/2020] [Accepted: 03/19/2020] [Indexed: 11/15/2022]
Abstract
The ability of the brain to reduce the amount of trivial or redundant sensory inputs is called gating function. Dysfunction of sensory gating may lead to cognitive fragmentation and poor real-world functioning. The auditory dual-click paradigm is a pertinent neurophysiological measure of sensory gating function. This meta-analysis aimed to examine the subcomponents of abnormal P50 waveforms in bipolar disorder and schizophrenia to assess P50 sensory gating deficits and examine effects of diagnoses, illness states (first-episode psychosis vs. schizophrenia, remission vs. episodes in bipolar disorder), and treatment status (medication-free vs. medicated). Literature search of PubMed between Jan 1st 1980 and March 31st 2019 identified 2091 records for schizophrenia, 362 for bipolar disorder. 115 studies in schizophrenia (4932 patients), 16 in bipolar disorder (975 patients) and 10 in first-degree relatives (848 subjects) met the inclusion criteria. P50 sensory gating ratio (S2/S1) and S1-S2 difference were significantly altered in schizophrenia, bipolar disorder and their first-degree relatives. First-episode psychosis did not differ from schizophrenia, however episodes altered P50 sensory gating in bipolar disorder. Medications improve P50 sensory gating alterations in schizophrenia significantly and at trend level in bipolar disorder. Future studies should examine longitudinal course of P50 sensory gating in schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
- Murat Ilhan Atagun
- Department of Psychiatry, Ankara Yildirim Beyazit University Medical School, Universities Region, Ihsan Dogramaci Boulevard. No: 6, Bilkent, Cankaya, Ankara Turkey.
| | - Marjan Drukker
- Department of Psychiatry and Neuropsychology, Maastricht University School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht, the Netherlands
| | - Mei Hua Hall
- Psychosis Neurobiology Laboratory, Harvard Medical School, McLean Hospital, Belmont, Massachusetts, USA
| | - Ilkay Keles Altun
- Department of Psychiatry, Bursa Higher Education Training and Education Hospital, Bursa, Turkey
| | | | - Sinan Guloksuz
- Department of Psychiatry and Neuropsychology, Maastricht University School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht, the Netherlands; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Jim van Os
- Department of Psychiatry and Neuropsychology, Maastricht University School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht, the Netherlands; King's Health Partners Department of Psychosis Studies, King's College London, Institute of Psychiatry, London, United Kingdom; Department of Psychiatry, Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Thérèse van Amelsvoort
- Department of Psychiatry and Neuropsychology, Maastricht University School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht, the Netherlands
| |
Collapse
|
25
|
Shi W, Wang Y, Wu C, Yang F, Zheng W, Wu S, Liu Y, Wang Z, He Y, Shen J. Synthesis and biological investigation of triazolopyridinone derivatives as potential multireceptor atypical antipsychotics. Bioorg Med Chem Lett 2020; 30:127027. [PMID: 32122737 DOI: 10.1016/j.bmcl.2020.127027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/04/2020] [Accepted: 02/11/2020] [Indexed: 12/18/2022]
Abstract
A series of triazolopyridinone derivatives originating from the antidepressant trazodone was designed and pharmacologically evaluated. Most of the compounds with a multireceptor functional profile exhibited high potency at the D2, 5-HT1A, and 5-HT2A receptors. Compounds S1, S3, S9 and S12 were selected for further evaluation of druggable potential. Among these compounds, S1, as a D2 receptor partial agonist, demonstrated very potent inhibition of quipazine-induced head-twitch response, which validated its 5-HT2A receptor antagonistic efficacy in vivo. S1 also demonstrated a dose-dependent effect on PCP-induced hyperactivity when administered orally. Thus, S1 endowed with a triazolopyridinone scaffold represents a valuable lead for the development of novel atypical antipsychotics.
Collapse
Affiliation(s)
- Wenqiang Shi
- CAS Key Laboratory for Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yu Wang
- CAS Key Laboratory for Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Chunhui Wu
- Topharman Shanghai Co., Ltd, 388 Jialilue Road, Shanghai 201203, China
| | - Feipu Yang
- CAS Key Laboratory for Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Wei Zheng
- CAS Key Laboratory for Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Song Wu
- Topharman Shanghai Co., Ltd, 388 Jialilue Road, Shanghai 201203, China
| | - Yongjian Liu
- Topharman Shanghai Co., Ltd, 388 Jialilue Road, Shanghai 201203, China
| | - Zhen Wang
- CAS Key Laboratory for Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
| | - Yang He
- CAS Key Laboratory for Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| | - Jingshan Shen
- CAS Key Laboratory for Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
26
|
McCutcheon RA, Krystal JH, Howes OD. Dopamine and glutamate in schizophrenia: biology, symptoms and treatment. World Psychiatry 2020; 19:15-33. [PMID: 31922684 PMCID: PMC6953551 DOI: 10.1002/wps.20693] [Citation(s) in RCA: 339] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Glutamate and dopamine systems play distinct roles in terms of neuronal signalling, yet both have been proposed to contribute significantly to the pathophysiology of schizophrenia. In this paper we assess research that has implicated both systems in the aetiology of this disorder. We examine evidence from post-mortem, preclinical, pharmacological and in vivo neuroimaging studies. Pharmacological and preclinical studies implicate both systems, and in vivo imaging of the dopamine system has consistently identified elevated striatal dopamine synthesis and release capacity in schizophrenia. Imaging of the glutamate system and other aspects of research on the dopamine system have produced less consistent findings, potentially due to methodological limitations and the heterogeneity of the disorder. Converging evidence indicates that genetic and environmental risk factors for schizophrenia underlie disruption of glutamatergic and dopaminergic function. However, while genetic influences may directly underlie glutamatergic dysfunction, few genetic risk variants directly implicate the dopamine system, indicating that aberrant dopamine signalling is likely to be predominantly due to other factors. We discuss the neural circuits through which the two systems interact, and how their disruption may cause psychotic symptoms. We also discuss mechanisms through which existing treatments operate, and how recent research has highlighted opportunities for the development of novel pharmacological therapies. Finally, we consider outstanding questions for the field, including what remains unknown regarding the nature of glutamate and dopamine function in schizophrenia, and what needs to be achieved to make progress in developing new treatments.
Collapse
Affiliation(s)
- Robert A McCutcheon
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
- South London and Maudsley Foundation NHS Trust, Maudsley Hospital, London, UK
| | - John H Krystal
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- VA National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Oliver D Howes
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
- South London and Maudsley Foundation NHS Trust, Maudsley Hospital, London, UK
| |
Collapse
|
27
|
Karamaouna P, Zouraraki C, Giakoumaki SG. Cognitive Functioning and Schizotypy: A Four-Years Study. Front Psychiatry 2020; 11:613015. [PMID: 33488431 PMCID: PMC7820122 DOI: 10.3389/fpsyt.2020.613015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/08/2020] [Indexed: 12/02/2022] Open
Abstract
Although there is ample evidence from cross-sectional studies indicating cognitive deficits in high schizotypal individuals that resemble the cognitive profile of schizophrenia-spectrum patients, there is still lack of evidence by longitudinal/follow-up studies. The present study included assessments of schizotypal traits and a wide range of cognitive functions at two time points (baseline and 4-years assessments) in order to examine (a) their stability over time, (b) the predictive value of baseline schizotypy on cognition at follow-up and (c) differences in cognition between the two time points in high negative schizotypal and control individuals. Only high negative schizotypal individuals were compared with controls due to the limited number of participants falling in the other schizotypal groups at follow-up. Seventy participants (mean age: 36.17; 70% females) were assessed at baseline and follow-up. Schizotypal traits were evaluated with the Schizotypal Personality Questionnaire. We found that schizotypal traits decreased over time, except in a sub-group of participants ("schizotypy congruent") that includes individuals who consistently meet normative criteria of inclusion in either a schizotypal or control group. In these individuals, negative schizotypy and aspects of cognitive-perceptual and disorganized schizotypy remained stable. The stability of cognitive functioning also varied over time: response inhibition, aspects of cued attention switching, set-shifting and phonemic/semantic verbal fluency improved at follow-up. High negative schizotypy at baseline predicted poorer response inhibition and semantic switching at follow-up while high disorganized schizotypy predicted poorer semantic processing and complex processing speed/set-shifting. The between-group analyses revealed that response inhibition, set-shifting and complex processing speed/set-shifting were poorer in negative schizotypals compared with controls at both time points, while maintaining set and semantic switching were poorer only at follow-up. Taken together, the findings show differential stability of the schizotypal traits over time and indicate that different aspects of schizotypy predict a different pattern of neuropsychological task performance during a 4-years time window. These results are of significant use in the formulation of targeted early-intervention strategies for high-risk populations.
Collapse
Affiliation(s)
- Penny Karamaouna
- Laboratory of Neuropsychology, Department of Psychology, Faculty of Social Sciences, University of Crete, Rethymno, Greece.,University of Crete Research Center for the Humanities, The Social and Educational Sciences (UCRC), University of Crete, Rethymno, Greece
| | - Chrysoula Zouraraki
- Laboratory of Neuropsychology, Department of Psychology, Faculty of Social Sciences, University of Crete, Rethymno, Greece.,University of Crete Research Center for the Humanities, The Social and Educational Sciences (UCRC), University of Crete, Rethymno, Greece
| | - Stella G Giakoumaki
- Laboratory of Neuropsychology, Department of Psychology, Faculty of Social Sciences, University of Crete, Rethymno, Greece.,University of Crete Research Center for the Humanities, The Social and Educational Sciences (UCRC), University of Crete, Rethymno, Greece
| |
Collapse
|
28
|
Sakurai T, Sawa A. Editorial for “What can clinical findings tell us about the neurobiology of schizophrenia? Revisited”. Neurobiol Dis 2019; 131:104521. [DOI: 10.1016/j.nbd.2019.104521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
29
|
Hui J, Tremblay S, Daskalakis ZJ. The Current and Future Potential of Transcranial Magnetic Stimulation With Electroencephalography in Psychiatry. Clin Pharmacol Ther 2019; 106:734-746. [DOI: 10.1002/cpt.1541] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/07/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Jeanette Hui
- Temerty Centre for Therapeutic Brain Intervention Centre for Addiction and Mental Health Toronto Ontario Canada
- Institute of Medical Science University of Toronto Toronto Ontario Canada
| | - Sara Tremblay
- Royal's Institute of Mental Health Research Ottawa Ontario Canada
- School of Psychology University of Ottawa Ottawa Ontario Canada
| | - Zafiris J. Daskalakis
- Temerty Centre for Therapeutic Brain Intervention Centre for Addiction and Mental Health Toronto Ontario Canada
- Institute of Medical Science University of Toronto Toronto Ontario Canada
- Department of Psychiatry University of Toronto Toronto Ontario Canada
| |
Collapse
|
30
|
Towards remote digital phenotyping of cognition in schizophrenia. Schizophr Res 2019; 208:36-38. [PMID: 31047724 DOI: 10.1016/j.schres.2019.04.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/27/2019] [Accepted: 04/19/2019] [Indexed: 11/21/2022]
|