1
|
Lin L, Ding J, Liu S, Liu C, Li Q, Gao X, Niu Y, Tong WM. Protein Phosphatase 2ACα Regulates ATR-Mediated Endogenous DNA Damage Response Against Microcephaly. Mol Neurobiol 2025; 62:1266-1281. [PMID: 38976130 DOI: 10.1007/s12035-024-04301-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 06/11/2024] [Indexed: 07/09/2024]
Abstract
Protein phosphatase 2A (PP2A) is an abundant heterotrimeric holoenzyme in eukaryotic cells coordinating with specific kinases to regulate spatial-temporal protein dephosphorylation in various biological processes. However, the function of PP2A in cortical neurogenesis remains largely unknown. Here, we report that neuronal-specific deletion of Pp2acα in mice displayed microcephaly, with significantly smaller brains and defective learning and memory ability. Mechanistically, neuronal Pp2acα deficiency resulted in elevated endogenous DNA damage and activation of ATR/CHK1 signaling. It was further induced by the loss of direct interaction between PP2AC and ATR as well as the function of PP2AC to dephosphorylate ATR. Importantly, ATR/CHK1 signaling dysregulation altered both the expression and activity of several critical downstream factors including P53, P21, Bcl2, and Bax, which led to decreased proliferation of cortical progenitor cells and increased apoptosis in developing cortical neurons. Taken together, our results indicate an essential function of PP2ACα in endogenous DNA damage response-mediated ATR signaling during neurogenesis, and defective PP2ACα in neurons contributes to microcephaly.
Collapse
Affiliation(s)
- Lin Lin
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Jing Ding
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Simeng Liu
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
- Department of Pathology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Chunying Liu
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Qing Li
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xiang Gao
- Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China
| | - Yamei Niu
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.
- Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Wei-Min Tong
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.
- Molecular Pathology Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
2
|
Hassan M, Yasir M, Shahzadi S, Chun W, Kloczkowski A. Molecular Role of Protein Phosphatases in Alzheimer's and Other Neurodegenerative Diseases. Biomedicines 2024; 12:1097. [PMID: 38791058 PMCID: PMC11117500 DOI: 10.3390/biomedicines12051097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/02/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Alzheimer's disease (AD) is distinguished by the gradual loss of cognitive function, which is associated with neuronal loss and death. Accumulating evidence supports that protein phosphatases (PPs; PP1, PP2A, PP2B, PP4, PP5, PP6, and PP7) are directly linked with amyloid beta (Aβ) as well as the formation of the neurofibrillary tangles (NFTs) causing AD. Published data reported lower PP1 and PP2A activity in both gray and white matters in AD brains than in the controls, which clearly shows that dysfunctional phosphatases play a significant role in AD. Moreover, PP2A is also a major causing factor of AD through the deregulation of the tau protein. Here, we review recent advances on the role of protein phosphatases in the pathology of AD and other neurodegenerative diseases. A better understanding of this problem may lead to the development of phosphatase-targeted therapies for neurodegenerative disorders in the near future.
Collapse
Affiliation(s)
- Mubashir Hassan
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA;
| | - Muhammad Yasir
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea; (M.Y.); (W.C.)
| | - Saba Shahzadi
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA;
| | - Wanjoo Chun
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea; (M.Y.); (W.C.)
| | - Andrzej Kloczkowski
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA;
- Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
3
|
DeVault L, Mateusiak C, Palucki J, Brent M, Milbrandt J, DiAntonio A. The response of Dual-leucine zipper kinase (DLK) to nocodazole: Evidence for a homeostatic cytoskeletal repair mechanism. PLoS One 2024; 19:e0300539. [PMID: 38574058 PMCID: PMC10994325 DOI: 10.1371/journal.pone.0300539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/28/2024] [Indexed: 04/06/2024] Open
Abstract
Genetic and pharmacological perturbation of the cytoskeleton enhances the regenerative potential of neurons. This response requires Dual-leucine Zipper Kinase (DLK), a neuronal stress sensor that is a central regulator of axon regeneration and degeneration. The damage and repair aspects of this response are reminiscent of other cellular homeostatic systems, suggesting that a cytoskeletal homeostatic response exists. In this study, we propose a framework for understanding DLK mediated neuronal cytoskeletal homeostasis. We demonstrate that low dose nocodazole treatment activates DLK signaling. Activation of DLK signaling results in a DLK-dependent transcriptional signature, which we identify through RNA-seq. This signature includes genes likely to attenuate DLK signaling while simultaneously inducing actin regulating genes. We identify alterations to the cytoskeleton including actin-based morphological changes to the axon. These results are consistent with the model that cytoskeletal disruption in the neuron induces a DLK-dependent homeostatic mechanism, which we term the Cytoskeletal Stress Response (CSR) pathway.
Collapse
Affiliation(s)
- Laura DeVault
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Chase Mateusiak
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Computer Science & Engineering, Washington University, St. Louis, MO, United States of America
| | - John Palucki
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Michael Brent
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Computer Science & Engineering, Washington University, St. Louis, MO, United States of America
| | - Jeffrey Milbrandt
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Needleman Center for Neurometabolism and Axonal Therapeutics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Aaron DiAntonio
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Needleman Center for Neurometabolism and Axonal Therapeutics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
4
|
Köster KA, Dethlefs M, Duque Escobar J, Oetjen E. Regulation of the Activity of the Dual Leucine Zipper Kinase by Distinct Mechanisms. Cells 2024; 13:333. [PMID: 38391946 PMCID: PMC10886912 DOI: 10.3390/cells13040333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
The dual leucine zipper kinase (DLK) alias mitogen-activated protein 3 kinase 12 (MAP3K12) has gained much attention in recent years. DLK belongs to the mixed lineage kinases, characterized by homology to serine/threonine and tyrosine kinase, but exerts serine/threonine kinase activity. DLK has been implicated in many diseases, including several neurodegenerative diseases, glaucoma, and diabetes mellitus. As a MAP3K, it is generally assumed that DLK becomes phosphorylated and activated by upstream signals and phosphorylates and activates itself, the downstream serine/threonine MAP2K, and, ultimately, MAPK. In addition, other mechanisms such as protein-protein interactions, proteasomal degradation, dephosphorylation by various phosphatases, palmitoylation, and subcellular localization have been shown to be involved in the regulation of DLK activity or its fine-tuning. In the present review, the diverse mechanisms regulating DLK activity will be summarized to provide better insights into DLK action and, possibly, new targets to modulate DLK function.
Collapse
Affiliation(s)
- Kyra-Alexandra Köster
- Department of Clinical Pharmacology and Toxicology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; (K.-A.K.); (M.D.)
- DZHK Standort Hamburg, Kiel, Lübeck, Germany;
| | - Marten Dethlefs
- Department of Clinical Pharmacology and Toxicology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; (K.-A.K.); (M.D.)
- DZHK Standort Hamburg, Kiel, Lübeck, Germany;
| | - Jorge Duque Escobar
- DZHK Standort Hamburg, Kiel, Lübeck, Germany;
- University Center of Cardiovascular Science, Department of Cardiology, University Heart & Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Elke Oetjen
- Department of Clinical Pharmacology and Toxicology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; (K.-A.K.); (M.D.)
- DZHK Standort Hamburg, Kiel, Lübeck, Germany;
- Institute of Pharmacy, University of Hamburg, 20146 Hamburg, Germany
| |
Collapse
|
5
|
Arribas RL, Viejo L, Bravo I, Martínez M, Ramos E, Romero A, García-Frutos EM, Janssens V, Montiel C, de Los Ríos C. C-glycosides analogues of the okadaic acid central fragment exert neuroprotection via restoration of PP2A-phosphatase activity: A rational design of potential drugs for Alzheimer's disease targeting tauopathies. Eur J Med Chem 2023; 251:115245. [PMID: 36905916 DOI: 10.1016/j.ejmech.2023.115245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/24/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
Protein phosphatase 2A (PP2A) is an important Ser/Thr phosphatase that participates in the regulation of multiple cellular processes. This implies that any deficient activity of PP2A is the responsible of severe pathologies. For instance, one of the main histopathological features of Alzheimer's disease is neurofibrillary tangles, which are mainly comprised by hyperphosphorylated forms of tau protein. This altered rate of tau phosphorylation has been correlated with PP2A depression AD patients. With the goal of preventing PP2A inactivation in neurodegeneration scenarios, we have aimed to design, synthesize and evaluate new ligands of PP2A capable of preventing its inhibition. To achieve this goal, the new PP2A ligands present structural similarities with the central fragment C19-C27 of the well-established PP2A inhibitor okadaic acid (OA). Indeed, this central moiety of OA does not exert inhibitory actions. Hence, these compounds lack PP2A-inhibiting structural motifs but, in contrast, compete with PP2A inhibitors, thus recovering phosphatase activity. Proving this hypothesis, most compounds showed a good neuroprotective profile in neurodegeneration models related to PP2A impairment, highlighting derivative 10, named ITH12711, as the most promising one. This compound (1) restored in vitro and cellular PP2A catalytic activity, measured on a phospho-peptide substrate and by western-blot analyses, (2) proved good brain penetration measured by PAMPA, and (3) prevented LPS-induced memory impairment of mice in the object recognition test. Thus, the promising outcomes of the compound 10 validate our rational approach to design new PP2A-activating drugs based on OA central fragment.
Collapse
Affiliation(s)
- Raquel L Arribas
- Instituto-Fundación Teófilo Hernando, Universidad Autónoma de Madrid, 28029, Madrid, Spain; Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, 28922, Alcorcón, Spain
| | - Lucía Viejo
- Instituto-Fundación Teófilo Hernando, Universidad Autónoma de Madrid, 28029, Madrid, Spain; Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, C/ Diego de León, 62, 28006, Madrid, Spain
| | - Isaac Bravo
- Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, C/ Diego de León, 62, 28006, Madrid, Spain; Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, 28049, Madrid, Spain
| | - Minerva Martínez
- Instituto-Fundación Teófilo Hernando, Universidad Autónoma de Madrid, 28029, Madrid, Spain
| | - Eva Ramos
- Departamento de Farmacología y Toxicología, Facultad de Veterinaria, Universidad Complutense, 28040, Madrid, Spain
| | - Alejandro Romero
- Departamento de Farmacología y Toxicología, Facultad de Veterinaria, Universidad Complutense, 28040, Madrid, Spain
| | - Eva M García-Frutos
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, 28049, Madrid, Spain; Universidad de Alcalá, Departamento de Química Orgánica y Química Inorgánica, Ctra. Madrid-Barcelona Km.33,600, 28871, Alcalá de Henares, Madrid, Spain
| | - Veerle Janssens
- Department of Cellular & Molecular Medicine, Laboratory of Protein Phosphorylation and Proteomics, KU Leuven, B-3000, Leuven, Belgium; LBI (KU Leuven Brain Institute), B-3000, Leuven, Belgium
| | - Carmen Montiel
- Instituto-Fundación Teófilo Hernando, Universidad Autónoma de Madrid, 28029, Madrid, Spain
| | - Cristóbal de Los Ríos
- Instituto-Fundación Teófilo Hernando, Universidad Autónoma de Madrid, 28029, Madrid, Spain; Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, 28922, Alcorcón, Spain; Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, C/ Diego de León, 62, 28006, Madrid, Spain.
| |
Collapse
|
6
|
Polyfunctionalized α-Phenyl-tert-butyl(benzyl)nitrones: Multifunctional Antioxidants for Stroke Treatment. Antioxidants (Basel) 2022; 11:antiox11091735. [PMID: 36139811 PMCID: PMC9495348 DOI: 10.3390/antiox11091735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/27/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
Nowadays, most stroke patients are treated exclusively with recombinant tissue plasminogen activator, a drug with serious side effects and limited therapeutic window. For this reason, and because of the known effects of oxidative stress on stroke, a more tolerable and efficient therapy for stroke is being sought that focuses on the control and scavenging of highly toxic reactive oxygen species by appropriate small molecules, such as nitrones with antioxidant properties. In this context, herein we report here the synthesis, antioxidant, and neuroprotective properties of twelve novel polyfunctionalized α-phenyl-tert-butyl(benzyl)nitrones. The antioxidant capacity of these nitrones was investigated by various assays, including the inhibition of lipid peroxidation induced by AAPH, hydroxyl radical scavenging assay, ABTS+-decoloration assay, DPPH scavenging assay, and inhibition of soybean lipoxygenase. The inhibitory effect on monoamine oxidases and cholinesterases and inhibition of β-amyloid aggregation were also investigated. As a result, (Z)-N-benzyl-1-(2-(3-(piperidin-1-yl)propoxy)phenyl)methanimine oxide (5) was found to be one of the most potent antioxidants, with high ABTS+ scavenging activity (19%), and potent lipoxygenase inhibitory capacity (IC50 = 10 µM), selectively inhibiting butyrylcholinesterase (IC50 = 3.46 ± 0.27 µM), and exhibited neuroprotective profile against the neurotoxicant okadaic acid in a neuronal damage model. Overall, these results pave the way for the further in-depth analysis of the neuroprotection of nitrone 5 in in vitro and in vivo models of stroke and possibly other neurodegenerative diseases in which oxidative stress is identified as a critical player.
Collapse
|