1
|
McIntosh J, Mekrouda I, Dashti M, Giuraniuc CV, Banks RW, Miles GB, Bewick GS. Development of abnormalities at the neuromuscular junction in the SOD1-G93A mouse model of ALS: dysfunction then disruption of postsynaptic structure precede overt motor symptoms. Front Mol Neurosci 2023; 16:1169075. [PMID: 37273905 PMCID: PMC10237339 DOI: 10.3389/fnmol.2023.1169075] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/12/2023] [Indexed: 06/06/2023] Open
Abstract
Introduction The ultimate deficit in amyotrophic lateral sclerosis (ALS) is neuromuscular junction (NMJ) loss, producing permanent paralysis, ultimately in respiratory muscles. However, understanding the functional and structural deficits at NMJs prior to this loss is crucial for therapeutic strategy design. Should early interventions focus on reversing denervation, or supporting largely intact NMJs that are functionally impaired? We therefore determined when functional and structural deficits appeared in diaphragmatic NMJs relative to the onset of hindlimb tremor (the first overt motor symptoms) in vivo in the SOD1-G93A mouse model of ALS. Materials and methods We employed electrophysiological recording of NMJ postsynaptic potentials for spontaneous and nerve stimulation-evoked responses. This was correlated with fluorescent imaging microscopy of the postsynaptic acetylcholine receptor (AChR) distribution throughout the postnatal developmental timecourse from 2 weeks to early symptomatic ages. Results Significant reduction in the amplitudes of spontaneous miniature endplate potentials (mEPPs) and evoked EPPs emerged only at early symptomatic ages (in our colony, 18-22 weeks). Reductions in mEPP frequency, number of vesicles per EPP, and EPP rise time were seen earlier, at 16weeks, but this reversed by early symptomatic ages. However, the earliest and most striking impairment was an inability to maintain EPP amplitude during a 20 Hz stimulus train, which appeared 6 weeks before overt in vivo motor symptoms. Despite this, fluorescent α-bungarotoxin labelling revealed no systematic, progressive changes in 11 comprehensive NMJ morphological parameters (area, shape, compactness, number of acetylcholine receptor, AChR, regions, etc.) with disease progression. Rather, while NMJs were largely normally-shaped, from 16 weeks there was a progressive and substantial disruption in AChR concentration and distribution within the NMJ footprint. Discussion Thus, NMJ functional deficits appear at least 6 weeks before motor symptoms in vivo, while structural deficits occur 4 weeks later, and predominantly within NMJs. These data suggest initial therapies focused on rectifying suboptimal NMJ function could produce effective relief of symptoms of weakness.
Collapse
Affiliation(s)
- Jayne McIntosh
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Imane Mekrouda
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Maryam Dashti
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | | | - Robert W. Banks
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Gareth B. Miles
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, United Kingdom
| | - Guy S. Bewick
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
2
|
Woschitz V, Mei I, Hedlund E, Murray LM. Mouse models of SMA show divergent patterns of neuronal vulnerability and resilience. Skelet Muscle 2022; 12:22. [PMID: 36089582 PMCID: PMC9465884 DOI: 10.1186/s13395-022-00305-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/24/2022] [Indexed: 11/21/2022] Open
Abstract
Background Spinal muscular atrophy (SMA) is a form of motor neuron disease affecting primarily children characterised by the loss of lower motor neurons (MNs). Breakdown of the neuromuscular junctions (NMJs) is an early pathological event in SMA. However, not all motor neurons are equally vulnerable, with some populations being lost early in the disease while others remain intact at the disease end-stage. A thorough understanding of the basis of this selective vulnerability will give critical insight into the factors which prohibit pathology in certain motor neuron populations and consequently help identify novel neuroprotective strategies. Methods To retrieve a comprehensive understanding of motor neuron susceptibility in SMA, we mapped NMJ pathology in 20 muscles from the Smn2B/- SMA mouse model and cross-compared these data with published data from three other commonly used mouse models. To gain insight into the molecular mechanisms regulating selective resilience and vulnerability, we analysed published RNA sequencing data acquired from differentially vulnerable motor neurons from two different SMA mouse models. Results In the Smn2B/- mouse model of SMA, we identified substantial NMJ loss in the muscles from the core, neck, proximal hind limbs and proximal forelimbs, with a marked reduction in denervation in the distal limbs and head. Motor neuron cell body loss was greater at T5 and T11 compared with L5. We subsequently show that although widespread denervation is observed in each SMA mouse model (with the notable exception of the Taiwanese model), all models have a distinct pattern of selective vulnerability. A comparison of previously published data sets reveals novel transcripts upregulated with a disease in selectively resistant motor neurons, including genes involved in axonal transport, RNA processing and mitochondrial bioenergetics. Conclusions Our work demonstrates that the Smn2B/- mouse model shows a pattern of selective vulnerability which bears resemblance to the regional pathology observed in SMA patients. We found drastic differences in patterns of selective vulnerability across the four SMA mouse models, which is critical to consider during experimental design. We also identified transcript groups that potentially contribute to the protection of certain motor neurons in SMA mouse models. Supplementary Information The online version contains supplementary material available at 10.1186/s13395-022-00305-9.
Collapse
|
3
|
An Optimized Comparative Proteomic Approach as a Tool in Neurodegenerative Disease Research. Cells 2022; 11:cells11172653. [PMID: 36078061 PMCID: PMC9454658 DOI: 10.3390/cells11172653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022] Open
Abstract
Recent advances in proteomic technologies now allow unparalleled assessment of the molecular composition of a wide range of sample types. However, the application of such technologies and techniques should not be undertaken lightly. Here, we describe why the design of a proteomics experiment itself is only the first step in yielding high-quality, translatable results. Indeed, the effectiveness and/or impact of the majority of contemporary proteomics screens are hindered not by commonly considered technical limitations such as low proteome coverage but rather by insufficient analyses. Proteomic experimentation requires a careful methodological selection to account for variables from sample collection, through to database searches for peptide identification to standardised post-mass spectrometry options directed analysis workflow, which should be adjusted for each study, from determining when and how to filter proteomic data to choosing holistic versus trend-wise analyses for biologically relevant patterns. Finally, we highlight and discuss the difficulties inherent in the modelling and study of the majority of progressive neurodegenerative conditions. We provide evidence (in the context of neurodegenerative research) for the benefit of undertaking a comparative approach through the application of the above considerations in the alignment of publicly available pre-existing data sets to identify potential novel regulators of neuronal stability.
Collapse
|
4
|
Proteomics reveals the key molecules involved in curcumin-induced protection against sciatic nerve injury in rats. Neuroscience 2022; 501:11-24. [PMID: 35870565 DOI: 10.1016/j.neuroscience.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 11/23/2022]
Abstract
We generated a rat model of sciatic nerve crush injury and characterized the effects of curcumin on sciatic nerve recovery by using behavioral experiments, hematoxylin-eosin staining, toluidine blue staining, and immunohistochemical. Proteomic analysis using tandem mass tagging was performed to determine differentially expressed proteins (DEPs), and GO and KEGG pathway analyses of overlapping DEPs was conducted, following which, qPCR, western blotting, and immunofluorescence were further performed to validate the proteins of interest. Finally, a Schwann cell injury model was used to verify the effect of curcumin on potential targets. The rat model was successful established and curcumin improved the sciatic nerve function index of rats with sciatic nerve injury (SNI) and increased the number and diameter of myelinated axons in the sciatic nerve. In the Sham group versus the Injured group and in the Injured group versus the Curcumin group, we identified a total of 4,175 proteins, of which 953 were DEPs, and 218 were known overlapping DEPs. Ten associated pathways, such as calcium signaling pathway, biosynthesis of antibiotics, and long-term potentiation, were identified. The 218 overlapping DEPs were primarily involved in negative regulation of apoptotic process, biological processes, cytoplasm cellular component, and protein binding molecular function based on GO annotation. Curcumin promoted increased expression of ApoD and inhibited the expression of Cyba in vivo and in vitro. These results indicated that curcumin promoted sciatic nerve repair through regulation of various proteins, targets, and pathways. Cyba and ApoD may be potential targets of curcumin in the treatment of SNI.
Collapse
|
5
|
Li Q, Zang Y, Sun Z, Zhang W, Liu H. Long noncoding RNA Gm44593 attenuates oxidative stress from age-related hearing loss by regulating miR-29b/WNK1. Bioengineered 2021; 13:573-582. [PMID: 34967279 PMCID: PMC8805810 DOI: 10.1080/21655979.2021.2012062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Long noncoding RNA has been reported to play important role in various disease. However, the function of lncRNA in age-related hearing loss still unclear. The aim of our study is to investigate the function and mechanism of lncRNA Gm44593 in AHL. ATP content, JC-1 assay, mitochondrial content, cell death rates and dual-luciferase reporter assay were performed to assess the function of lncRNA Gm44593 in HEI-OC1 cells. The expression of lncRNA Gm44593 was significantly upregulated upon H2O2 and starvation treatment. Overexpression of lncRNA Gm44593 manifestly reduced the cell death rates. The ATP content, mtDNA content and mitochondrial membrane potential were alleviated upon overexpression of lncRNA Gm44593. We also proved that miR-29b is the direct target of lncRNA Gm44593. Overexpression of miR-29b completely restored the effect induced by lncRNA Gm44593. In addition, we provided evidences that WNK1 is the direct target of miR-29b. Our research uncovers a potential role of lncRNA Gm44593 in age-related hearing loss. We provide new insights into potential therapeutic targets for the amelioration of age-related hearing loss.
Collapse
Affiliation(s)
- Qian Li
- Otolaryngology Head and Neck Surgery, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan Province, China
| | - Yanzi Zang
- Otolaryngology Head and Neck Surgery, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan Province, China
| | - Zhanwei Sun
- Otolaryngology Head and Neck Surgery, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan Province, China
| | - Wenqi Zhang
- Otolaryngology Head and Neck Surgery, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan Province, China
| | - Hongjian Liu
- Otolaryngology Head and Neck Surgery, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan Province, China
| |
Collapse
|
6
|
Sardella-Silva G, Mietto BS, Ribeiro-Resende VT. Four Seasons for Schwann Cell Biology, Revisiting Key Periods: Development, Homeostasis, Repair, and Aging. Biomolecules 2021; 11:1887. [PMID: 34944531 PMCID: PMC8699407 DOI: 10.3390/biom11121887] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 01/28/2023] Open
Abstract
Like the seasons of the year, all natural things happen in stages, going through adaptations when challenged, and Schwann cells are a great example of that. During maturation, these cells regulate several steps in peripheral nervous system development. The Spring of the cell means the rise and bloom through organized stages defined by time-dependent regulation of factors and microenvironmental influences. Once matured, the Summer of the cell begins: a high energy stage focused on maintaining adult homeostasis. The Schwann cell provides many neuron-glia communications resulting in the maintenance of synapses. In the peripheral nervous system, Schwann cells are pivotal after injuries, balancing degeneration and regeneration, similarly to when Autumn comes. Their ability to acquire a repair phenotype brings the potential to reconnect axons to targets and regain function. Finally, Schwann cells age, not only by growing old, but also by imposed environmental cues, like loss of function induced by pathologies. The Winter of the cell presents as reduced activity, especially regarding their role in repair; this reflects on the regenerative potential of older/less healthy individuals. This review gathers essential information about Schwann cells in different stages, summarizing important participation of this intriguing cell in many functions throughout its lifetime.
Collapse
Affiliation(s)
- Gabriela Sardella-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
- Núcleo Multidisciplinar de Pesquisa em Biologia (Numpex-Bio), Campus de Duque de Caxias Geraldo Guerra Cidade, Universidade Federal do Rio de Janeiro, Duque de Caxias 25255-030, RJ, Brazil
| | - Bruno Siqueira Mietto
- Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora 36036-900, MG, Brazil;
| | - Victor Túlio Ribeiro-Resende
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
- Núcleo Multidisciplinar de Pesquisa em Biologia (Numpex-Bio), Campus de Duque de Caxias Geraldo Guerra Cidade, Universidade Federal do Rio de Janeiro, Duque de Caxias 25255-030, RJ, Brazil
| |
Collapse
|
7
|
Mitochondrial dysfunction as a trigger of programmed axon death. Trends Neurosci 2021; 45:53-63. [PMID: 34852932 DOI: 10.1016/j.tins.2021.10.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/05/2021] [Accepted: 10/29/2021] [Indexed: 12/31/2022]
Abstract
Mitochondrial failure has long been associated with programmed axon death (Wallerian degeneration, WD), a widespread and potentially preventable mechanism of axon degeneration. While early findings in axotomised axons indicated that mitochondria are involved during the execution steps of this pathway, recent studies suggest that in addition, mitochondrial dysfunction can initiate programmed axon death without physical injury. As mitochondrial dysfunction is associated with disorders involving early axon loss, including Parkinson's disease, peripheral neuropathies, and multiple sclerosis, the findings that programmed axon death is activated by mitochondrial impairment could indicate the involvement of druggable mechanisms whose disruption may protect axons in such diseases. Here, we review the latest developments linking mitochondrial dysfunction to programmed axon death and discuss their implications for injury and disease.
Collapse
|
8
|
Motyl AAL, Faller KME, Groen EJN, Kline RA, Eaton SL, Ledahawsky LM, Chaytow H, Lamont DJ, Wishart TM, Huang YT, Gillingwater TH. Pre-natal manifestation of systemic developmental abnormalities in spinal muscular atrophy. Hum Mol Genet 2021; 29:2674-2683. [PMID: 32644120 PMCID: PMC7530529 DOI: 10.1093/hmg/ddaa146] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 02/02/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a neuromuscular disease caused by mutations in survival motor neuron 1 (SMN1). SMN-restoring therapies have recently emerged; however, preclinical and clinical studies revealed a limited therapeutic time window and systemic aspects of the disease. This raises a fundamental question of whether SMA has presymptomatic, developmental components to disease pathogenesis. We have addressed this by combining micro-computed tomography (μCT) and comparative proteomics to examine systemic pre-symptomatic changes in a prenatal mouse model of SMA. Quantitative μCT analyses revealed that SMA embryos were significantly smaller than littermate controls, indicative of general developmental delay. More specifically, cardiac ventricles were smaller in SMA hearts, whilst liver and brain remained unaffected. In order to explore the molecular consequences of SMN depletion during development, we generated comprehensive, high-resolution, proteomic profiles of neuronal and non-neuronal organs in SMA mouse embryos. Significant molecular perturbations were observed in all organs examined, highlighting tissue-specific prenatal molecular phenotypes in SMA. Together, our data demonstrate considerable systemic changes at an early, presymptomatic stage in SMA mice, revealing a significant developmental component to SMA pathogenesis.
Collapse
Affiliation(s)
- Anna A L Motyl
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Kiterie M E Faller
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Ewout J N Groen
- UMC Utrecht Brain Center, University Medical Center, Utrecht 3584 CG, The Netherlands
| | - Rachel A Kline
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH16 4SB, UK.,The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Samantha L Eaton
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH16 4SB, UK.,The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Leire M Ledahawsky
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Helena Chaytow
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Douglas J Lamont
- FingerPrints Proteomics Facility, University of Dundee, DD1 5EH, UK
| | - Thomas M Wishart
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH16 4SB, UK.,The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Yu-Ting Huang
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Thomas H Gillingwater
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH16 4SB, UK
| |
Collapse
|
9
|
Wang B, Huang M, Shang D, Yan X, Zhao B, Zhang X. Mitochondrial Behavior in Axon Degeneration and Regeneration. Front Aging Neurosci 2021; 13:650038. [PMID: 33762926 PMCID: PMC7982458 DOI: 10.3389/fnagi.2021.650038] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/18/2021] [Indexed: 12/19/2022] Open
Abstract
Mitochondria are organelles responsible for bioenergetic metabolism, calcium homeostasis, and signal transmission essential for neurons due to their high energy consumption. Accumulating evidence has demonstrated that mitochondria play a key role in axon degeneration and regeneration under physiological and pathological conditions. Mitochondrial dysfunction occurs at an early stage of axon degeneration and involves oxidative stress, energy deficiency, imbalance of mitochondrial dynamics, defects in mitochondrial transport, and mitophagy dysregulation. The restoration of these defective mitochondria by enhancing mitochondrial transport, clearance of reactive oxidative species (ROS), and improving bioenergetic can greatly contribute to axon regeneration. In this paper, we focus on the biological behavior of axonal mitochondria in aging, injury (e.g., traumatic brain and spinal cord injury), and neurodegenerative diseases (Alzheimer's disease, AD; Parkinson's disease, PD; Amyotrophic lateral sclerosis, ALS) and consider the role of mitochondria in axon regeneration. We also compare the behavior of mitochondria in different diseases and outline novel therapeutic strategies for addressing abnormal mitochondrial biological behavior to promote axonal regeneration in neurological diseases and injuries.
Collapse
Affiliation(s)
- Biyao Wang
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Minghao Huang
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Dehao Shang
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Xu Yan
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Baohong Zhao
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Xinwen Zhang
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| |
Collapse
|
10
|
Nelvagal HR, Hurtado ML, Eaton SL, Kline RA, Lamont DJ, Sands MS, Wishart TM, Cooper JD. Comparative proteomic profiling reveals mechanisms for early spinal cord vulnerability in CLN1 disease. Sci Rep 2020; 10:15157. [PMID: 32938982 PMCID: PMC7495486 DOI: 10.1038/s41598-020-72075-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 08/26/2020] [Indexed: 01/11/2023] Open
Abstract
CLN1 disease is a fatal inherited neurodegenerative lysosomal storage disease of early childhood, caused by mutations in the CLN1 gene, which encodes the enzyme Palmitoyl protein thioesterase-1 (PPT-1). We recently found significant spinal pathology in Ppt1-deficient (Ppt1−/−) mice and human CLN1 disease that contributes to clinical outcome and precedes the onset of brain pathology. Here, we quantified this spinal pathology at 3 and 7 months of age revealing significant and progressive glial activation and vulnerability of spinal interneurons. Tandem mass tagged proteomic analysis of the spinal cord of Ppt1−/−and control mice at these timepoints revealed a significant neuroimmune response and changes in mitochondrial function, cell-signalling pathways and developmental processes. Comparing proteomic changes in the spinal cord and cortex at 3 months revealed many similarly affected processes, except the inflammatory response. These proteomic and pathological data from this largely unexplored region of the CNS may help explain the limited success of previous brain-directed therapies. These data also fundamentally change our understanding of the progressive, site-specific nature of CLN1 disease pathogenesis, and highlight the importance of the neuroimmune response. This should greatly impact our approach to the timing and targeting of future therapeutic trials for this and similar disorders.
Collapse
Affiliation(s)
- Hemanth R Nelvagal
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University in St Louis, School of Medicine, 660 S Euclid Ave, St Louis, MO, 63110, USA.,Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Maica Llavero Hurtado
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Samantha L Eaton
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Rachel A Kline
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Douglas J Lamont
- FingerPrints Proteomics Facility, College of Life Sciences, University of Dundee, Dundee, UK
| | - Mark S Sands
- Department of Genetics, Washington University in St Louis, School of Medicine, 660 S Euclid Ave, St Louis, MO, 63110, USA.,Department of Medicine, Washington University in St Louis, School of Medicine, 660 S Euclid Ave, St Louis, MO, 63110, USA
| | - Thomas M Wishart
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Jonathan D Cooper
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University in St Louis, School of Medicine, 660 S Euclid Ave, St Louis, MO, 63110, USA. .,Department of Genetics, Washington University in St Louis, School of Medicine, 660 S Euclid Ave, St Louis, MO, 63110, USA. .,Department of Neurology, Washington University in St Louis, School of Medicine, 660 S Euclid Ave, St Louis, MO, 63110, USA. .,Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| |
Collapse
|
11
|
Martinez N, Sánchez A, Diaz P, Broekhuizen R, Godoy J, Mondaca S, Catenaccio A, Macanas P, Nervi B, Calvo M, Court F. Metformin protects from oxaliplatin induced peripheral neuropathy in rats. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2020; 8:100048. [PMID: 32490289 PMCID: PMC7260677 DOI: 10.1016/j.ynpai.2020.100048] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/20/2020] [Accepted: 05/12/2020] [Indexed: 12/14/2022]
Abstract
Oxaliplatin is a commonly used drug to treat cancer, extending the rate of disease-free survival by 20% in colorectal cancer. However, oxaliplatin induces a disabling form of neuropathy resulting in more than 60% of patients having to reduce or discontinue oxaliplatin, negatively impacting their chance of survival. Oxaliplatin-induced neuropathies are accompanied by degeneration of sensory fibers in the epidermis and hyperexcitability of sensory neurons. These morphological and functional changes have been associated with sensory symptoms such as dysesthesia, paresthesia and mechanical and cold allodynia. Various strategies have been proposed to prevent or treat oxaliplatin-induced neuropathies without success. The anti-diabetic drug metformin has been recently shown to exert neuroprotection in other chemotherapy-induced neuropathies, so here we aimed to test if metformin can prevent the development of oxaliplatin-induced neuropathy in a rat model of this condition. Animals treated with oxaliplatin developed significant intraepidermal fiber degeneration, a mild gliosis in the spinal cord, and mechanical and cold hyperalgesia. The concomitant use of metformin prevented degeneration of intraepidermal fibers, gliosis, and the altered sensitivity. Our evidence further supports metformin as a new approach to prevent oxaliplatin-induced neuropathy with a potential important clinical impact.
Collapse
Affiliation(s)
- N.W. Martinez
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor de Chile, Santiago 8580745, Chile
- Department of Physiology, Faculty of Biology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - A. Sánchez
- Department of Physiology, Faculty of Biology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - P. Diaz
- Department of Physiology, Faculty of Biology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - R. Broekhuizen
- Department of Hematology and Oncology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - J. Godoy
- Department of Neurology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - S. Mondaca
- Department of Hematology and Oncology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - A. Catenaccio
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor de Chile, Santiago 8580745, Chile
| | - P. Macanas
- Department of Hematology and Oncology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - B. Nervi
- Department of Hematology and Oncology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - M. Calvo
- Department of Physiology, Faculty of Biology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - F.A. Court
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor de Chile, Santiago 8580745, Chile
- FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago 8580745, Chile
- Buck Institute for Research on Ageing, Novato, San Francisco, CA 94945, USA
| |
Collapse
|
12
|
Mole AJ, Bell S, Thomson AK, Dissanayake KN, Ribchester RR, Murray LM. Synaptic withdrawal following nerve injury is influenced by postnatal maturity, muscle-specific properties, and the presence of underlying pathology in mice. J Anat 2020; 237:263-274. [PMID: 32311115 PMCID: PMC7369188 DOI: 10.1111/joa.13187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/30/2020] [Accepted: 03/02/2020] [Indexed: 01/13/2023] Open
Abstract
Axonal and synaptic degeneration occur following nerve injury and during disease. Traumatic nerve injury results in rapid fragmentation of the distal axon and loss of synaptic terminals, in a process known as Wallerian degeneration (WD). Identifying and understanding factors that influence the rate of WD is of significant biological and clinical importance, as it will facilitate understanding of the mechanisms of neurodegeneration and identification of novel therapeutic targets. Here, we investigate levels of synaptic loss following nerve injury under a range of conditions, including during postnatal development, in a range of anatomically distinct muscles and in a mouse model of motor neuron disease. By utilising an ex vivo model of nerve injury, we show that synaptic withdrawal is slower during early postnatal development. Significantly more neuromuscular junctions remained fully innervated in the cranial nerve/muscle preparations analysed at P15 than at P25. Furthermore, we demonstrate variability in the level of synaptic withdrawal in response to injury in different muscles, with retraction being slower in abdominal preparations than in cranial muscles across all time points analysed. Importantly, differences between the cranial and thoracoabdominal musculature seen here are not consistent with differences in muscle vulnerability that have been previously reported in mouse models of the childhood motor neuron disease, spinal muscular atrophy (SMA), caused by depletion of survival motor neuron protein (Smn). To further investigate the relationship between synaptic degeneration in SMA and WD, we induced WD in preparations from the Smn2B/− mouse model of SMA. In a disease‐resistant muscle (rostral band of levator auris longus), where there is minimal denervation, there was no change in the level of synaptic loss, which suggests that the process of synaptic withdrawal following injury is Smn‐independent. However, in a muscle with ongoing degeneration (transvs. abdominis), the level of synaptic loss significantly increased, with the percentage of denervated endplates increasing by 33% following injury, compared to disease alone. We therefore conclude that the presence of a die‐back can accelerate synaptic loss after injury in Smn2B/− mice.
Collapse
Affiliation(s)
- Alannah J Mole
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,The Euan MacDonald Centre for Motor Neurone Disease Research, Edinburgh, UK
| | - Sarah Bell
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,The Euan MacDonald Centre for Motor Neurone Disease Research, Edinburgh, UK
| | - Alison K Thomson
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,The Euan MacDonald Centre for Motor Neurone Disease Research, Edinburgh, UK
| | - Kosala N Dissanayake
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,The Euan MacDonald Centre for Motor Neurone Disease Research, Edinburgh, UK
| | - Richard R Ribchester
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,The Euan MacDonald Centre for Motor Neurone Disease Research, Edinburgh, UK
| | - Lyndsay M Murray
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,The Euan MacDonald Centre for Motor Neurone Disease Research, Edinburgh, UK
| |
Collapse
|