1
|
Lang R, Hodgson RE, Shelkovnikova TA. TDP-43 in nuclear condensates: where, how, and why. Biochem Soc Trans 2024; 52:1809-1825. [PMID: 38958608 PMCID: PMC11668305 DOI: 10.1042/bst20231447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
TDP-43 is an abundant and ubiquitously expressed nuclear protein that becomes dysfunctional in a spectrum of neurodegenerative diseases. TDP-43's ability to phase separate and form/enter biomolecular condensates of varying size and composition is critical for its functionality. Despite the high density of phase-separated assemblies in the nucleus and the nuclear abundance of TDP-43, our understanding of the condensate-TDP-43 relationship in this cellular compartment is only emerging. Recent studies have also suggested that misregulation of nuclear TDP-43 condensation is an early event in the neurodegenerative disease amyotrophic lateral sclerosis. This review aims to draw attention to the nuclear facet of functional and aberrant TDP-43 condensation. We will summarise the current knowledge on how TDP-43 containing nuclear condensates form and function and how their homeostasis is affected in disease.
Collapse
Affiliation(s)
- Ruaridh Lang
- Sheffield Institute for Translational Neuroscience (SITraN) and Neuroscience Institute, University of Sheffield, Sheffield, U.K
| | - Rachel E. Hodgson
- Sheffield Institute for Translational Neuroscience (SITraN) and Neuroscience Institute, University of Sheffield, Sheffield, U.K
| | - Tatyana A. Shelkovnikova
- Sheffield Institute for Translational Neuroscience (SITraN) and Neuroscience Institute, University of Sheffield, Sheffield, U.K
| |
Collapse
|
2
|
Surynt P, Wojtczak BA, Chrominski M, Panecka-Hofman J, Kwapiszewska K, Kalwarczyk T, Kubacka D, Spiewla T, Kasprzyk R, Holyst R, Kowalska J, Jemielity J. Trimethylguanosine cap-fluorescent molecular rotor (TMG-FMR) conjugates are potent, specific snurportin1 ligands enabling visualization in living cells. Org Biomol Chem 2024; 22:6763-6790. [PMID: 39105613 DOI: 10.1039/d4ob01019a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
The trimethylguanosine (TMG) cap is a motif present inter alia at the 5' end of small nuclear RNAs, which are involved in RNA splicing. The TMG cap plays a crucial role in RNA processing and stability as it protects the RNA molecule from degradation by exonucleases and facilitates its export from the nucleus. Additionally, the TMG cap plays a role in the recognition of snRNA by snurportin, a protein that facilitates nuclear import. TMG cap analogs are used in biochemical experiments as molecular tools to substitute the natural TMG cap. To expand the range of available TMG-based tools, here we conjugated the TMG cap to Fluorescent Molecular Rotors (FMRs) to open the possibility of detecting protein-ligand interactions in vitro and, potentially, in vivo, particularly visualizing interactions with snurportin. Consequently, we report the synthesis of 34 differently modified TMG cap-FMR conjugates and their evaluation as molecular probes for snurportin. As FMRs we selected three GFP-like chromophores (derived from green fluorescent protein) and one julolidine derivative. The evaluation of binding affinities for snurportin showed unexpectedly a strong stabilizing effect for TMGpppG-derived dinucleotides containing the FMR at the 2'-O-position of guanosine. These newly discovered compounds are potent snurportin ligands with nanomolar KD (dissociation constant) values, which are two orders of magnitude lower than that of natural TMGpppG. The effect is diminished by ∼50-fold for the corresponding 3'-regioisomers. To deepen the understanding of the structure-activity relationship, we synthesized and tested FMR conjugates lacking the TMG cap moiety. These studies, supported by molecular docking, suggested that the enhanced affinity arises from additional hydrophobic contacts provided by the FMR moiety. The strongest snurportin ligand, which also gave the greatest fluorescence enhancement (Fm/F0) when saturated with the protein, were tested in living cells to detect interactions and visualize complexes by fluorescence lifetime monitoring. This approach has potential applications in the study of RNA processing and RNA-protein interactions.
Collapse
Affiliation(s)
- Piotr Surynt
- Division of Biophysics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland.
| | - Blazej A Wojtczak
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland.
| | - Mikolaj Chrominski
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland.
| | - Joanna Panecka-Hofman
- Division of Biophysics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - Karina Kwapiszewska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Tomasz Kalwarczyk
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Dorota Kubacka
- Division of Biophysics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - Tomasz Spiewla
- Division of Biophysics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - Renata Kasprzyk
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland.
| | - Robert Holyst
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Joanna Kowalska
- Division of Biophysics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland.
| |
Collapse
|
3
|
Fakim H, Vande Velde C. The implications of physiological biomolecular condensates in amyotrophic lateral sclerosis. Semin Cell Dev Biol 2024; 156:176-189. [PMID: 37268555 DOI: 10.1016/j.semcdb.2023.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 06/04/2023]
Abstract
In recent years, there has been an emphasis on the role of phase-separated biomolecular condensates, especially stress granules, in neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS). This is largely due to several ALS-associated mutations occurring in genes involved in stress granule assembly and observations that pathological inclusions detected in ALS patient neurons contain stress granule proteins, including the ALS-linked proteins TDP-43 and FUS. However, protein components of stress granules are also found in numerous other phase-separated biomolecular condensates under physiological conditions which are inadequately discussed in the context of ALS. In this review, we look beyond stress granules and describe the roles of TDP-43 and FUS in physiological condensates occurring in the nucleus and neurites, such as the nucleolus, Cajal bodies, paraspeckles and neuronal RNA transport granules. We also discuss the consequences of ALS-linked mutations in TDP-43 and FUS on their ability to phase separate into these stress-independent biomolecular condensates and perform their respective functions. Importantly, biomolecular condensates sequester multiple overlapping protein and RNA components, and their dysregulation could contribute to the observed pleiotropic effects of both sporadic and familial ALS on RNA metabolism.
Collapse
Affiliation(s)
- Hana Fakim
- Department of Neurosciences, Université de Montréal, and CHUM Research Center, Montréal, QC, Canada
| | - Christine Vande Velde
- Department of Neurosciences, Université de Montréal, and CHUM Research Center, Montréal, QC, Canada.
| |
Collapse
|
4
|
Rossi S, Di Salvio M, Balì M, De Simone A, Apolloni S, D’Ambrosi N, Arisi I, Cipressa F, Cozzolino M, Cestra G. C9orf72 Toxic Species Affect ArfGAP-1 Function. Cells 2023; 12:2007. [PMID: 37566088 PMCID: PMC10416972 DOI: 10.3390/cells12152007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/12/2023] Open
Abstract
Compelling evidence indicates that defects in nucleocytoplasmic transport contribute to the pathogenesis of amyotrophic lateral sclerosis (ALS). In particular, hexanucleotide (G4C2) repeat expansions in C9orf72, the most common cause of genetic ALS, have a widespread impact on the transport machinery that regulates the nucleocytoplasmic distribution of proteins and RNAs. We previously reported that the expression of G4C2 hexanucleotide repeats in cultured human and mouse cells caused a marked accumulation of poly(A) mRNAs in the cell nuclei. To further characterize the process, we set out to systematically identify the specific mRNAs that are altered in their nucleocytoplasmic distribution in the presence of C9orf72-ALS RNA repeats. Interestingly, pathway analysis showed that the mRNAs involved in membrane trafficking are particularly enriched among the identified mRNAs. Most importantly, functional studies in cultured cells and Drosophila indicated that C9orf72 toxic species affect the membrane trafficking route regulated by ADP-Ribosylation Factor 1 GTPase Activating Protein (ArfGAP-1), which exerts its GTPase-activating function on the small GTPase ADP-ribosylation factor 1 to dissociate coat proteins from Golgi-derived vesicles. We demonstrate that the function of ArfGAP-1 is specifically affected by expanded C9orf72 RNA repeats, as well as by C9orf72-related dipeptide repeat proteins (C9-DPRs), indicating the retrograde Golgi-to-ER vesicle-mediated transport as a target of C9orf72 toxicity.
Collapse
Affiliation(s)
- Simona Rossi
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), 00133 Rome, Italy; (S.R.); (I.A.)
- Fondazione Santa Lucia IRCCS, c/o CERC, 00143 Rome, Italy;
| | - Michela Di Salvio
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), 00185 Rome, Italy;
| | - Marilisa Balì
- Department of Biology and Biotechnology, University of Rome “La Sapienza”, 00185 Rome, Italy; (M.B.); (A.D.S.)
| | - Assia De Simone
- Department of Biology and Biotechnology, University of Rome “La Sapienza”, 00185 Rome, Italy; (M.B.); (A.D.S.)
| | - Savina Apolloni
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Nadia D’Ambrosi
- Fondazione Santa Lucia IRCCS, c/o CERC, 00143 Rome, Italy;
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Ivan Arisi
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), 00133 Rome, Italy; (S.R.); (I.A.)
- European Brain Research Institute “Rita Levi-Montalcini”, 00161 Rome, Italy
| | - Francesca Cipressa
- Department of Ecological and Biological Science, University of Tuscia, 01100 Viterbo, Italy;
| | - Mauro Cozzolino
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), 00133 Rome, Italy; (S.R.); (I.A.)
| | - Gianluca Cestra
- Fondazione Santa Lucia IRCCS, c/o CERC, 00143 Rome, Italy;
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), 00185 Rome, Italy;
- Department of Biology and Biotechnology, University of Rome “La Sapienza”, 00185 Rome, Italy; (M.B.); (A.D.S.)
| |
Collapse
|
5
|
Guareschi S, Ravasi M, Baldessari D, Pozzi S, Zaffino T, Melazzini M, Ambrosini A. The positive impact on translational research of Fondazione italiana di ricerca per la Sclerosi Laterale Amiotrofica (AriSLA), a non-profit foundation focused on amyotrophic lateral sclerosis. Convergence of ex-ante evaluation and ex-post outcomes when goals are set upfront. Front Res Metr Anal 2023; 8:1067981. [PMID: 37601533 PMCID: PMC10436489 DOI: 10.3389/frma.2023.1067981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 07/14/2023] [Indexed: 08/22/2023] Open
Abstract
Charities investing on rare disease research greatly contribute to generate ground-breaking knowledge with the clear goal of finding a cure for their condition of interest. Although the amount of their investments may be relatively small compared to major funders, the advocacy groups' clear mission promotes innovative research and aggregates highly motivated and mission-oriented scientists. Here, we illustrate the case of Fondazione italiana di ricerca per la Sclerosi Laterale Amiotrofica (AriSLA), the main Italian funding agency entirely dedicated to amyotrophic lateral sclerosis research. An international benchmark analysis of publications derived from AriSLA-funded projects indicated that their mean relative citation ratio values (iCite dashboard, National Institutes of Health, U.S.) were very high, suggesting a strong influence on the referring international scientific community. An interesting trend of research toward translation based on the "triangle of biomedicine" and paper citations (iCite) was also observed. Qualitative analysis on researchers' accomplishments was convergent with the bibliometric data, indicating a high level of performance of several working groups, lines of research that speak of progression toward clinical translation, and one study that has progressed from the investigation of cellular mechanisms to a Phase 2 international clinical trial. The key elements of the success of the AriSLA investment lie in: (i) the clear definition of the objectives (research with potential impact on patients, no matter how far), (ii) a rigorous peer-review process entrusted to an international panel of experts, (iii) diversification of the portfolio with ad hoc selection criteria, which also contributed to bringing new experts and younger scientists to the field, and (iv) a close interaction of AriSLA stakeholders with scientists, who developed a strong sense of belonging. Periodic review of the portfolio of investments is a vital practice for funding agencies. Sharing information between funding agencies about their own policies and research assessment methods and outcomes help guide the international debate on funding strategies and research directions to be undertaken, particularly in the field of rare diseases, where synergy is a relevant enabling factor.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anna Ambrosini
- Fondazione AriSLA ETS, Milan, Italy
- Fondazione Telethon ETS, Milan, Italy
| |
Collapse
|
6
|
Zocchi R, Bellacchio E, Piccione M, Scardigli R, D’Oria V, Petrini S, Baranano K, Bertini E, Sferra A. Novel loss of function mutation in TUBA1A gene compromises tubulin stability and proteostasis causing spastic paraplegia and ataxia. Front Cell Neurosci 2023; 17:1162363. [PMID: 37435044 PMCID: PMC10332271 DOI: 10.3389/fncel.2023.1162363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/01/2023] [Indexed: 07/13/2023] Open
Abstract
Microtubules are dynamic cytoskeletal structures involved in several cellular functions, such as intracellular trafficking, cell division and motility. More than other cell types, neurons rely on the proper functioning of microtubules to conduct their activities and achieve complex morphologies. Pathogenic variants in genes encoding for α and β-tubulins, the structural subunits of microtubules, give rise to a wide class of neurological disorders collectively known as "tubulinopathies" and mainly involving a wide and overlapping range of brain malformations resulting from defective neuronal proliferation, migration, differentiation and axon guidance. Although tubulin mutations have been classically linked to neurodevelopmental defects, growing evidence demonstrates that perturbations of tubulin functions and activities may also drive neurodegeneration. In this study, we causally link the previously unreported missense mutation p.I384N in TUBA1A, one of the neuron-specific α-tubulin isotype I, to a neurodegenerative disorder characterized by progressive spastic paraplegia and ataxia. We demonstrate that, in contrast to the p.R402H substitution, which is one of the most recurrent TUBA1A pathogenic variants associated to lissencephaly, the present mutation impairs TUBA1A stability, reducing the abundance of TUBA1A available in the cell and preventing its incorporation into microtubules. We also show that the isoleucine at position 384 is an amino acid residue, which is critical for α-tubulin stability, since the introduction of the p.I384N substitution in three different tubulin paralogs reduces their protein level and assembly into microtubules, increasing their propensity to aggregation. Moreover, we demonstrate that the inhibition of the proteasome degradative systems increases the protein levels of TUBA1A mutant, promoting the formation of tubulin aggregates that, as their size increases, coalesce into inclusions that precipitate within the insoluble cellular fraction. Overall, our data describe a novel pathogenic effect of p.I384N mutation that differs from the previously described substitutions in TUBA1A, and expand both phenotypic and mutational spectrum related to this gene.
Collapse
Affiliation(s)
- Riccardo Zocchi
- Unit of Neuromuscular Disorders, Translational Pediatrics and Clinical Genetics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Emanuele Bellacchio
- Molecular Genetics and Functional Genomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Michela Piccione
- Research Laboratories, Bambino Gesù Children’s Hospital, IRCSS, Rome, Italy
| | - Raffaella Scardigli
- Consiglio Nazionale delle Ricerche (CNR), Institute of Translational Pharmacology (IFT), Rome, Italy
- European Brain Research Institute (EBRI) “Rita Levi-Montalcini,” Rome, Italy
| | - Valentina D’Oria
- Research Laboratories, Bambino Gesù Children’s Hospital, IRCSS, Rome, Italy
| | - Stefania Petrini
- Research Laboratories, Bambino Gesù Children’s Hospital, IRCSS, Rome, Italy
| | - Kristin Baranano
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Enrico Bertini
- Unit of Neuromuscular Disorders, Translational Pediatrics and Clinical Genetics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Antonella Sferra
- Unit of Neuromuscular Disorders, Translational Pediatrics and Clinical Genetics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| |
Collapse
|
7
|
Ivanova OM, Anufrieva KS, Kazakova AN, Malyants IK, Shnaider PV, Lukina MM, Shender VO. Non-canonical functions of spliceosome components in cancer progression. Cell Death Dis 2023; 14:77. [PMID: 36732501 PMCID: PMC9895063 DOI: 10.1038/s41419-022-05470-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 02/04/2023]
Abstract
Dysregulation of pre-mRNA splicing is a common hallmark of cancer cells and it is associated with altered expression, localization, and mutations of the components of the splicing machinery. In the last few years, it has been elucidated that spliceosome components can also influence cellular processes in a splicing-independent manner. Here, we analyze open source data to understand the effect of the knockdown of splicing factors in human cells on the expression and splicing of genes relevant to cell proliferation, migration, cell cycle regulation, DNA repair, and cell death. We supplement this information with a comprehensive literature review of non-canonical functions of splicing factors linked to cancer progression. We also specifically discuss the involvement of splicing factors in intercellular communication and known autoregulatory mechanisms in restoring their levels in cells. Finally, we discuss strategies to target components of the spliceosome machinery that are promising for anticancer therapy. Altogether, this review greatly expands understanding of the role of spliceosome proteins in cancer progression.
Collapse
Affiliation(s)
- Olga M Ivanova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russian Federation.
- Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation.
- Institute for Regenerative Medicine, Sechenov University, Moscow, 119991, Russian Federation.
| | - Ksenia S Anufrieva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russian Federation
- Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
| | - Anastasia N Kazakova
- Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
- Moscow Institute of Physics and Technology (State University), Dolgoprudny, 141701, Russian Federation
| | - Irina K Malyants
- Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
- Faculty of Chemical-Pharmaceutical Technologies and Biomedical Drugs, Mendeleev University of Chemical Technology of Russia, Moscow, 125047, Russian Federation
| | - Polina V Shnaider
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russian Federation
- Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russian Federation
| | - Maria M Lukina
- Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
| | - Victoria O Shender
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russian Federation.
- Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russian Federation.
| |
Collapse
|
8
|
Nabariya DK, Heinz A, Derksen S, Krauß S. Intracellular and intercellular transport of RNA organelles in CXG repeat disorders: The strength of weak ties. Front Mol Biosci 2022; 9:1000932. [PMID: 36589236 PMCID: PMC9800848 DOI: 10.3389/fmolb.2022.1000932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
RNA is a vital biomolecule, the function of which is tightly spatiotemporally regulated. RNA organelles are biological structures that either membrane-less or surrounded by membrane. They are produced by the all the cells and indulge in vital cellular mechanisms. They include the intracellular RNA granules and the extracellular exosomes. RNA granules play an essential role in intracellular regulation of RNA localization, stability and translation. Aberrant regulation of RNA is connected to disease development. For example, in microsatellite diseases such as CXG repeat expansion disorders, the mutant CXG repeat RNA's localization and function are affected. RNA is not only transported intracellularly but can also be transported between cells via exosomes. The loading of the exosomes is regulated by RNA-protein complexes, and recent studies show that cytosolic RNA granules and exosomes share common content. Intracellular RNA granules and exosome loading may therefore be related. Exosomes can also transfer pathogenic molecules of CXG diseases from cell to cell, thereby driving disease progression. Both intracellular RNA granules and extracellular RNA vesicles may serve as a source for diagnostic and treatment strategies. In therapeutic approaches, pharmaceutical agents may be loaded into exosomes which then transport them to the desired cells/tissues. This is a promising target specific treatment strategy with few side effects. With respect to diagnostics, disease-specific content of exosomes, e.g., RNA-signatures, can serve as attractive biomarker of central nervous system diseases detecting early physiological disturbances, even before symptoms of neurodegeneration appear and irreparable damage to the nervous system occurs. In this review, we summarize the known function of cytoplasmic RNA granules and extracellular vesicles, as well as their role and dysfunction in CXG repeat expansion disorders. We also provide a summary of established protocols for the isolation and characterization of both cytoplasmic and extracellular RNA organelles.
Collapse
Affiliation(s)
| | | | | | - Sybille Krauß
- Human Biology/Neurobiology, Institute of Biology, Faculty IV, School of Science and Technology, University of Siegen, Siegen, Germany
| |
Collapse
|
9
|
Xia T, Yang C, Wang X, Bai L, Ma J, Zhao M, Hua W, Wang H. Heterogeneous nuclear ribonucleoprotein A2/B1 as a novel biomarker in elderly patients for the prediction of postoperative neurocognitive dysfunction: A prospective nested case-control study. Front Aging Neurosci 2022; 14:1034041. [PMID: 36337695 PMCID: PMC9634074 DOI: 10.3389/fnagi.2022.1034041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Background and objective Postoperative neurocognitive dysfunction (PND) occurs in up to 54% of older patients, giving rise to the heavy psychological and economic burdens to patients and society. To date, the development of PND biomarkers remains a challenge. Heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNPA2/B1) is an RNA-binding protein whose prion-like structure is prone to mutation and hence leads to neurodegenerative diseases, but its expression changes in PND remains unclear. Here, we detect the preoperative hnRNPA2/B1 level in patients with PND, and to explore its value in the prediction and diagnosis of PND. Methods The study included 161 elderly patients undergoing lumbar decompression and fusion in Nankai University Affinity the Third Central Hospital from September 2021 to July 2022. Neuropsychological and psychometric evaluations were performed before surgery, 1 week and 3 months after surgery to diagnose the occurrence of PND, then the peripheral blood was collected from patients before induction of anesthesia. The concentration in plasma of hnRNPA2/B1 and amyloid-β 42 were determined by enzyme-linked immunosorbent assay. The median fluorescence intensity and mRNA levels of hnRNPA2/B1 in peripheral blood mononuclear cells was detected by indirect intracellular staining flow cytometry and quantitative real-time PCR, respectively. Results The preoperative hnRNPA2/B1 level in patients with PND was higher both in short-time and long-time follow-up. We found significantly higher concentrations of hnRNPA2/B1 in PND at 7 days after surgery (median, 72.26 pg/mL vs. 54.95 pg/mL, p = 0.022) compared with patients without PND, and so as 3 months after surgery (median, 102.93 pg/mL vs. 56.38 pg/mL, p = 0.012). The area under the curve (AUC) was predicted to be 0.686 at 7 days after surgery and 0.735 at 3 months. In addition, when combining several clinical information, the diagnostic efficiency of hnRNPA2/B1 for PND could further increase (AUC, 0.707 at 7 days, 0.808 at 3 months). Conclusion Based on the findings reported here, hnRNPA2/B1 may serve as a new and powerful predictive biomarker to identify elderly patients with PND.
Collapse
Affiliation(s)
- Tong Xia
- Department of Anesthesiology, The Third Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Chenyi Yang
- Department of Anesthesiology, The Third Central Clinical College of Tianjin Medical University, Tianjin, China
- Department of Anesthesiology, Nankai University Affinity the Third Central Hospital, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Xinyi Wang
- Department of Anesthesiology, The Third Central Clinical College of Tianjin Medical University, Tianjin, China
- Department of Anesthesiology, Nankai University Affinity the Third Central Hospital, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Lili Bai
- Department of Anesthesiology, The Third Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Ji Ma
- Department of Anesthesiology, The Third Central Clinical College of Tianjin Medical University, Tianjin, China
- Department of Anesthesiology, Nankai University Affinity the Third Central Hospital, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Mingshu Zhao
- Department of Anesthesiology, The Third Central Clinical College of Tianjin Medical University, Tianjin, China
- Department of Anesthesiology, Nankai University Affinity the Third Central Hospital, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Wei Hua
- Department of Anesthesiology, The Third Central Clinical College of Tianjin Medical University, Tianjin, China
- Department of Anesthesiology, Nankai University Affinity the Third Central Hospital, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Haiyun Wang
- Department of Anesthesiology, The Third Central Clinical College of Tianjin Medical University, Tianjin, China
- Department of Anesthesiology, Nankai University Affinity the Third Central Hospital, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- Tianjin Institute of Hepatobiliary Disease, Tianjin, China
- *Correspondence: Haiyun Wang,
| |
Collapse
|
10
|
Li Z, Liu X, Liu M. Stress Granule Homeostasis, Aberrant Phase Transition, and Amyotrophic Lateral Sclerosis. ACS Chem Neurosci 2022; 13:2356-2370. [PMID: 35905138 DOI: 10.1021/acschemneuro.2c00262] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease. In recent years, a large number of ALS-related mutations have been discovered to have a strong link to stress granules (SGs). SGs are cytoplasmic ribonucleoprotein condensates mediated by liquid-liquid phase separation (LLPS) of biomacromolecules. They help cells cope with stress. The normal physiological functions of SGs are dependent on three key aspects of SG "homeostasis": SG assembly, disassembly, and SG components. Any of these three aspects can be disrupted, resulting in abnormalities in the cellular stress response and leading to cytotoxicity. Several ALS-related pathogenic mutants have abnormal LLPS abilities that disrupt SG homeostasis, and some of them can even cause aberrant phase transitions. As a result, ALS-related mutants may disrupt various aspects of SG homeostasis by directly disturbing the intermolecular interactions or affecting core SG components, thus disrupting the phase equilibrium of the cytoplasm during stress. Considering that the importance of the "global view" of SG homeostasis in ALS pathogenesis has not received enough attention, we first systematically summarize the physiological regulatory mechanism of SG homeostasis based on LLPS and then examine ALS pathogenesis from the perspective of disrupted SG homeostasis and aberrant phase transition of biomacromolecules.
Collapse
Affiliation(s)
- Zhanxu Li
- Xiangya School of Medicine, Central South University, Changsha 410078, Hunan, China
| | - Xionghao Liu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, Hunan, China
| | - Mujun Liu
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha 410078, Hunan, China
| |
Collapse
|
11
|
Vu L, Ghosh A, Tran C, Tebung WA, Sidibé H, Garcia-Mansfield K, David-Dirgo V, Sharma R, Pirrotte P, Bowser R, Vande Velde C. Defining the Caprin-1 Interactome in Unstressed and Stressed Conditions. J Proteome Res 2021; 20:3165-3178. [PMID: 33939924 PMCID: PMC9083243 DOI: 10.1021/acs.jproteome.1c00016] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cytoplasmic stress granules (SGs) are dynamic foci containing translationally arrested mRNA and RNA-binding proteins (RBPs) that form in response to a variety of cellular stressors. It has been debated that SGs may evolve into cytoplasmic inclusions observed in many neurodegenerative diseases. Recent studies have examined the SG proteome by interrogating the interactome of G3BP1. However, it is widely accepted that multiple baits are required to capture the full SG proteome. To gain further insight into the SG proteome, we employed immunoprecipitation coupled with mass spectrometry of endogenous Caprin-1, an RBP implicated in mRNP granules. Overall, we identified 1543 proteins that interact with Caprin-1. Interactors under stressed conditions were primarily annotated to the ribosome, spliceosome, and RNA transport pathways. We validated four Caprin-1 interactors that localized to arsenite-induced SGs: ANKHD1, TALIN-1, GEMIN5, and SNRNP200. We also validated these stress-induced interactions in SH-SY5Y cells and further determined that SNRNP200 also associated with osmotic- and thermal-induced SGs. Finally, we identified SNRNP200 in cytoplasmic aggregates in amyotrophic lateral sclerosis (ALS) spinal cord and motor cortex. Collectively, our findings provide the first description of the Caprin-1 protein interactome, identify novel cytoplasmic SG components, and reveal a SG protein in cytoplasmic aggregates in ALS patient neurons. Proteomic data collected in this study are available via ProteomeXchange with identifier PXD023271.
Collapse
Affiliation(s)
- Lucas Vu
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Asmita Ghosh
- Department of Neurosciences, Université de Montréal, Montreal, QC, Canada
- CHUM Research Center, Montréal, QC, Canada
| | - Chelsea Tran
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Walters Aji Tebung
- Department of Neurosciences, Université de Montréal, Montreal, QC, Canada
- CHUM Research Center, Montréal, QC, Canada
| | - Hadjara Sidibé
- Department of Neurosciences, Université de Montréal, Montreal, QC, Canada
- CHUM Research Center, Montréal, QC, Canada
| | - Krystine Garcia-Mansfield
- Collaborative Center for Translational Mass Spectrometry, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Victoria David-Dirgo
- Collaborative Center for Translational Mass Spectrometry, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Ritin Sharma
- Collaborative Center for Translational Mass Spectrometry, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Patrick Pirrotte
- Collaborative Center for Translational Mass Spectrometry, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Robert Bowser
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Christine Vande Velde
- Department of Neurosciences, Université de Montréal, Montreal, QC, Canada
- CHUM Research Center, Montréal, QC, Canada
| |
Collapse
|
12
|
Connecting the "dots": RNP granule network in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119058. [PMID: 33989700 DOI: 10.1016/j.bbamcr.2021.119058] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 05/01/2021] [Accepted: 05/07/2021] [Indexed: 12/26/2022]
Abstract
All cells contain ribonucleoprotein (RNP) granules - large membraneless structures composed of RNA and proteins. Recent breakthroughs in RNP granule research have brought a new appreciation of their crucial role in organising virtually all cellular processes. Cells widely exploit the flexible, dynamic nature of RNP granules to adapt to a variety of functional states and the ever-changing environment. Constant exchange of molecules between the different RNP granules connects them into a network. This network controls basal cellular activities and is remodelled to enable efficient stress response. Alterations in RNP granule structure and regulation have been found to lead to fatal human diseases. The interconnectedness of RNP granules suggests that the RNP granule network as a whole becomes affected in disease states such as a representative neurodegenerative disease amyotrophic lateral sclerosis (ALS). In this review, we summarize available evidence on the communication between different RNP granules and on the RNP granule network disruption as a primary ALS pathomechanism.
Collapse
|
13
|
Solomon DA, Smikle R, Reid MJ, Mizielinska S. Altered Phase Separation and Cellular Impact in C9orf72-Linked ALS/FTD. Front Cell Neurosci 2021; 15:664151. [PMID: 33967699 PMCID: PMC8096919 DOI: 10.3389/fncel.2021.664151] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/19/2021] [Indexed: 12/21/2022] Open
Abstract
Since the discovery of the C9orf72 repeat expansion mutation as causative for chromosome 9-linked amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) in 2011, a multitude of cellular pathways have been implicated. However, evidence has also been accumulating for a key mechanism of cellular compartmentalization—phase separation. Liquid-liquid phase separation (LLPS) is fundamental for the formation of membraneless organelles including stress granules, the nucleolus, Cajal bodies, nuclear speckles and the central channel of the nuclear pore. Evidence has now accumulated showing that the formation and function of these membraneless organelles is impaired by both the toxic arginine rich dipeptide repeat proteins (DPRs), translated from the C9orf72 repeat RNA transcript, and the repeat RNA itself. Both the arginine rich DPRs and repeat RNA themselves undergo phase separation and disrupt the physiological phase separation of proteins involved in the formation of these liquid-like organelles. Hence abnormal phase separation may explain a number of pathological cellular phenomena associated with C9orf72-ALS/FTD. In this review article, we will discuss the principles of phase separation, phase separation of the DPRs and repeat RNA themselves and how they perturb LLPS associated with membraneless organelles and the functional consequences of this. We will then discuss how phase separation may impact the major pathological feature of C9orf72-ALS/FTD, TDP-43 proteinopathy, and how LLPS may be targeted therapeutically in disease.
Collapse
Affiliation(s)
- Daniel A Solomon
- UK Dementia Research Institute at King's College London, London, United Kingdom.,Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
| | - Rebekah Smikle
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
| | - Matthew J Reid
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
| | - Sarah Mizielinska
- UK Dementia Research Institute at King's College London, London, United Kingdom.,Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
| |
Collapse
|
14
|
Zhang TD, Chen LL, Lin WJ, Shi WP, Wang JQ, Zhang CY, Guo WH, Deng X, Yin DC. Searching for conditions of protein self-assembly by protein crystallization screening method. Appl Microbiol Biotechnol 2021; 105:2759-2773. [PMID: 33683398 DOI: 10.1007/s00253-021-11188-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/29/2021] [Accepted: 02/17/2021] [Indexed: 11/28/2022]
Abstract
The self-assembly of biomacromolecules is an extremely important process. It is potentially useful in the fields of life science and materials science. To carry out the study on the self-assembly of proteins, it is necessary to find out the suitable self-assembly conditions, which have always been a challenging task in practice. Inspired by the screening technique in the field of protein crystallization, we proposed using the same screening technique for seeking suitable protein self-assembly conditions. Based on this consideration, we selected 5 proteins (β-lactoglobulin, hemoglobin, pepsin, lysozyme, α-chymotrypsinogen (II) A) together with 5 screening kits (IndexTM, BML, Morpheus, JCSG, PEG/Ion ScreenTM) to investigate the performance of these crystallization screening techniques in order to discover new optimized conditions of protein self-assembly. The screens were all kept at 293 K for certain days, and were analyzed using optical microscope, scanning electron microscope, transmission electron microscope, atomic force microscope, fluorescence microscope, and atomic absorption spectroscope. The results demonstrated that the method of protein crystallization screening can be successfully applied in the screening of self-assembly conditions. This method is fast, high throughput, and easily implemented in an automated system, with a low protein consumption feature. These results suggested that such strategy can be applied to finding new conditions or forms in routine research of protein self-assembly. KEY POINTS: • Protein crystallization screening method is successfully applied in the screening of self-assembly conditions. • This screening method can be applied on various kinds of proteins and possess a feature of low protein consumption. • This screening method is fast, high throughput, and easily implemented in an automated system.
Collapse
Affiliation(s)
- Tuo-Di Zhang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Liang-Liang Chen
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Wen-Juan Lin
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Wen-Pu Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jia-Qi Wang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Chen-Yan Zhang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | | | - Xudong Deng
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Da-Chuan Yin
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China.
| |
Collapse
|
15
|
Kim W, Kim DY, Lee KH. RNA-Binding Proteins and the Complex Pathophysiology of ALS. Int J Mol Sci 2021; 22:ijms22052598. [PMID: 33807542 PMCID: PMC7961459 DOI: 10.3390/ijms22052598] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/21/2022] Open
Abstract
Genetic analyses of patients with amyotrophic lateral sclerosis (ALS) have identified disease-causing mutations and accelerated the unveiling of complex molecular pathogenic mechanisms, which may be important for understanding the disease and developing therapeutic strategies. Many disease-related genes encode RNA-binding proteins, and most of the disease-causing RNA or proteins encoded by these genes form aggregates and disrupt cellular function related to RNA metabolism. Disease-related RNA or proteins interact or sequester other RNA-binding proteins. Eventually, many disease-causing mutations lead to the dysregulation of nucleocytoplasmic shuttling, the dysfunction of stress granules, and the altered dynamic function of the nucleolus as well as other membrane-less organelles. As RNA-binding proteins are usually components of several RNA-binding protein complexes that have other roles, the dysregulation of RNA-binding proteins tends to cause diverse forms of cellular dysfunction. Therefore, understanding the role of RNA-binding proteins will help elucidate the complex pathophysiology of ALS. Here, we summarize the current knowledge regarding the function of disease-associated RNA-binding proteins and their role in the dysfunction of membrane-less organelles.
Collapse
Affiliation(s)
- Wanil Kim
- Division of Cosmetic Science and Technology, Daegu Haany University, Hanuidae-ro 1, Gyeongsan, Gyeongbuk 38610, Korea;
| | - Do-Yeon Kim
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
- Correspondence: (D.-Y.K.); (K.-H.L.); Tel.: +82-53-660-6880 (D.-Y.K.); +82-53-819-7743 (K.-H.L.)
| | - Kyung-Ha Lee
- Division of Cosmetic Science and Technology, Daegu Haany University, Hanuidae-ro 1, Gyeongsan, Gyeongbuk 38610, Korea;
- Correspondence: (D.-Y.K.); (K.-H.L.); Tel.: +82-53-660-6880 (D.-Y.K.); +82-53-819-7743 (K.-H.L.)
| |
Collapse
|
16
|
Dudman J, Qi X. Stress Granule Dysregulation in Amyotrophic Lateral Sclerosis. Front Cell Neurosci 2020; 14:598517. [PMID: 33281563 PMCID: PMC7705167 DOI: 10.3389/fncel.2020.598517] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/20/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease with no current cure. ALS causes degeneration of both upper and lower motor neurons leading to atrophy of the innervating muscles and progressive paralysis. The exact mechanism of the pathology of ALS is unknown. However, 147 genes have been identified that are causative, associated with, or modify disease progression. While the causative mechanism is unknown, a number of pathological processes have been associated with ALS. These include mitochondrial dysfunction, protein accumulation, and defects in RNA metabolism. RNA metabolism is a complicated process that is regulated by many different RNA-binding proteins (RBPs). A small defect in RNA metabolism can produce results as dramatic as determining cell survival. Stress granules (SGs) control RNA translation during stressed conditions. This is a protective reaction, but in conditions of chronic stress can become pathogenic. SGs are even hypothesized to act as a seeding mechanism for the pathological aggregation of proteins seen in many neurodegenerative diseases, including TAR DNA-binding protein 43 (TDP-43) in ALS. In this review, we will be summarizing the current findings of SG pathology in ALS. We also focus on the role of SG dysregulation in protein aggregate formation and mitochondrial dysfunction. In addition, we outline therapeutic strategies that target SG components in ALS.
Collapse
Affiliation(s)
| | - Xin Qi
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|