1
|
McGraw CM, Poduri A. Machine learning enables high-throughput, low-replicate screening for novel anti-seizure targets and compounds using combined movement and calcium fluorescence in larval zebrafish. Eur J Pharmacol 2025; 991:177327. [PMID: 39914783 DOI: 10.1016/j.ejphar.2025.177327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 02/12/2025]
Abstract
Identifying new anti-seizure medications (ASMs) is difficult due to limitations in animal-based assays. Zebrafish (Danio rerio) serve as a model for chemical and genetic seizures, but current methods for detecting anti-seizure responses are limited by incomplete detection of anti-seizure responses (locomotor assays) or low-throughput (electrophysiology, fluorescence microscopy). To overcome these challenges, we developed a novel high-throughput method using combined locomotor and calcium fluorescence data from unrestrained larval zebrafish in a 96-well plate reader. Custom software tracked fish movement and fluorescence changes (deltaF/F0) from high-speed time-series, and logistic classifiers trained with elastic net regression distinguished seizure-like activity in response to the GABAA receptor antagonist pentylenetetrazole (PTZ). A classifier using combined data ("PTZ M + F"; AUC-ROC: 0.98; F1: 0.912) outperformed movement-only ("PTZ M"; AUC-ROC: 0.9) and fluorescence-only classifiers ("PTZ F"; AUC-ROC 0.96). Seizure-like event rate increased in proportion to PTZ concentration, and was suppressed by valproic acid (VPA). Meanwhile, TGB selectively reduced events defined by the "PTZ M + F″ classifier, paralleling previous reports that TGB reduces electrographic but not locomotor seizures. Using bootstrap simulation, we calculated statistical power and demonstrated reliable detection of ASM effects with as few as N = 4 replicates. In a test screen, 4 out of 5 ASMs were detected. This high-throughput approach combines previously orthogonal assays for zebrafish ASM screening.
Collapse
Affiliation(s)
- Christopher Michael McGraw
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02115, USA; Department of Neurology, The F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA; Department of Neurology, Feinberg School of Medicine, Northwestern University, USA.
| | - Annapurna Poduri
- Department of Neurology, The F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA; National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
2
|
Biswas S, Emond MR, Philip GS, Jontes JD. Canalization of circuit assembly by δ-protocadherins in the zebrafish optic tectum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.29.635523. [PMID: 39975130 PMCID: PMC11838265 DOI: 10.1101/2025.01.29.635523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Neurons are precisely and reproducibly assembled into complex networks during development. How genes collaborate to guide this assembly remains an enduring mystery. In humans, large numbers of genes have been implicated in neurodevelopmental disorders that are characterized by variable and overlapping phenotypes. The complexity of the brain, the large number of genes involved and the heterogeneity of the disorders makes understanding the relationships between genes, development and neural function challenging. Waddington suggested the concept of canalization to describe the role of genes in shaping developmental trajectories that lead to precise outcomes1. Here, we show that members of the δ-protocadherin family of homophilic adhesion molecules, Protocadherin-19 and Protocadherin-17, contribute to developmental canalization of visual circuit assembly in the zebrafish. We provided oriented visual stimuli to zebrafish larvae and performed in vivo 2-photon calcium imaging in the optic tectum. The latent dynamics resulting from the population activity were confined to a conserved manifold. Among different wild type larvae, these dynamics were remarkably similar, allowing quantitative comparisons within and among genotypes. In both Protocadherin-19 and Protocadherin-17 mutants, the latent dynamics diverged from wild type. Importantly, these deviations could be averaged away, suggesting that the loss of these adhesion molecules leads to stochastic phenotypic variability and introduced disruptions of circuit organization that varied among individual mutants. These results provide a specific, quantitative example of canalization in the development of a vertebrate neural circuit, and suggest a framework for understanding the observed variability in complex brain disorders.
Collapse
Affiliation(s)
- Sayantanee Biswas
- Department of Biological Chemistry and Pharmacology Ohio State University Wexner College of Medicine Columbus, OH 43210
| | - Michelle R. Emond
- Department of Biological Chemistry and Pharmacology Ohio State University Wexner College of Medicine Columbus, OH 43210
| | - Grace S. Philip
- Department of Biological Chemistry and Pharmacology Ohio State University Wexner College of Medicine Columbus, OH 43210
| | - James D. Jontes
- Department of Biological Chemistry and Pharmacology Ohio State University Wexner College of Medicine Columbus, OH 43210
| |
Collapse
|
3
|
Borghi R, Petrini S, Apollonio V, Trivisano M, Specchio N, Moreno S, Bertini E, Tartaglia M, Compagnucci C. Altered cytoskeleton dynamics in patient-derived iPSC-based model of PCDH19 clustering epilepsy. Front Cell Dev Biol 2025; 12:1518533. [PMID: 39834389 PMCID: PMC11743388 DOI: 10.3389/fcell.2024.1518533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025] Open
Abstract
Protocadherin 19 (PCDH19) is an adhesion molecule involved in cell-cell interaction whose mutations cause a drug-resistant form of epilepsy, named PCDH19-Clustering Epilepsy (PCDH19-CE, MIM 300088). The mechanism by which altered PCDH19 function drive pathogenesis is not yet fully understood. Our previous work showed that PCDH19 dysfunction is associated with altered orientation of the mitotic spindle and accelerated neurogenesis, suggesting a contribution of altered cytoskeleton organization in PCDH19-CE pathogenesis in the control of cell division and differentiation. Here, we evaluate the consequences of altered PCDH19 function on microfilaments and microtubules organization, using a disease model obtained from patient-derived induced pluripotent stem cells. We show that iPSC-derived cortical neurons are characterized by altered cytoskeletal dynamics, suggesting that this protocadherin has a role in modulating stability of MFs and MTs. Consistently, the levels of acetylated-tubulin, which is related with stable MTs, are significantly increased in cortical neurons derived from the patient's iPSCs compared to control cells, supporting the idea that the altered dynamics of the MTs depends on their increased stability. Finally, performing live-imaging experiments using fluorescence recovery after photobleaching and by monitoring GFP-tagged end binding protein 3 (EB3) "comets," we observe an impairment of the plus-end polymerization speed in PCDH19-mutated cortical neurons, therefore confirming the impaired MT dynamics. In addition to altering the mitotic spindle formation, the present data unveil that PCDH19 dysfunction leads to altered cytoskeletal rearrangement, providing therapeutic targets and pharmacological options to treat this disorder.
Collapse
Affiliation(s)
- Rossella Borghi
- Molecular Genetics and Functional Genomics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Stefania Petrini
- Confocal Microscopy Core Facility, Laboratories, Bambino Gesù, Children’s Research Hospital, IRCCS, Rome, Italy
| | - Valentina Apollonio
- Confocal Microscopy Core Facility, Laboratories, Bambino Gesù, Children’s Research Hospital, IRCCS, Rome, Italy
| | - Marina Trivisano
- Neurology, Epilepsy and Movement Disorders Unit, Bambino Gesù Children’s Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Rome, Italy
| | - Nicola Specchio
- Neurology, Epilepsy and Movement Disorders Unit, Bambino Gesù Children’s Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Rome, Italy
| | - Sandra Moreno
- Department of Science, LIME, University Roma Tre, Rome, Italy
| | - Enrico Bertini
- Research Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Claudia Compagnucci
- Molecular Genetics and Functional Genomics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| |
Collapse
|
4
|
LaCoursiere CM, Ullmann JF, Koh HY, Turner L, Baker CM, Robens B, Shao W, Rotenberg A, McGraw CM, Poduri AH. Zebrafish models of candidate human epilepsy-associated genes provide evidence of hyperexcitability. iScience 2024; 27:110172. [PMID: 39021799 PMCID: PMC11253282 DOI: 10.1016/j.isci.2024.110172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/13/2024] [Accepted: 05/31/2024] [Indexed: 07/20/2024] Open
Abstract
Hundreds of novel candidate human epilepsy-associated genes have been identified thanks to advancements in next-generation sequencing and large genome-wide association studies, but establishing genetic etiology requires functional validation. We generated a list of >2,200 candidate epilepsy-associated genes, of which 48 were developed into stable loss-of-function (LOF) zebrafish models. Of those 48, evidence of seizure-like behavior was present in 5 (arfgef1, kcnd2, kcnv1, ubr5, and wnt8b). Further characterization provided evidence for epileptiform activity via electrophysiology in kcnd2 and wnt8b mutants. Additionally, arfgef1 and wnt8b mutants showed a decrease in the number of inhibitory interneurons in the optic tectum of larval animals. Further, RNA sequencing (RNA-seq) revealed convergent transcriptional abnormalities between mutant lines, consistent with their developmental defects and hyperexcitable phenotypes. These zebrafish models provide strongest experimental evidence supporting the role of ARFGEF1, KCND2, and WNT8B in human epilepsy and further demonstrate the utility of this model system for evaluating candidate human epilepsy genes.
Collapse
Affiliation(s)
- Christopher Mark LaCoursiere
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
- Epilepsy Genetics Program, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Jeremy F.P. Ullmann
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
- Epilepsy Genetics Program, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Hyun Yong Koh
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
- Epilepsy Genetics Program, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
- Departments of Neuroscience and Pediatrics, Division of Neurology and Developmental Neuroscience, BCM, Houston, TX 77030, USA
| | - Laura Turner
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
- Epilepsy Genetics Program, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Cristina M. Baker
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
- Epilepsy Genetics Program, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, 7034 Trondheim, Norway
| | - Barbara Robens
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
- Epilepsy Genetics Program, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Wanqing Shao
- Research Computing, Department of Information Technology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Alexander Rotenberg
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Christopher M. McGraw
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
- Epilepsy Genetics Program, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Annapurna H. Poduri
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
- Epilepsy Genetics Program, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| |
Collapse
|
5
|
Alijanpour S, Ghafouri-Fard S, Tonekaboni SH, Karimzadeh P, Ahmadabadi F, Rahimian E, Panjeshahi S, Miryounesi M. A Case Report of Parental Germline Mosaicism in the PCDH19 Gene of Two Iranian Siblings. Basic Clin Neurosci 2024; 15:541-552. [PMID: 39553263 PMCID: PMC11565664 DOI: 10.32598/bcn.2023.5507.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 11/19/2024] Open
Abstract
Introduction Developmental and epileptic encephalopathy 9 (DEE9) is caused by pathogenic variants in the PCDH19 gene. The clinical features include early-onset seizures that are often provoked by fever and display clustered seizures, mild to profound intellectual disability, autistic traits, and behavioral disturbances. DEE9 is characterized by an unusual X-linked pattern where heterozygous females or rarely mosaic hemizygous males are affected, but hemizygous males and homozygous females are asymptomatic. In recent years, an increasing number of female and male patients with PCDH19-related epilepsy and symptoms have been reported. Methods Here, we report two additional female patients with DEE9 who are siblings. After analyzing karyotype testing results, whole-exome sequencing (WES) was performed for the proband. Then, Sanger sequencing was carried out for proband, her affected sister, and parents. Results Sequencing results revealed that our two patients had a heterozygous frameshift variant (NM_001184880.2: c.1091delC, p.P364Rfs*4) in the PCDH19 gene. We also reviewed previously reported cases with this mutation in detail. Conclusion This is the first report of germline mosaicism in the PCDH19 gene in the Iranian population and expanded the phenotypic spectrum of DEE9. Genetic testing has become an effective way of determining the diagnosis. Parental germline mosaicism should be considered when providing genetic counseling for X-linked/autosomal dominant disorders. This report also emphasizes the importance of considering prenatal diagnosis (PND) in such cases.
Collapse
Affiliation(s)
- Sahar Alijanpour
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Hassan Tonekaboni
- Department of Pediatric Neurology, School of Medicine, Mofid Children’s Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvaneh Karimzadeh
- Department of Pediatric Neurology, School of Medicine, Mofid Children’s Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Ahmadabadi
- Department of Pediatric Neurology, School of Medicine, Mofid Children’s Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Samareh Panjeshahi
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Miryounesi
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Park J, Lee E, Kim CH, Ohk J, Jung H. Mosaicism-independent mechanisms contribute to Pcdh19-related epilepsy and repetitive behaviors in Xenopus. Proc Natl Acad Sci U S A 2024; 121:e2321388121. [PMID: 38748583 PMCID: PMC11126968 DOI: 10.1073/pnas.2321388121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/05/2024] [Indexed: 05/27/2024] Open
Abstract
Protocadherin19 (PCDH19)-related epilepsy syndrome is a rare disorder characterized by early-onset epilepsy, intellectual disability, and autistic behaviors. PCDH19 is located on the X chromosome and encodes a calcium-dependent single-pass transmembrane protein, which regulates cell-to-cell adhesion through homophilic binding. In human, 90% of heterozygous females, containing PCDH19 wild-type and mutant cells due to random X inactivation, are affected, whereas mutant males, containing only mutant cells, are typically not. The current view, the cellular interference, is that the altered interactions between wild-type and mutant cells during development, rather than loss of function itself, are responsible. However, studies using Pcdh19 knockout mice showed that the complete loss of function also causes autism-like behaviors both in males and females, suggesting that other functions of PCDH19 may also contribute to pathogenesis. To address whether mosaicism is required for PCDH19-related epilepsy, we generated Xenopus tropicalis tadpoles with complete or mosaic loss of function by injecting antisense morpholino oligonucleotides into the blastomeres of neural lineage at different stages of development. We found that either mosaic or complete knockdown results in seizure-like behaviors, which could be rescued by antiseizure medication, and repetitive behaviors. Our results suggest that the loss of PCDH19 function itself, in addition to cellular interference, may also contribute to PCDH19-related epilepsy.
Collapse
Affiliation(s)
- Jugeon Park
- Department of Anatomy, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul03722, Republic of Korea
| | - Eunee Lee
- Department of Anatomy, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul03722, Republic of Korea
| | - Chul Hoon Kim
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul03722, Republic of Korea
| | - Jiyeon Ohk
- Department of Anatomy, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul03722, Republic of Korea
| | - Hosung Jung
- Department of Anatomy, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul03722, Republic of Korea
| |
Collapse
|
7
|
Kowkabi S, Yavarian M, Kaboodkhani R, Mohammadi M, Shervin Badv R. PCDH19-clustering epilepsy, pathophysiology and clinical significance. Epilepsy Behav 2024; 154:109730. [PMID: 38521028 DOI: 10.1016/j.yebeh.2024.109730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/07/2024] [Accepted: 02/27/2024] [Indexed: 03/25/2024]
Abstract
PCDH19 clustering epilepsy (PCDH19-CE) is an X-linked epilepsy disorder associated with intellectual disability (ID) and behavioral disturbances, which is caused by PCDH19 gene variants. PCDH19 pathogenic variant leads to epilepsy in heterozygous females, not in hemizygous males and the inheritance pattern is unusual. The hypothesis of cellular interference was described as a key pathogenic mechanism. According to that, males do not develop the disease because of the uniform expression of PCDH19 (variant or wild type) unless they have a somatic variation. We conducted a literature review on PCDH19-CE pathophysiology and concluded that other significant mechanisms could contribute to pathogenesis including: asymmetric cell division and heterochrony, female-related allopregnanolone deficiency, altered steroid gene expression, decreased Gamma-aminobutyric acid receptor A (GABAA) function, and blood-brain barrier (BBB) dysfunction. Being aware of these mechanisms helps us when we should decide which therapeutic option is more suitable for which patient.
Collapse
Affiliation(s)
- Safoura Kowkabi
- Child Neurology Division and Children's Epilepsy Monitoring Unit, Children's Medical Centre, Tehran University of Medical Sciences, Tehran, Iran; Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Majid Yavarian
- Hematology Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | | | - Mahmood Mohammadi
- Child Neurology Division and Children's Epilepsy Monitoring Unit, Children's Medical Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Shervin Badv
- Child Neurology Division and Children's Epilepsy Monitoring Unit, Children's Medical Centre, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Locubiche S, Ordóñez V, Abad E, Scotto di Mase M, Di Donato V, De Santis F. A Zebrafish-Based Platform for High-Throughput Epilepsy Modeling and Drug Screening in F0. Int J Mol Sci 2024; 25:2991. [PMID: 38474238 DOI: 10.3390/ijms25052991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/22/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
The zebrafish model has emerged as a reference tool for phenotypic drug screening. An increasing number of molecules have been brought from bench to bedside thanks to zebrafish-based assays over the last decade. The high homology between the zebrafish and the human genomes facilitates the generation of zebrafish lines carrying loss-of-function mutations in disease-relevant genes; nonetheless, even using this alternative model, the establishment of isogenic mutant lines requires a long generation time and an elevated number of animals. In this study, we developed a zebrafish-based high-throughput platform for the generation of F0 knock-out (KO) models and the screening of neuroactive compounds. We show that the simultaneous inactivation of a reporter gene (tyrosinase) and a second gene of interest allows the phenotypic selection of F0 somatic mutants (crispants) carrying the highest rates of mutations in both loci. As a proof of principle, we targeted genes associated with neurodevelopmental disorders and we efficiently generated de facto F0 mutants in seven genes involved in childhood epilepsy. We employed a high-throughput multiparametric behavioral analysis to characterize the response of these KO models to an epileptogenic stimulus, making it possible to employ kinematic parameters to identify seizure-like events. The combination of these co-injection, screening and phenotyping methods allowed us to generate crispants recapitulating epilepsy features and to test the efficacy of compounds already during the first days post fertilization. Since the strategy can be applied to a wide range of indications, this study paves the ground for high-throughput drug discovery and promotes the use of zebrafish in personalized medicine and neurotoxicity assessment.
Collapse
Affiliation(s)
- Sílvia Locubiche
- ZeClinics S.L., Carrer de Laureà Miró, 408-410, 08980 Sant Feliu de Llobregat, Spain
- Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08036 Barcelona, Spain
| | - Víctor Ordóñez
- ZeClinics S.L., Carrer de Laureà Miró, 408-410, 08980 Sant Feliu de Llobregat, Spain
| | - Elena Abad
- ZeClinics S.L., Carrer de Laureà Miró, 408-410, 08980 Sant Feliu de Llobregat, Spain
| | | | - Vincenzo Di Donato
- ZeClinics S.L., Carrer de Laureà Miró, 408-410, 08980 Sant Feliu de Llobregat, Spain
| | - Flavia De Santis
- ZeClinics S.L., Carrer de Laureà Miró, 408-410, 08980 Sant Feliu de Llobregat, Spain
| |
Collapse
|
9
|
LaCoursiere CM, Ullmann JFP, Koh HY, Turner L, Baker CM, Robens B, Shao W, Rotenberg A, McGraw CM, Poduri A. Zebrafish models of candidate human epilepsy-associated genes provide evidence of hyperexcitability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.07.579190. [PMID: 38370728 PMCID: PMC10871320 DOI: 10.1101/2024.02.07.579190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Hundreds of novel candidate human epilepsy-associated genes have been identified thanks to advancements in next-generation sequencing and large genome-wide association studies, but establishing genetic etiology requires functional validation. We generated a list of >2200 candidate epilepsy-associated genes, of which 81 were determined suitable for the generation of loss-of-function zebrafish models via CRISPR/Cas9 gene editing. Of those 81 crispants, 48 were successfully established as stable mutant lines and assessed for seizure-like swim patterns in a primary F2 screen. Evidence of seizure-like behavior was present in 5 (arfgef1, kcnd2, kcnv1, ubr5, wnt8b) of the 48 mutant lines assessed. Further characterization of those 5 lines provided evidence for epileptiform activity via electrophysiology in kcnd2 and wnt8b mutants. Additionally, arfgef1 and wnt8b mutants showed a decrease in the number of inhibitory interneurons in the optic tectum of larval animals. Furthermore, RNAseq revealed convergent transcriptional abnormalities between mutant lines, consistent with their developmental defects and hyperexcitable phenotypes. These zebrafish models provide strongest experimental evidence supporting the role of ARFGEF1, KCND2, and WNT8B in human epilepsy and further demonstrate the utility of this model system for evaluating candidate human epilepsy genes.
Collapse
Affiliation(s)
- Christopher Mark LaCoursiere
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Jeremy F P Ullmann
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Hyun Yong Koh
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Departments of Neuroscience and Pediatrics, Division of Neurology and Developmental Neuroscience, BCM, Houston, Texas, USA
| | - Laura Turner
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Cristina M Baker
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - Barbara Robens
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Wanqing Shao
- Research Computing, Department of Information Technology, Boston Children's Hospital, Boston, MA, USA
| | - Alexander Rotenberg
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Christopher M McGraw
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Annapurna Poduri
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| |
Collapse
|
10
|
Dong Y, Zhang Y, Sheng Y, Wang F, Liu L, Fan LL. Case report: Identification of a recurrent pathogenic DHDDS mutation in Chinese family with epilepsy, intellectual disability and myoclonus. Front Genet 2023; 14:1208540. [PMID: 37881805 PMCID: PMC10597645 DOI: 10.3389/fgene.2023.1208540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/25/2023] [Indexed: 10/27/2023] Open
Abstract
Background: Heterozygous mutations in the dehydrodolichol diphosphate synthase (DHDDS) gene are one of the causes generating developmental and epileptic encephalopathies. So far, only eleven mutations in the DHDDS gene have been identified. The mutation spectrum of the DHDDS gene in the Chinese population remains unclear. Methods: In this study, we enrolled a Chinese family with myoclonus and/or epilepsy and intellectual disability. The epilepsy and myoclonic tremor were improved after deep brain stimulation (DBS) of the subthalamic nucleus (STN) treatment. Whole exome sequencing and Sanger sequencing were employed to explore the genetic variations of the family. Results: Subsequent to data filtering, we identified a recurrent pathogenic mutation (NM_001243564.1, c.113G>A/p.R38H) in the DHDDS gene in the proband. Sanger sequencing further validated that the presence of the mutation in his affected mother but absent in the health family members. Further bioinformatics analysis revealed that this mutation (p.R38H), located in an evolutionarily conserved region of DHDDS, was predicted to be deleterious. Discussion: In this report, we present the first case of intractable epilepsy and/or myoclonus caused by p.R38H mutation of the DHDDS gene in the Chinese population. Furthermore, this study represents the third report of autosomal dominant familial inheritance of DHDDS mutation worldwide.
Collapse
Affiliation(s)
- Yi Dong
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Yi Zhang
- Medical Psychological Center, Medical Psychological Institute of Central South University, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yue Sheng
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Fang Wang
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Lv Liu
- Department of Respiratory Medicine, Clinical Center for Gene Diagnosis and Therapy, Diagnosis and Treatment Center of Respiratory Disease, Diagnosis and Treatment Center of Respiratory Disease, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Liang-Liang Fan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
11
|
Zhou W, Ouyang Y, Ji Y, Xi Q, Zhao L. Genetic variants and phenotype analysis in a five-generation Chinese pedigree with PCDH19 female-limited epilepsy. Front Neurol 2023; 14:1107904. [PMID: 36970538 PMCID: PMC10034091 DOI: 10.3389/fneur.2023.1107904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/20/2023] [Indexed: 03/29/2023] Open
Abstract
Objective Albeit the gene of PCDH19-FE was ascertained, the correlation of gene mutation, PCDH19 protein structure, and phenotype heterogeneity remained obscure. This study aimed to report a five-generation pedigree of seven female patients of PCDH19-FE and tried to explore whether two variants were correlated with PCDH19 protein structure and function alteration, and PCDH19-FE phenotype. Methods We analyzed the clinical data and genetic variants of a PCDH19-FE pedigree, to explore the phenotype heterogeneity of PCDH19-FE and underlying mechanisms. In addition to the clinical information of family members, next-generation sequencing was adopted to detect the variant sites of probands with validation by sanger sequencing. And the sanger sequencing was conducted in other patients in this pedigree. The biological conservation analysis and population polymorphism analysis of variants were also performed subsequently. The structure alteration of mutated PCDH19 protein was predicted by AlphaFold2. Results Based on a five-generation pedigree of PCDH19-FE, missense variants of c.695A>G and c.2760T>A in the PCDH19 gene were found in the heterozygous proband (V:1), which resulted in the change of amino acid 232 from Asn to Ser (p.Asn232Ser) and amino acid 920 from Asp to Glu (p.Asp920Glu) influencing PCDH19 function. The other six females in the pedigree (II:6, II:8, IV:3, IV:4, IV:5, IV:11) exhibited different clinical phenotypes but shared the same variant. Two males with the same variant have no clinical manifestations (III:3, III:10). The biological conservation analysis and population polymorphism analysis demonstrated the highly conservative characteristics of these two variants. AlphaFold2 predicted that the variant, p.Asp920Glu, led to the disappearance of the hydrogen bond between Asp at position 920 and His at position 919. Furthermore, the hydrogen bond between Asp920 and His919 also disappeared when the Asn amino acid mutated to Ser at position 232. Conclusion A strong genotype-phenotype heterogeneity was observed among female patients with the same genotype in our PCDH19-FE pedigree. And two missense variants, c.695A > G and c.2760T>A in the PCDH19 gene, have been identified in our pedigree. The c.2760T>A variant was a novel variant site probably related to the PCDH19-FE.
Collapse
Affiliation(s)
- Wenjuan Zhou
- Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- *Correspondence: Wenjuan Zhou
| | - Yuzhen Ouyang
- Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yuqiao Ji
- Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qiong Xi
- Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lingling Zhao
- Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Lingling Zhao
| |
Collapse
|