1
|
Ahmad M, Yousaf M. Co-conversion of CO 2 and refractory organics into bioplastics through a stable biocarrier. WATER RESEARCH 2025; 280:123519. [PMID: 40147307 DOI: 10.1016/j.watres.2025.123519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/23/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025]
Abstract
An attractive solution to traditional plastics is scaling up the microbial system to produce bioplastics like polyhydroxyalkanoates (PHAs). Herein, we developed a dynamic microbial ecosystem on porous biocarrier for conversion of refractory organics to bioplastics. biocarriers of 25 mm sized were packed in a 5 L bioreactor and operated for 200 days, to achieve stable performance for commercial applications. Reaching to bioreactor stability, microbial ecosystem utilized quinoline (5.2 kg/m3/day) for carbon & nitrogen metabolism, phenol (4.5 kg/m3/day) to trigger synthesis of PHAs, pyridines (4.2 kg/m3/day) to manufacture hydroxy fatty acid polyesters, NH4+(7.2 kg/m3/day) to regulate symbiosis, NO3/NO2 (1.2 kg/m3/day) to serve as mediators and electron acceptors. On 200th day, bioplastic production reached to 76.8 (kg/m3/day) with stable pollutants degradation of 70.3 (kg/m3/day). Purity of the bioplastics remained quite high (average 90 %) after 100 days of bioreactor operation. Interestingly, PHAs synthesis was triggered (31-581 g/day) with increased CO2 fixation from 45 to 594 (mol/h/g protein), due to the growth of CO2 assimilators. The developed biocarriers could be directly poured into the secondary tank of the existing wastewater treatment plants (WWTPs), which will not only produce bioplastics but also boost treatment efficiency and resource recovery potential of WWTPs.
Collapse
Affiliation(s)
- Muhammad Ahmad
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Maryam Yousaf
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
2
|
Grgurević K, Bramberger D, Miloloža M, Stublić K, Ocelić Bulatović V, Ranilović J, Ukić Š, Bolanča T, Cvetnić M, Markić M, Kučić Grgić D. Producing and Characterizing Polyhydroxyalkanoates from Starch and Chickpea Waste Using Mixed Microbial Cultures in Solid-State Fermentation. Polymers (Basel) 2024; 16:3407. [PMID: 39684153 DOI: 10.3390/polym16233407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
The environmental impact of plastic waste is a growing global challenge, primarily due to non-biodegradable plastics from fossil resources that accumulate in ecosystems. Biodegradable polymers like polyhydroxyalkanoates (PHAs) offer a sustainable alternative. PHAs are microbial biopolymers produced by microorganisms using renewable substrates, including agro-industrial byproducts, making them eco-friendly and cost-effective. This study focused on the isolation and characterization of PHA-producing microorganisms from agro-industrial waste, including chickpeas, chickpeas with bean residues, and starch. Screening via Sudan Black staining identified PHA-accumulating strains such as Brevibacillus sp., Micrococcus spp., and Candida krusei, among others. To assess the potential for PHA biosynthesis, solid-state fermentation (SSF) was conducted using agro-industrial waste as substrates, along with a mixed culture of the isolated microorganisms. The highest observed yield was a PHA accumulation of 13.81%, achieved with chickpeas containing bean residues. Structural and thermal characterization of the PHAs was performed using Fourier-transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). FTIR-ATR spectra indicated polyhydroxybutyrate (PHB), suggesting it as the synthesized PHA type. This study highlights the potential of agro-industrial waste for sustainable PHA production and eco-friendly bioplastics.
Collapse
Affiliation(s)
- Karlo Grgurević
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Dora Bramberger
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Martina Miloloža
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | | | - Vesna Ocelić Bulatović
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | | | - Šime Ukić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Tomislav Bolanča
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Matija Cvetnić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Marinko Markić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Dajana Kučić Grgić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| |
Collapse
|
3
|
Casey D, Diaz-Garcia L, Yu M, Tee KL, Wong TS. From Knallgas Bacterium to Promising Biomanufacturing Host: The Evolution of Cupriavidus necator. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024. [PMID: 39363001 DOI: 10.1007/10_2024_269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The expanding field of synthetic biology requires diversification of microbial chassis to expedite the transition from a fossil fuel-dependent economy to a sustainable bioeconomy. Relying exclusively on established model organisms such as Escherichia coli and Saccharomyces cerevisiae may not suffice to drive the profound advancements needed in biotechnology. In this context, Cupriavidus necator, an extraordinarily versatile microorganism, has emerged as a potential catalyst for transformative breakthroughs in industrial biomanufacturing. This comprehensive book chapter offers an in-depth review of the remarkable technological progress achieved by C. necator in the past decade, with a specific focus on the fields of molecular biology tools, metabolic engineering, and innovative fermentation strategies. Through this exploration, we aim to shed light on the pivotal role of C. necator in shaping the future of sustainable bioprocessing and bioproduct development.
Collapse
Affiliation(s)
- Daniel Casey
- School of Chemical, Materials and Biological Engineering, The University of Sheffield, Sheffield, UK
| | - Laura Diaz-Garcia
- School of Chemical, Materials and Biological Engineering, The University of Sheffield, Sheffield, UK
| | - Mincen Yu
- School of Chemical, Materials and Biological Engineering, The University of Sheffield, Sheffield, UK
| | - Kang Lan Tee
- School of Chemical, Materials and Biological Engineering, The University of Sheffield, Sheffield, UK
- Evolutor Ltd, The Innovation Centre, Sheffield, UK
| | - Tuck Seng Wong
- School of Chemical, Materials and Biological Engineering, The University of Sheffield, Sheffield, UK.
- Evolutor Ltd, The Innovation Centre, Sheffield, UK.
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science & Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani, Thailand.
- School of Pharmacy, Bandung Institute of Technology, Bandung, West Java, Indonesia.
| |
Collapse
|
4
|
Biglari N, Abdeshahian P, Orita I, Fukui T, Sudesh K. Improving Bioplastic Production: Enhanced P(3HB- co-3HHx) Synthesis from Glucose by Using Mutant Cupriavidus necator. IRANIAN JOURNAL OF BIOTECHNOLOGY 2024; 22:e3884. [PMID: 40225295 PMCID: PMC11993232 DOI: 10.30498/ijb.2024.445254.3884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 11/19/2024] [Indexed: 04/15/2025]
Abstract
Background Biodegradable polyhydroxyalkanoates (PHAs) hold promises for various applications in industries ranging from packaging to biomedical engineering, highlighting the importance of this pioneering research in sustainable materials synthesis. Objectives The objective of this investigation was to present the successful production of polyhydroxyalkanoate (PHA) copolymer P(3HB-co-3HHx) from glucose utilizing a newly mutated strain of Cupriavidus necator. This mutant strain carries the pBPP-ccrMeJAc-emd plasmid which harbors a short-chain-length-specific PhaJ enzyme. The primary aim is to demonstrate the enhanced production efficiency and specificity of P(3HB-co-3HHx) through genetic manipulation and enzyme engineering, thereby advancing the feasibility and sustainability of PHA-based bioplastic production. Materials and Methods To design the inputs conditions,a central composite factorial design (CCFD) based on a one-variable-at-a-time (OVAT) experiment was conducted. This experiment aimed to identify key chemical factors and their operational ranges affecting PHBHHx production by the mutant strain. Later, batch and repeated fed-batch (RFB) culture were run in a stirred tank bioreactor (STBR) with a working volume of 2 L which was inoculated by 200 ml (10% v/v) of freshly grown seed culture (18 h). This methodology ensured controlled exploration of individual variables, facilitating the selection of optimal conditions for PHBHHx production. Total glucose concentrations during fermentation were assessed through the phenol-sulfuric acid assay. Results The study demonstrates the effectiveness of the designed model in predicting PHBHHx production during fermentation runs with predicted values closely aligning with experimental results. This underscores the model satisfactory fitness with the experimental design. Additionally, a surprising enhancement was observed in the fermentation process with repeated fed-batch (RFB) leading to a substantial increase in cell dry weight (CDW), PHBHHX concentration, and 3HHx fraction, approximately 7 times, 7 times and 4.5 times, respectively. Confirmation of copolymer production was further validated through analytical techniques including FTIR spectroscopy, NMR, and TEM analysis. These findings collectively highlight the promising potential of RFB as a method to significantly improve PHBHHx production covering the way for further advancements in biopolymer manufacturing processes. Conclusions Our study reveals the potential of newly engineered C. necator NSDG-GGΔB1/pBPP-ccrMeJAc-emd mutant strain for efficient PHBHHx copolymer production. Process parameters such as glucose and urea concentration, and agitation rate significantly influenced PHBHHx yield. This research stands out by utilizing a novel strain for PHBHHx synthesis. Characterization confirmed high-quality polymer production. Our findings offer a sustainable approach for converting inexpensive carbon sources into valuable PHBHHx though further optimization for scale-up is warranted.
Collapse
Affiliation(s)
- Nazila Biglari
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Peyman Abdeshahian
- Department of Biology, Faculty of Basic Sciences, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| | - Izumi Orita
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Toshiaki Fukui
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Kumar Sudesh
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| |
Collapse
|
5
|
Costa P, Basaglia M, Casella S, Kennes C, Favaro L, Carmen Veiga M. Autotrophic production of polyhydroxyalkanoates using acidogenic-derived H 2 and CO 2 from fruit waste. BIORESOURCE TECHNOLOGY 2023; 390:129880. [PMID: 37852509 DOI: 10.1016/j.biortech.2023.129880] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/14/2023] [Accepted: 10/14/2023] [Indexed: 10/20/2023]
Abstract
The environmental concerns regarding fossil plastics call for alternative biopolymers such as polyhydroxyalkanoates (PHAs) whose manufacturing costs are however still too elevated. Autotrophic microbes like Cupriavidus necator, able to convert CO2 and H2 into PHAs, offer an additional strategy. Typically, the preferred source for CO2 and H2 are expensive pure gases or syngas, which has toxic compounds for most PHAs-accumulating strains. In this work, for the first time, H2 and CO2 originating from an acidogenic reactor were converted autotrophically into poly(3-hydroxybutyrate) P(3HB). During the first stage, a mixed microbial community continuously catabolized melon waste into H2 (26.7 %) and CO2 (49.2 %) that were then used in a second bioreactor by C. necator DSM 545 to accumulate 1.7 g/L P(3HB). Additionally, the VFAs (13 gCOD/L) produced during acidogenesis were processed into 2.7 g/L of P(3HB-co-3HV). This is the first proof-of-concept of using acidogenic-derived H2 and CO2 from fruit waste to produce PHAs.
Collapse
Affiliation(s)
- Paolo Costa
- Department of Agronomy Food Natural resources Animals and Environment (DAFNAE), Waste to Bioproducts-Lab, Università di Padova, Agripolis, Viale dell'Università 16, Legnaro, Padua 35020, Italy; Chemical Engineering Laboratory, Faculty of Sciences and Centre for Advanced Scientific Research (CICA), University of A Coruña, Rúa da Fraga 10, Coruña 15008 A, Spain
| | - Marina Basaglia
- Department of Agronomy Food Natural resources Animals and Environment (DAFNAE), Waste to Bioproducts-Lab, Università di Padova, Agripolis, Viale dell'Università 16, Legnaro, Padua 35020, Italy
| | - Sergio Casella
- Department of Agronomy Food Natural resources Animals and Environment (DAFNAE), Waste to Bioproducts-Lab, Università di Padova, Agripolis, Viale dell'Università 16, Legnaro, Padua 35020, Italy
| | - Christian Kennes
- Chemical Engineering Laboratory, Faculty of Sciences and Centre for Advanced Scientific Research (CICA), University of A Coruña, Rúa da Fraga 10, Coruña 15008 A, Spain
| | - Lorenzo Favaro
- Department of Agronomy Food Natural resources Animals and Environment (DAFNAE), Waste to Bioproducts-Lab, Università di Padova, Agripolis, Viale dell'Università 16, Legnaro, Padua 35020, Italy.
| | - Maria Carmen Veiga
- Chemical Engineering Laboratory, Faculty of Sciences and Centre for Advanced Scientific Research (CICA), University of A Coruña, Rúa da Fraga 10, Coruña 15008 A, Spain
| |
Collapse
|
6
|
De Melo RN, de Souza Hassemer do G, Nascimento LH, Colet R, Steffens C, Junges A, Valduga E. Kinetic and stoichiometric parameters in the fed-batch bioreactor production of poly(3-hydroxybutyrate) by Bacillus megaterium using different carbon sources. Bioprocess Biosyst Eng 2023; 46:1791-1799. [PMID: 37882827 DOI: 10.1007/s00449-023-02935-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023]
Abstract
This study investigates the effects of different strategies on poly(3-hydroxybutyrate)-P(3HB) production in a fed-batch bioreactor by Bacillus megaterium using candy industry effluent (CIE), sucrose, and rice parboiled water (RPW) as carbon sources. In biosynthesis, kinetic and stoichiometric parameters of substrate conversion into products and/or cells, productivity, instantaneous, and specific conversion rates were evaluated. The maximum concentration of P(3HB) was 4.00 g.L-1 (77% of the total dry mass) in 42 h of cultivation in minimal medium/RPW added with a carbon source based on CIE, demonstrating that the fed-batch provided an increase of approximately 22% in the polymer concentration and 32% in the overall productivity in relation to medium based on commercial sucrose. Fed-batch cultivation also had the advantage of avoiding the extra time required for inoculum preparation and sterilization of the bioreactor during the batch, which thereby increased the overall industrial importance of the process. Effluents from the candy, confectionery, and/or rice parboiling industries can be used as alternative substrates for P(3HB) production at a low cost.
Collapse
Affiliation(s)
- Rafaela Nery De Melo
- Department of Food Engineering, URI - Erechim, Av. Sete de Setembro, 1621, Erechim, RS, 99709-910, Brazil
| | | | - Lucas Henrique Nascimento
- Department of Food Engineering, URI - Erechim, Av. Sete de Setembro, 1621, Erechim, RS, 99709-910, Brazil
| | - Rosicler Colet
- Department of Food Engineering, URI - Erechim, Av. Sete de Setembro, 1621, Erechim, RS, 99709-910, Brazil
| | - Clarice Steffens
- Department of Food Engineering, URI - Erechim, Av. Sete de Setembro, 1621, Erechim, RS, 99709-910, Brazil.
| | - Alexander Junges
- Department of Food Engineering, URI - Erechim, Av. Sete de Setembro, 1621, Erechim, RS, 99709-910, Brazil
| | - Eunice Valduga
- Department of Food Engineering, URI - Erechim, Av. Sete de Setembro, 1621, Erechim, RS, 99709-910, Brazil
| |
Collapse
|
7
|
Zhang L, Lin Y, Yi X, Huang W, Hu Q, Zhang Z, Wu F, Ye JW, Chen GQ. Engineering low-salt growth Halomonas Bluephagenesis for cost-effective bioproduction combined with adaptive evolution. Metab Eng 2023; 79:146-158. [PMID: 37543135 DOI: 10.1016/j.ymben.2023.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/07/2023]
Abstract
Halophilic Halomonas bluephagenesis has been engineered to produce various added-value bio-compounds with reduced costs. However, the salt-stress regulatory mechanism remained unclear. H. bluephagenesis was randomly mutated to obtain low-salt growing mutants via atmospheric and room temperature plasma (ARTP). The resulted H. bluephagenesis TDH4A1B5 was constructed with the chromosomal integration of polyhydroxyalkanoates (PHA) synthesis operon phaCAB and deletion of phaP1 gene encoding PHA synthesis associated protein phasin, forming H. bluephagenesis TDH4A1B5P, which led to increased production of poly(3-hydroxybutyrate) (PHB) and poly(3-hydroxybutyrate-co-4-hydrobutyrate) (P34HB) by over 1.4-fold. H. bluephagenesis TDH4A1B5P also enhanced production of ectoine and threonine by 50% and 77%, respectively. A total 101 genes related to salinity tolerance was identified and verified via comparative genomic analysis among four ARTP mutated H. bluephagenesis strains. Recombinant H. bluephagenesis TDH4A1B5P was further engineered for PHA production utilizing sodium acetate or gluconate as sole carbon source. Over 33% cost reduction of PHA production could be achieved using recombinant H. bluephagenesis TDH4A1B5P. This study successfully developed a low-salt tolerant chassis H. bluephagenesis TDH4A1B5P and revealed salt-stress related genes of halophilic host strains.
Collapse
Affiliation(s)
- Lizhan Zhang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yina Lin
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xueqing Yi
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Wuzhe Huang
- PhaBuilder Biotech Co. Ltd., Shunyi District, Zhaoquan Ying, Beijing, 101309, China
| | - Qitiao Hu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Zhongnan Zhang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Fuqing Wu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jian-Wen Ye
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, Beijing, 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing, China; MOE Key Lab of Industrial Biocatalysis, Dept Chemical Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
8
|
Goswami L, Kushwaha A, Napathorn SC, Kim BS. Valorization of organic wastes using bioreactors for polyhydroxyalkanoate production: Recent advancement, sustainable approaches, challenges, and future perspectives. Int J Biol Macromol 2023; 247:125743. [PMID: 37423435 DOI: 10.1016/j.ijbiomac.2023.125743] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/23/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Microbial polyhydroxyalkanoates (PHA) are encouraging biodegradable polymers, which may ease the environmental problems caused by petroleum-derived plastics. However, there is a growing waste removal problem and the high price of pure feedstocks for PHA biosynthesis. This has directed to the forthcoming requirement to upgrade waste streams from various industries as feedstocks for PHA production. This review covers the state-of-the-art progress in utilizing low-cost carbon substrates, effective upstream and downstream processes, and waste stream recycling to sustain entire process circularity. This review also enlightens the use of various batch, fed-batch, continuous, and semi-continuous bioreactor systems with flexible results to enhance the productivity and simultaneously cost reduction. The life-cycle and techno-economic analyses, advanced tools and strategies for microbial PHA biosynthesis, and numerous factors affecting PHA commercialization were also covered. The review includes the ongoing and upcoming strategies viz. metabolic engineering, synthetic biology, morphology engineering, and automation to expand PHA diversity, diminish production costs, and improve PHA production with an objective of "zero-waste" and "circular bioeconomy" for a sustainable future.
Collapse
Affiliation(s)
- Lalit Goswami
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Anamika Kushwaha
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | | | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
| |
Collapse
|
9
|
Kargupta W, Raj Kafle S, Lee Y, Kim BS. One-pot treatment of Saccharophagus degradans for polyhydroxyalkanoate production from brown seaweed. BIORESOURCE TECHNOLOGY 2023:129392. [PMID: 37364651 DOI: 10.1016/j.biortech.2023.129392] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
The conventional production of polyhydroxyalkanoate (PHA) from waste biomass requires a pretreatment step (acid or alkali) for reducing sugar extraction, followed by bacterial fermentation. This study aims to find a greener approach for PHA production from brown seaweed. Saccharophagus degradans can be a promising bacterium for simultaneous reducing sugar and PHA production, bypassing the need for a pretreatment step. Cell retention cultures of S. degradans in membrane bioreactor resulted in approximately 4- and 3-fold higher PHA concentrations than batch cultures using glucose and seaweed as carbon sources, respectively. X-ray diffraction, Fourier transform infrared spectroscopy, and nuclear magnetic resonance results revealed identical peaks for the resulting PHA and standard poly(3-hydroxybutyrate). The developed one step process using cell retention culture of S. degradans could be a beneficial process for scalable and sustainable PHA production.
Collapse
Affiliation(s)
- Wriju Kargupta
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Korea
| | - Saroj Raj Kafle
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Korea
| | - Youngmoon Lee
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Korea
| | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Korea.
| |
Collapse
|
10
|
Esmael ME, Ibrahim MIA, Aldhumri SA, Bayoumi RA, Matsuo K, Khattab AM. Lipid-membranes interaction, structural assessment, and sustainable production of polyhydroxyalkanoate by Priestia filamentosa AZU-A6 from sugarcane molasses. Int J Biol Macromol 2023; 242:124721. [PMID: 37150380 DOI: 10.1016/j.ijbiomac.2023.124721] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/19/2023] [Accepted: 04/30/2023] [Indexed: 05/09/2023]
Abstract
This study presented for the first time the PHA-lipid interactions by circular dichroism (CD) spectroscopy, besides a sustainable PHA production strategy using a cost-effective microbial isolate. About 48 bacterial isolates were selected from multifarious Egyptian sites and screened for PHAs production. The Fe(AZU-A6) was the most potent isolate, and identified genetically as Priestia filamentosa AZU-A6, while the intracellular PHA granules were visualized by TEM. Sugarcane molasses (SCM) was used an inexpensive carbon source and the production conditions were optimized through a Factor-By-Factor strategy and a Plackett-Burman statistical model. The highest production (6.84 g L-1) was achieved at 8.0 % SCM, pH 8.0, 35 °C, 250 rpm, and 0.5 g L-1 ammonium chloride after 72 h. The complementary physicochemical techniques (e.g., FTIR, NMR, GC-MS, DSC, and TGA) have ascertained the structural identity as poly-3-hydroxybutyrate (P3HB) with a characteristic melting temperature of 174.5 °C. The circular dichroism analysis investigated the existence of interactions between the PHB and the different lipids, particularly 1,2-dimyristoyl-sn-glycero-3-phosphocholine. The ATR technique for the lipid-PHB films suggested that both the hydrophobic and electrostatic forces control the lipid-PHB interactions that might induce changes in the structuration of PHB.
Collapse
Affiliation(s)
- Mahmoud E Esmael
- Al-Azhar Center for Fermentation Biotechnology and Applied Microbiology, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Mohamed I A Ibrahim
- Hiroshima Synchrotron Radiation Center, Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan; National Institute of Oceanography and Fisheries, NIOF, Egypt.
| | - Sami A Aldhumri
- Department of Biology, Alkhormah University College, Taif University, Taif 21974, Saudi Arabia
| | - Reda A Bayoumi
- Department of Biology, Alkhormah University College, Taif University, Taif 21974, Saudi Arabia; Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Koichi Matsuo
- Hiroshima Synchrotron Radiation Center, Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - Abdelrahman M Khattab
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt.
| |
Collapse
|
11
|
Ene N, Savoiu VG, Spiridon M, Paraschiv CI, Vamanu E. The General Composition of Polyhydroxyalkanoates and Factors that Influence their Production and Biosynthesis. Curr Pharm Des 2023; 29:3089-3102. [PMID: 38099526 DOI: 10.2174/0113816128263175231102061920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/26/2023] [Indexed: 01/05/2024]
Abstract
Polyhydroxyalkanoates (PHAs) have been a current research topic for many years. PHAs are biopolymers produced by bacteria under unfavorable growth conditions. They are biomaterials that exhibit a variety of properties, including biocompatibility, biodegradability, and high mechanical strength, making them suitable for future applications. This review aimed to provide general information on PHAs, such as their structure, classification, and parameters that affect the production process. In addition, the most commonly used bacterial strains that produce PHAs are highlighted, and details are provided on the type of carbon source used and how to optimize the parameters for bioprocesses. PHAs present a challenge to researchers because a variety of parameters affect biosynthesis, including the variety of carbon sources, bacterial strains, and culture media. Nevertheless, PHAs represent an opportunity to replace plastics, because they can be produced quickly and at a relatively low cost. With growing environmental concerns and declining oil reserves, polyhydroxyalkanoates are a potential replacement for nonbiodegradable polymers. Therefore, the study of PHA production remains a hot topic, as many substrates can be used as carbon sources. Both researchers and industry are interested in facilitating the production, commercialization, and application of PHAs as potential replacements for nonbiodegradable polymers. The fact that they are biocompatible, environmentally biodegradable, and adaptable makes PHAs one of the most important materials available in the market. They are preferred in various industries, such as agriculture (for bioremediation of oil-polluted sites, minimizing the toxicity of pollutants, and environmental impact) or medicine (as medical devices). The various bioprocess technologies mentioned earlier will be further investigated, such as the carbon source (to obtain a biopolymer with the lowest possible cost, such as glucose, various fatty acids, and especially renewable sources), pretreatment of the substrate (to increase the availability of the carbon source), and supplementation of the growth environment with different substances and minerals). Consequently, the study of PHA production remains a current topic because many substrates can be used as carbon sources. Obtaining PHA from renewable substrates (waste oil, coffee grounds, plant husks, etc.) contributes significantly to reducing PHA costs. Therefore, in this review, pure bacterial cultures (Bacillus megaterium, Ralstonia eutropha, Cupriavidus necator, and Pseudomonas putida) have been investigated for their potential to utilize by-products as cheap feedstocks. The advantage of these bioprocesses is that a significant amount of PHA can be obtained using renewable carbon sources. The main disadvantage is that the chemical structure of the obtained biopolymer cannot be determined in advance, as is the case with bioprocesses using a conventional carbon source. Polyhydroxyalkanoates are materials that can be used in many fields, such as the medical field (skin grafts, implantable medical devices, scaffolds, drug-controlled release devices), agriculture (for polluted water cleaning), cosmetics and food (biodegradable packaging, gentle biosurfactants with suitable skin for cosmetics), and industry (production of biodegradable biopolymers that replace conventional plastic). Nonetheless, PHA biopolymers continue to be researched and improved and play an important role in various industrial sectors. The properties of this material allow its use as a biodegradable material in the cosmetics industry (for packaging), in the production of biodegradable plastics, or in biomedical engineering, as various prostheses or implantable scaffolds.
Collapse
Affiliation(s)
- Nicoleta Ene
- Department of Industrial Biotechnology, Faculty of Biotechnology, University of Agronomical Sciences and Veterinary Medicine, Bucharest, Romania
- Department of Pharmacology, National Institute for Chemical Pharmaceutical Research and Development- ICCF, Vitan Avenue 112, Bucharest 031299, Romania
| | - Valeria Gabriela Savoiu
- Department of Biotechnology, National Institute For Chemical Pharmaceutical Research and Development, Bucharest 031299, Romania
| | - Maria Spiridon
- Department of Biotechnology, National Institute For Chemical Pharmaceutical Research and Development, Bucharest 031299, Romania
| | - Catalina Ileana Paraschiv
- Department of Chemistry, National Institute for Chemical Pharmaceutical Research and Development, Bucharest 031299, Romania
| | - Emanuel Vamanu
- Department of Industrial Biotechnology, Faculty of Biotechnology, University of Agronomical Sciences and Veterinary Medicine, Bucharest, Romania
| |
Collapse
|
12
|
Hathi ZJ, Haque MA, Priya A, Qin ZH, Huang S, Lam CH, Ladakis D, Pateraki C, Mettu S, Koutinas A, Du C, Lin CSK. Fermentative bioconversion of food waste into biopolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) using Cupriavidus necator. ENVIRONMENTAL RESEARCH 2022; 215:114323. [PMID: 36115419 DOI: 10.1016/j.envres.2022.114323] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/20/2022] [Accepted: 09/07/2022] [Indexed: 05/27/2023]
Abstract
Dependency on plastic commodities has led to a recurrent increase in their global production every year. Conventionally, plastic products are derived from fossil fuels, leading to severe environmental concerns. The recent coronavirus disease 2019 pandemic has triggered an increase in medical waste. Conversely, it has disrupted the supply chain of personal protective equipment (PPE). Valorisation of food waste was performed to cultivate C. necator for fermentative production of biopolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). The increase in biomass, PHBV yield and molar 3-hydroxy valerate (3HV) content was estimated after feeding volatile fatty acids. The fed-batch fermentation strategy reported in this study produced 15.65 ± 0.14 g/L of biomass with 5.32 g/L of PHBV with 50% molar 3HV content. This is a crucial finding, as molar concentration of 3HV can be modulated to suit the specification of biopolymer (film or fabric). The strategy applied in this study addresses the issue of global food waste burden and subsequently generates biopolymer PHBV, turning waste to wealth.
Collapse
Affiliation(s)
- Zubeen J Hathi
- School of Energy and Environment, City University of Hong Kong, Tat Chee Ave, Kowloon, Hong Kong
| | - Md Ariful Haque
- School of Energy and Environment, City University of Hong Kong, Tat Chee Ave, Kowloon, Hong Kong
| | - Anshu Priya
- School of Energy and Environment, City University of Hong Kong, Tat Chee Ave, Kowloon, Hong Kong
| | - Zi-Hao Qin
- School of Energy and Environment, City University of Hong Kong, Tat Chee Ave, Kowloon, Hong Kong
| | - Shuquan Huang
- School of Energy and Environment, City University of Hong Kong, Tat Chee Ave, Kowloon, Hong Kong
| | - Chun Ho Lam
- School of Energy and Environment, City University of Hong Kong, Tat Chee Ave, Kowloon, Hong Kong
| | - Dimitris Ladakis
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Chrysanthi Pateraki
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Srinivas Mettu
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Apostolis Koutinas
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Chenyu Du
- School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, United Kingdom
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Tat Chee Ave, Kowloon, Hong Kong.
| |
Collapse
|
13
|
Zhang L, Jiang Z, Tsui TH, Loh KC, Dai Y, Tong YW. A Review on Enhancing Cupriavidus necator Fermentation for Poly(3-hydroxybutyrate) (PHB) Production From Low-Cost Carbon Sources. Front Bioeng Biotechnol 2022; 10:946085. [PMID: 35928944 PMCID: PMC9343952 DOI: 10.3389/fbioe.2022.946085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
In the context of a circular economy, bioplastic production using biodegradable materials such as poly(3-hydroxybutyrate) (PHB) has been proposed as a promising solution to fundamentally solve the disposal issue of plastic waste. PHB production techniques through fermentation of PHB-accumulating microbes such as Cupriavidus necator have been revolutionized over the past several years with the development of new strategies such as metabolic engineering. This review comprehensively summarizes the latest PHB production technologies via Cupriavidus necator fermentation. The mechanism of the biosynthesis pathway for PHB production was first assessed. PHB production efficiencies of common carbon sources, including food waste, lignocellulosic materials, glycerol, and carbon dioxide, were then summarized and critically analyzed. The key findings in enhancing strategies for PHB production in recent years, including pre-treatment methods, nutrient limitations, feeding optimization strategies, and metabolism engineering strategies, were summarized. Furthermore, technical challenges and future prospects of strategies for enhanced production efficiencies of PHB were also highlighted. Based on the overview of the current enhancing technologies, more pilot-scale and larger-scale tests are essential for future implementation of enhancing strategies in full-scale biogas plants. Critical analyses of various enhancing strategies would facilitate the establishment of more sustainable microbial fermentation systems for better waste management and greater efficiency of PHB production.
Collapse
Affiliation(s)
- Le Zhang
- NUS Environmental Research Institute, National University of Singapore, Singapore, Singapore
- Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
| | - Zicheng Jiang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - To-Hung Tsui
- NUS Environmental Research Institute, National University of Singapore, Singapore, Singapore
- Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
| | - Kai-Chee Loh
- Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Yanjun Dai
- Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yen Wah Tong
- NUS Environmental Research Institute, National University of Singapore, Singapore, Singapore
- Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
- *Correspondence: Yen Wah Tong,
| |
Collapse
|
14
|
Koller M. Advances in Polyhydroxyalkanoate (PHA) Production, Volume 3. Bioengineering (Basel) 2022; 9:bioengineering9070328. [PMID: 35877379 PMCID: PMC9312071 DOI: 10.3390/bioengineering9070328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 07/17/2022] [Indexed: 01/19/2023] Open
Abstract
Steadily increasing R&D activities in the field of microbial polyhydroxyalkanoate (PHA) biopolyesters are committed to growing global threats from climate change, aggravating plastic pollution, and the shortage of fossil resources. These prevailing issues paved the way to launch the third Special Issue of Bioengineering dedicated to future-oriented biomaterials, characterized by their versatile plastic-like properties. Fifteen individual contributions to the Special Issue, written by renowned groups of researchers from all over the world, perfectly mirror the current research directions in the PHA sector: inexpensive feedstock like carbon-rich waste from agriculture, mitigation of CO2 for PHA biosynthesis by cyanobacteria or wild type and engineered “knallgas” bacteria, powerful extremophilic PHA production strains, novel tools for rapid in situ determination of PHA in photobioreactors, modelling of the dynamics of PHA production by mixed microbial cultures from inexpensive raw materials, enhanced bioreactor design for high-throughput PHA production by sophisticated cell retention systems, sustainable and efficient PHA recovery from biomass assisted by supercritical water, enhanced processing of PHA by application of novel antioxidant additives, and the development of compatible biopolymer blends. Moreover, elastomeric medium chain length PHA (mcl-PHA) are covered in-depth, inter alia, by introduction of a novel class of bioactive mcl-PHA-based networks, in addition to the first presentation of the new rubber-like polythioester poly(3-mercapto-2-methylpropionate). Finally, the present Special Issue is concluded by a critical essay on past, ongoing, and announced global endeavors for PHA commercialization.
Collapse
Affiliation(s)
- Martin Koller
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28/IV, 8010 Graz, Austria; ; Tel.: +43-316-380-5463
- ARENA—Arbeitsgemeinschaft für Ressourcenschonende und Nachhaltige Technologien, Inffeldgasse 21b, 8010 Graz, Austria
| |
Collapse
|
15
|
Koller M, Obruča S. Biotechnological production of polyhydroxyalkanoates from glycerol: A review. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
16
|
Moungprayoon A, Lunprom S, Reungsang A, Salakkam A. High Cell Density Cultivation of Paracoccus sp. on Sugarcane Juice for Poly(3-hydroxybutyrate) Production. Front Bioeng Biotechnol 2022; 10:878688. [PMID: 35646885 PMCID: PMC9133739 DOI: 10.3389/fbioe.2022.878688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
High cell density cultivation is a promising approach to reduce capital and operating costs of poly (3-hydroxybutyrate) (PHB) production. To achieve high cell concentration, it is necessary that the cultivation conditions are adjusted and controlled to support the best growth of the PHB producer. In the present study, carbon to nitrogen (C/N) ratio of a sugarcane juice (SJ)-based medium, initial sugar concentration, and dissolved oxygen (DO) set point, were optimized for batch cultivation of Paracoccus sp. KKU01. A maximum biomass concentration of 55.5 g/L was attained using the C/N ratio of 10, initial sugar concentration of 100 g/L, and 20% DO set point. Fed-batch cultivation conducted under these optimum conditions, with two feedings of SJ-based medium, gave the final cell concentration of 87.9 g/L, with a PHB content, concentration, and yield of 36.2%, 32.1 g/L, and 0.13 g/g-sugar, respectively. A medium-based economic analysis showed that the economic yield of PHB on nutrients was 0.14. These results reveal the possibility of using SJ for high cell density cultivation of Paracoccus sp. KKU01 for PHB production. However, further optimization of the process is necessary to make it more efficient and cost-effective.
Collapse
Affiliation(s)
- Ayyapruk Moungprayoon
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, Thailand
- Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen, Thailand
| | - Siriporn Lunprom
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, Thailand
- Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen, Thailand
| | - Alissara Reungsang
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, Thailand
- Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen, Thailand
- Academy of Science, Royal Society of Thailand, Bangkok, Thailand
| | - Apilak Salakkam
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, Thailand
- Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen, Thailand
- *Correspondence: Apilak Salakkam,
| |
Collapse
|
17
|
PHB Producing Cyanobacteria Found in the Neighborhood-Their Isolation, Purification and Performance Testing. Bioengineering (Basel) 2022; 9:bioengineering9040178. [PMID: 35447738 PMCID: PMC9030849 DOI: 10.3390/bioengineering9040178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022] Open
Abstract
Cyanobacteria are a large group of prokaryotic microalgae that are able to grow photo-autotrophically by utilizing sunlight and by assimilating carbon dioxide to build new biomass. One of the most interesting among many cyanobacteria cell components is the storage biopolymer polyhydroxybutyrate (PHB), a member of the group of polyhydroxyalkanoates (PHA). Cyanobacteria occur in almost all habitats, ranging from freshwater to saltwater, freely drifting or adhered to solid surfaces or growing in the porewater of soil, they appear in meltwater of glaciers as well as in hot springs and can handle even high salinities and nutrient imbalances. The broad range of habitat conditions makes them interesting for biotechnological production in facilities located in such climate zones with the expectation of using the best adapted organisms in low-tech bioreactors instead of using "universal" strains, which require high technical effort to adapt the production conditions to the organism's need. These were the prerequisites for why and how we searched for locally adapted cyanobacteria in different habitats. Our manuscript provides insight to the sites we sampled, how we isolated and enriched, identified (morphology, 16S rDNA), tested (growth, PHB accumulation) and purified (physical and biochemical purification methods) promising PHB-producing cyanobacteria that can be used as robust production strains. Finally, we provide a guideline about how we managed to find potential production strains and prepared others for basic metabolism studies.
Collapse
|
18
|
Kacanski M, Pucher L, Peral C, Dietrich T, Neureiter M. Cell Retention as a Viable Strategy for PHA Production from Diluted VFAs with Bacillus megaterium. Bioengineering (Basel) 2022; 9:bioengineering9030122. [PMID: 35324811 PMCID: PMC8945770 DOI: 10.3390/bioengineering9030122] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/13/2022] [Accepted: 03/14/2022] [Indexed: 01/01/2023] Open
Abstract
The production of biodegradable and biocompatible materials such as polyhydroxyalkanoates (PHAs) from waste-derived volatile fatty acids (VFAs) is a promising approach towards implementing a circular bioeconomy. However, VFA solutions obtained via acidification of organic wastes are usually too diluted for direct use in standard batch or fed-batch processes. To overcome these constraints, this study introduces a cell recycle fed-batch system using Bacillus megaterium uyuni S29 for poly(3-hydroxybutyrate) (P3HB) production from acetic acid. The concentrations of dry cell weight (DCW), P3HB, acetate, as well as nitrogen as the limiting substrate component, were monitored during the process. The produced polymer was characterized in terms of molecular weight and thermal properties after extraction with hypochlorite. The results show that an indirect pH-stat feeding regime successfully kept the strain fed without prompting inhibition, resulting in a dry cell weight concentration of up to 19.05 g/L containing 70.21% PHA. After appropriate adaptations the presented process could contribute to an efficient and sustainable production of biopolymers.
Collapse
Affiliation(s)
- Milos Kacanski
- Department of Agrobiotechnology, Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Str. 20, 3430 Tulln, Austria; (M.K.); (L.P.)
| | - Lukas Pucher
- Department of Agrobiotechnology, Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Str. 20, 3430 Tulln, Austria; (M.K.); (L.P.)
| | - Carlota Peral
- TECNALIA, Basque Research and Technology Alliance (BRTA), Parque Tecnólogico de Álava, Leonardo Da Vinci 1, 01510 Minano, Spain; (C.P.); (T.D.)
| | - Thomas Dietrich
- TECNALIA, Basque Research and Technology Alliance (BRTA), Parque Tecnólogico de Álava, Leonardo Da Vinci 1, 01510 Minano, Spain; (C.P.); (T.D.)
| | - Markus Neureiter
- Department of Agrobiotechnology, Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Str. 20, 3430 Tulln, Austria; (M.K.); (L.P.)
- Correspondence: ; Tel.: +43-1-47654-97441
| |
Collapse
|
19
|
A fermentation process for the production of poly(3-hydroxybutyrate) using waste cooking oil or waste fish oil as inexpensive carbon substrate. BIOTECHNOLOGY REPORTS 2022; 33:e00700. [PMID: 35070732 PMCID: PMC8762085 DOI: 10.1016/j.btre.2022.e00700] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/23/2021] [Accepted: 01/04/2022] [Indexed: 11/21/2022]
Abstract
Both WCO and WFO can be used as promising substrates for PHA production. First report of a fed-batch fermentation process using WFO as sole carbon source for PHA production. High PHB yields of 0.8 g/g and 0.92 g/g were produced from WCO and WFO, respectively. Highest PHB productivity (1.73 g/L/h) was achieved when using waste oil as carbon source.
The utilization of waste cooking oil (WCO) or waste fish oil (WFO) as inexpensive carbon substrate for the production of poly(3-hydroxybutyrate) (PHB) by Cupriavidus necator H16 was investigated. Fed-batch cultivation mode in bioreactor was applied in this study. High cell dry weight (CDW) of 135.1 g/L, PHB content of 76.9 wt%, PHB productivity of 1.73 g/L/h, and PHB yield of 0.8 g/g were obtained from WCO. In the case of WFO, the CDW, PHB content, PHB productivity, and PHB yield were 114.8 g/L, 72.5 wt%, 1.73 g/L/h, and 0.92 g/g, respectively. The PHB productivity and yield obtained in the current study from WCO or WFO are among the highest reported so far for PHA production using oils as sole carbon substrate, suggesting that both WCO and WFO can be used as inexpensive carbon substrates for the production of PHA on an industrial scale.
Collapse
|
20
|
Haloarchaea as emerging big players in future polyhydroxyalkanoate bioproduction: Review of trends and perspectives. CURRENT RESEARCH IN BIOTECHNOLOGY 2022. [DOI: 10.1016/j.crbiot.2022.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
21
|
Manikandan NA, Pakshirajan K, Pugazhenthi G. A novel rotating wide gap annular bioreactor (Taylor-Couette type flow) for polyhydroxybutyrate production by Ralstonia eutropha using carob pod extract. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 299:113591. [PMID: 34455350 DOI: 10.1016/j.jenvman.2021.113591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 08/09/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
An annular bioreactor (ABR) with wide gap was used for PHB production from Ralstonia eutropha. Hydrodynamic studies demonstrated the uniform distribution of fluid in the ABR due to the Taylor-Couette flow. Thereafter, the ABR was operated at different agitation and sparging rates to study its effect on R. eutropha growth and PHB production. The ABR operated at 500 rpm with air sparge rate of 0.8 vvm yielded a maximum PHB concentration of 14.89 g/L, which was nearly 1.4 times that obtained using a conventional stirred-tank bioreactor (STBR). Furthermore, performances of the bioreactors were compared by operating the reactors under fed-batch mode. At the end of 90 h of operation, the ABR resulted in a very high PHB production of 70.8 g/L. But STBR resulted in a low PHB concentration of 44.2 g/L. The superior performance was due to enhanced oxygen and nutrient mass transfer in the ABR.
Collapse
Affiliation(s)
- N Arul Manikandan
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Kannan Pakshirajan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - G Pugazhenthi
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
22
|
Akkoyunlu B, Daly S, Casey E. Membrane bioreactors for the production of value-added products: Recent developments, challenges and perspectives. BIORESOURCE TECHNOLOGY 2021; 341:125793. [PMID: 34450442 DOI: 10.1016/j.biortech.2021.125793] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
The potential of membrane bioreactors to produce value-added products such as biofuels, biopolymers, proteins, organic acids and lipids at high productivities is emerging. Despite the promising results at laboratory scale, industrial deployment of this technology is hindered due to challenges associated with scale-up. This review aims to address these challenges and create a framework to encourage further research directed towards industrial application of membrane bioreactors to produce value-added products. This review describes the current state-of-the art in such bioreactor systems by exploiting membranes to increase the mass transfer rate of the limiting substrates, reach high cell concentrations and separate the inhibitory substances that may inhibit the bioconversion reaction. It also covers the current trends in commercialization, challenges linked with membrane usage, such as high costs and membrane fouling, and proposes possible future directions for the wider application of membrane bioreactors.
Collapse
Affiliation(s)
- Burcu Akkoyunlu
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland; BiOrbic Bioeconomy SFI Research Centre, University College Dublin, Dublin, Ireland
| | - Sorcha Daly
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland; BiOrbic Bioeconomy SFI Research Centre, University College Dublin, Dublin, Ireland
| | - Eoin Casey
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland; BiOrbic Bioeconomy SFI Research Centre, University College Dublin, Dublin, Ireland.
| |
Collapse
|
23
|
Bhola S, Arora K, Kulshrestha S, Mehariya S, Bhatia RK, Kaur P, Kumar P. Established and Emerging Producers of PHA: Redefining the Possibility. Appl Biochem Biotechnol 2021; 193:3812-3854. [PMID: 34347250 DOI: 10.1007/s12010-021-03626-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/12/2021] [Indexed: 12/25/2022]
Abstract
The polyhydroxyalkanoate was discovered almost around a century ago. Still, all the efforts to replace the traditional non-biodegradable plastic with much more environmentally friendly alternative are not enough. While the petroleum-based plastic is like a parasite, taking over the planet rapidly and without any feasible cure, its perennial presence has made the ocean a floating island of life-threatening debris and has flooded the landfills with toxic towering mountains. It demands for an immediate solution; most resembling answer would be the polyhydroxyalkanoates. The production cost is yet one of the significant challenges that various corporate is facing to replace the petroleum-based plastic. To deal with the economic constrain better strain, better practices, and a better market can be adopted for superior results. It demands for systems for polyhydroxyalkanoate production namely bacteria, yeast, microalgae, and transgenic plants. Solely strains affect more than 40% of overall production cost, playing a significant role in both upstream and downstream processes. The highly modifiable nature of the biopolymer provides the opportunity to replace the petroleum plastic in almost all sectors from food packaging to medical industry. The review will highlight the recent advancements and techno-economic analysis of current commercial models of polyhydroxyalkanoate production. Bio-compatibility and the biodegradability perks to be utilized highly efficient in the medical applications gives ample reason to tilt the scale in the favor of the polyhydroxyalkanoate as the new conventional and sustainable plastic.
Collapse
Affiliation(s)
- Shivam Bhola
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Kanika Arora
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Saurabh Kulshrestha
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | | | - Ravi Kant Bhatia
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, India
| | - Parneet Kaur
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Pradeep Kumar
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India.
| |
Collapse
|
24
|
Bedade DK, Edson CB, Gross RA. Emergent Approaches to Efficient and Sustainable Polyhydroxyalkanoate Production. Molecules 2021; 26:3463. [PMID: 34200447 PMCID: PMC8201374 DOI: 10.3390/molecules26113463] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022] Open
Abstract
Petroleum-derived plastics dominate currently used plastic materials. These plastics are derived from finite fossil carbon sources and were not designed for recycling or biodegradation. With the ever-increasing quantities of plastic wastes entering landfills and polluting our environment, there is an urgent need for fundamental change. One component to that change is developing cost-effective plastics derived from readily renewable resources that offer chemical or biological recycling and can be designed to have properties that not only allow the replacement of current plastics but also offer new application opportunities. Polyhydroxyalkanoates (PHAs) remain a promising candidate for commodity bioplastic production, despite the many decades of efforts by academicians and industrial scientists that have not yet achieved that goal. This article focuses on defining obstacles and solutions to overcome cost-performance metrics that are not sufficiently competitive with current commodity thermoplastics. To that end, this review describes various process innovations that build on fed-batch and semi-continuous modes of operation as well as methods that lead to high cell density cultivations. Also, we discuss work to move from costly to lower cost substrates such as lignocellulose-derived hydrolysates, metabolic engineering of organisms that provide higher substrate conversion rates, the potential of halophiles to provide low-cost platforms in non-sterile environments for PHA formation, and work that uses mixed culture strategies to overcome obstacles of using waste substrates. We also describe historical problems and potential solutions to downstream processing for PHA isolation that, along with feedstock costs, have been an Achilles heel towards the realization of cost-efficient processes. Finally, future directions for efficient PHA production and relevant structural variations are discussed.
Collapse
Affiliation(s)
- Dattatray K. Bedade
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA;
| | - Cody B. Edson
- New York State Center for Polymer Synthesis, Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA;
| | - Richard A. Gross
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA;
- New York State Center for Polymer Synthesis, Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA;
| |
Collapse
|
25
|
Singh S, Sithole B, Lekha P, Permaul K, Govinden R. Optimization of cultivation medium and cyclic fed-batch fermentation strategy for enhanced polyhydroxyalkanoate production by Bacillus thuringiensis using a glucose-rich hydrolyzate. BIORESOUR BIOPROCESS 2021; 8:11. [PMID: 38650248 PMCID: PMC10992944 DOI: 10.1186/s40643-021-00361-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/05/2021] [Indexed: 01/22/2023] Open
Abstract
The accumulation of petrochemical plastic waste is detrimental to the environment. Polyhydroxyalkanoates (PHAs) are bacterial-derived polymers utilized for the production of bioplastics. PHA-plastics exhibit mechanical and thermal properties similar to conventional plastics. However, high production cost and obtaining high PHA yield and productivity impedes the widespread use of bioplastics. This study demonstrates the concept of cyclic fed-batch fermentation (CFBF) for enhanced PHA productivity by Bacillus thuringiensis using a glucose-rich hydrolyzate as the sole carbon source. The statistically optimized fermentation conditions used to obtain high cell density biomass (OD600 of 2.4175) were: 8.77 g L-1 yeast extract; 66.63% hydrolyzate (v/v); a fermentation pH of 7.18; and an incubation time of 27.22 h. The CFBF comprised three cycles of 29 h, 52 h, and 65 h, respectively. After the third cyclic event, cell biomass of 20.99 g L-1, PHA concentration of 14.28 g L-1, PHA yield of 68.03%, and PHA productivity of 0.219 g L-1 h-1 was achieved. This cyclic strategy yielded an almost threefold increase in biomass concentration and a fourfold increase in PHA concentration compared with batch fermentation. FTIR spectra of the extracted PHAs display prominent peaks at the wavelengths unique to PHAs. A copolymer was elucidated after the first cyclic event, whereas, after cycles CFBF 2-4, a terpolymer was noted. The PHAs obtained after CFBF cycle 3 have a slightly higher thermal stability compared with commercial PHB. The cyclic events decreased the melting temperature and degree of crystallinity of the PHAs. The approach used in this study demonstrates the possibility of coupling fermentation strategies with hydrolyzate derived from lignocellulosic waste as an alternative feedstock to obtain high cell density biomass and enhanced PHA productivity.
Collapse
Affiliation(s)
- Sarisha Singh
- Discipline of Microbiology, University of KwaZulu-Natal (Westville Campus), Durban, South Africa.
| | - Bruce Sithole
- Biorefinery Industry Development Facility, Chemicals Cluster, Council for Scientific and Industrial Research, Durban, South Africa
- Discipline of Chemical Engineering, University of KwaZulu-Natal, Durban, South Africa
| | - Prabashni Lekha
- Biorefinery Industry Development Facility, Chemicals Cluster, Council for Scientific and Industrial Research, Durban, South Africa
| | - Kugenthiren Permaul
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban, South Africa
| | - Roshini Govinden
- Discipline of Microbiology, University of KwaZulu-Natal (Westville Campus), Durban, South Africa
| |
Collapse
|
26
|
Burniol-Figols A, Pinelo M, Skiadas IV, Gavala HN. Enhancing polyhydroxyalkanoate productivity with cell-retention membrane bioreactors. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107687] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
|
28
|
Novel unexpected functions of PHA granules. Appl Microbiol Biotechnol 2020; 104:4795-4810. [PMID: 32303817 DOI: 10.1007/s00253-020-10568-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/10/2020] [Accepted: 03/20/2020] [Indexed: 10/24/2022]
Abstract
Polyhydroxyalkanoates (PHA), polyesters accumulated by numerous prokaryotes in the form of intracellular granules, have been for decades considered being predominantly storage molecules. However, numerous recent discoveries revealed and emphasized their complex biological role for microbial cells. Most of all, it was repeatedly reported and confirmed that the presence of PHA granules in prokaryotic cells enhances stress resistance and robustness of microbes against various environmental stress factors such as high or low temperature, freezing, oxidative, and osmotic pressure. It seems that protective mechanisms of PHA granules are associated with their extraordinary architecture and biophysical properties as well as with the complex and deeply interconnected nature of PHA metabolism. Therefore, this review aims at describing novel and unexpected properties of PHA granules with respect to their contribution to stress tolerance of various prokaryotes including common mesophilic heterotrophic bacteria, but also extremophiles or photo-autotrophic cyanobacteria. KEY POINTS: • PHA granules present in bacterial cells reveal unique properties and functions. • PHA enhances stress robustness of bacterial cells.
Collapse
|
29
|
Biglari N, Orita I, Fukui T, Sudesh K. A study on the effects of increment and decrement repeated fed-batch feeding of glucose on the production of poly(3-hydroxybutyrate) [P(3HB)] by a newly engineered Cupriavidus necator NSDG-GG mutant in batch fill-and-draw fermentation. J Biotechnol 2020; 307:77-86. [DOI: 10.1016/j.jbiotec.2019.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/19/2019] [Accepted: 10/21/2019] [Indexed: 12/23/2022]
|
30
|
Switching from petro-plastics to microbial polyhydroxyalkanoates (PHA): the biotechnological escape route of choice out of the plastic predicament? EUROBIOTECH JOURNAL 2019. [DOI: 10.2478/ebtj-2019-0004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Abstract
The benefit of biodegradable “green plastics” over established synthetic plastics from petro-chemistry, namely their complete degradation and safe disposal, makes them attractive for use in various fields, including agriculture, food packaging, and the biomedical and pharmaceutical sector. In this context, microbial polyhydroxyalkanoates (PHA) are auspicious biodegradable plastic-like polyesters that are considered to exert less environmental burden if compared to polymers derived from fossil resources.
The question of environmental and economic superiority of bio-plastics has inspired innumerable scientists during the last decades. As a matter of fact, bio-plastics like PHA have inherent economic drawbacks compared to plastics from fossil resources; they typically have higher raw material costs, and the processes are of lower productivity and are often still in the infancy of their technical development. This explains that it is no trivial task to get down the advantage of fossil-based competitors on the plastic market. Therefore, the market success of biopolymers like PHA requires R&D progress at all stages of the production chain in order to compensate for this disadvantage, especially as long as fossil resources are still available at an ecologically unjustifiable price as it does today.
Ecological performance is, although a logical argument for biopolymers in general, not sufficient to make industry and the society switch from established plastics to bio-alternatives. On the one hand, the review highlights that there’s indeed an urgent necessity to switch to such alternatives; on the other hand, it demonstrates the individual stages of the production chain, which need to be addressed to make PHA competitive in economic, environmental, ethical, and performance-related terms. In addition, it is demonstrated how new, smart PHA-based materials can be designed, which meet the customer’s expectations when applied, e.g., in the biomedical or food packaging sector.
Collapse
|
31
|
Ren J, Na D, Yoo SM. Optimization of chemico-physical transformation methods for various bacterial species using diverse chemical compounds and nanomaterials. J Biotechnol 2018; 288:55-60. [DOI: 10.1016/j.jbiotec.2018.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/31/2018] [Accepted: 11/04/2018] [Indexed: 01/13/2023]
|
32
|
Enhanced microbial lipid production by Cryptococcus albidus in the high-cell-density continuous cultivation with membrane cell recycling and two-stage nutrient limitation. ACTA ACUST UNITED AC 2018; 45:1045-1051. [DOI: 10.1007/s10295-018-2081-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/04/2018] [Indexed: 10/28/2022]
Abstract
Abstract
As a potential feedstock for biofuel production, a high-cell-density continuous culture for the lipid production by Cryptococcus albidus was investigated in this study. The influences of dilution rates in the single-stage continuous cultures were explored first. To reach a high-cell-density culture, a single-stage continuous culture coupled with a membrane cell recycling system was carried out at a constant dilution rate of 0.36/h with varied bleeding ratios. The maximum lipid productivity of 0.69 g/L/h was achieved with the highest bleeding ratio of 0.4. To reach a better lipid yield and content, a two-stage continuous cultivation was performed by adjusting the C/N ratio in two different stages. Finally, a lipid yield of 0.32 g/g and lipid content of 56.4% were obtained. This two-stage continuous cultivation, which provided a higher lipid production performance, shows a great potential for an industrial-scale biotechnological production of microbial lipids and biofuel production.
Collapse
|
33
|
Blunt W, Levin DB, Cicek N. Bioreactor Operating Strategies for Improved Polyhydroxyalkanoate (PHA) Productivity. Polymers (Basel) 2018; 10:polym10111197. [PMID: 30961122 PMCID: PMC6290639 DOI: 10.3390/polym10111197] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 12/02/2022] Open
Abstract
Microbial polyhydroxyalkanoates (PHAs) are promising biodegradable polymers that may alleviate some of the environmental burden of petroleum-derived polymers. The requirements for carbon substrates and energy for bioreactor operations are major factors contributing to the high production costs and environmental impact of PHAs. Improving the process productivity is an important aspect of cost reduction, which has been attempted using a variety of fed-batch, continuous, and semi-continuous bioreactor systems, with variable results. The purpose of this review is to summarize the bioreactor operations targeting high PHA productivity using pure cultures. The highest volumetric PHA productivity was reported more than 20 years ago for poly(3-hydroxybutryate) (PHB) production from sucrose (5.1 g L−1 h−1). In the time since, similar results have not been achieved on a scale of more than 100 L. More recently, a number fed-batch and semi-continuous (cyclic) bioreactor operation strategies have reported reasonably high productivities (1 g L−1 h−1 to 2 g L−1 h−1) under more realistic conditions for pilot or industrial-scale production, including the utilization of lower-cost waste carbon substrates and atmospheric air as the aeration medium, as well as cultivation under non-sterile conditions. Little development has occurred in the area of fully continuously fed bioreactor systems over the last eight years.
Collapse
Affiliation(s)
- Warren Blunt
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada.
| | - David B Levin
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada.
| | - Nazim Cicek
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada.
| |
Collapse
|
34
|
Kucera D, Pernicová I, Kovalcik A, Koller M, Mullerova L, Sedlacek P, Mravec F, Nebesarova J, Kalina M, Marova I, Krzyzanek V, Obruca S. Characterization of the promising poly(3-hydroxybutyrate) producing halophilic bacterium Halomonas halophila. BIORESOURCE TECHNOLOGY 2018; 256:552-556. [PMID: 29478784 DOI: 10.1016/j.biortech.2018.02.062] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/08/2018] [Accepted: 02/13/2018] [Indexed: 06/08/2023]
Abstract
This work explores molecular, morphological as well as biotechnological features of the highly promising polyhydroxyalkanoates (PHA) producer Halomonas halophila. Unlike many other halophiles, this bacterium does not require expensive complex media components and it is capable to accumulate high intracellular poly(3-hydroxybutyrate) (PHB) fractions up to 82% of cell dry mass. Most remarkably, regulating the concentration of NaCl apart from PHB yields influences also the polymer's molecular mass and polydispersity. The bacterium metabolizes various carbohydrates including sugars predominant in lignocelluloses and other inexpensive substrates. Therefore, the bacterium was employed for PHB production on hydrolysates of cheese whey, spent coffee grounds, sawdust and corn stover, which were hydrolyzed by HCl; required salinity of cultivation media was set up during neutralization by NaOH. The bacterium was capable to use all the tested hydrolysates as well as sugar beet molasses for PHB biosynthesis, indicating its potential for industrial PHB production.
Collapse
Affiliation(s)
- Dan Kucera
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
| | - Iva Pernicová
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
| | - Adriana Kovalcik
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
| | - Martin Koller
- Institute of Chemistry, NAWI Graz, University of Graz, Heinrichstrasse 28/III, 8010 Graz, Austria; ARENA Arbeitsgemeinschaft für Ressourcenschonende & Nachhaltige Technologien, Inffeldgasse 21b, 8010 Graz, Austria
| | - Lucie Mullerova
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
| | - Petr Sedlacek
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
| | - Filip Mravec
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
| | - Jana Nebesarova
- Biology Centre, The Czech Academy of Sciences, V.v.i., Branisovska 31, 370 05 Ceske Budejovice, Czech Republic; University of South Bohemia, Faculty of Science, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic
| | - Michal Kalina
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
| | - Ivana Marova
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
| | - Vladislav Krzyzanek
- Institute of Scientific Instruments, Academy of Sciences of the Czech Republic, Vvi Kralovopolska 147, 612 64 Brno, Czech Republic
| | - Stanislav Obruca
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic.
| |
Collapse
|
35
|
Advanced approaches to produce polyhydroxyalkanoate (PHA) biopolyesters in a sustainable and economic fashion. EUROBIOTECH JOURNAL 2018. [DOI: 10.2478/ebtj-2018-0013] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Polyhydroxyalkanoates (PHA), the only group of “bioplastics” sensu stricto, are accumulated by various prokaryotes as intracellular “carbonosomes”. When exposed to exogenous stress or starvation, presence of these microbial polyoxoesters of hydroxyalkanoates assists microbes to survive.
“Bioplastics” such as PHA must be competitive with petrochemically manufactured plastics both in terms of material quality and manufacturing economics. Cost-effectiveness calculations clearly show that PHA production costs, in addition to bioreactor equipment and downstream technology, are mainly due to raw material costs. The reason for this is PHA production on an industrial scale currently relying on expensive, nutritionally relevant “1st-generation feedstocks”, such as like glucose, starch or edible oils. As a way out, carbon-rich industrial waste streams (“2nd-generation feedstocks”) can be used that are not in competition with the supply of food; this strategy not only reduces PHA production costs, but can also make a significant contribution to safeguarding food supplies in various disadvantaged parts of the world. This approach increases the economics of PHA production, improves the sustainability of the entire lifecycle of these materials, and makes them unassailable from an ethical perspective.
In this context, our EU-funded projects ANIMPOL and WHEYPOL, carried out by collaborative consortia of academic and industrial partners, successfully developed PHA production processes, which resort to waste streams amply available in Europe. As real 2nd-generation feedstocks”, waste lipids and crude glycerol from animal-processing and biodiesel industry, and surplus whey from dairy and cheese making industry were used in these processes. Cost estimations made by our project partners determine PHA production prices below 3 € (WHEYPOL) and even less than 2 € (ANIMPOL), respectively, per kg; these values already reach the benchmark of economic feasibility.
The presented studies clearly show that the use of selected high-carbon waste streams of (agro)industrial origin contributes significantly to the cost-effectiveness and sustainability of PHA biopolyester production on an industrial scale.
Collapse
|
36
|
A Review on Established and Emerging Fermentation Schemes for Microbial Production of Polyhydroxyalkanoate (PHA) Biopolyesters. FERMENTATION-BASEL 2018. [DOI: 10.3390/fermentation4020030] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Cyanobacteria Biorefinery — Production of poly(3-hydroxybutyrate) with Synechocystis salina and utilisation of residual biomass. J Biotechnol 2018; 265:46-53. [DOI: 10.1016/j.jbiotec.2017.10.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/14/2017] [Accepted: 10/30/2017] [Indexed: 12/23/2022]
|
38
|
Tee KL, Grinham J, Othusitse AM, González-Villanueva M, Johnson AO, Wong TS. An Efficient Transformation Method for the Bioplastic-Producing “Knallgas” Bacterium Ralstonia eutropha
H16. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201700081] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 07/14/2017] [Indexed: 01/19/2023]
Affiliation(s)
- Kang Lan Tee
- Department of Chemical and Biological Engineering, ChELSI Institute and Advanced Biomanufacturing Centre; The University of Sheffield; Sheffield United Kingdom
| | - James Grinham
- Department of Chemical and Biological Engineering, ChELSI Institute and Advanced Biomanufacturing Centre; The University of Sheffield; Sheffield United Kingdom
| | - Arona M. Othusitse
- Department of Chemical and Biological Engineering, ChELSI Institute and Advanced Biomanufacturing Centre; The University of Sheffield; Sheffield United Kingdom
| | - Miriam González-Villanueva
- Department of Chemical and Biological Engineering, ChELSI Institute and Advanced Biomanufacturing Centre; The University of Sheffield; Sheffield United Kingdom
| | - Abayomi O. Johnson
- Department of Chemical and Biological Engineering, ChELSI Institute and Advanced Biomanufacturing Centre; The University of Sheffield; Sheffield United Kingdom
| | - Tuck Seng Wong
- Department of Chemical and Biological Engineering, ChELSI Institute and Advanced Biomanufacturing Centre; The University of Sheffield; Sheffield United Kingdom
| |
Collapse
|
39
|
Koller M, Vadlja D, Braunegg G, Atlić A, Horvat P. Formal- and high-structured kinetic process modelling and footprint area analysis of binary imaged cells: Tools to understand and optimize multistage-continuous PHA biosynthesis. EUROBIOTECH JOURNAL 2017. [DOI: 10.24190/issn2564-615x/2017/03.01] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Abstract
Competitive polyhydroxyalkanoate (PHAs) production requires progress in microbial strain performance, feedstock selection, downstream processing, and more importantly according to the process design with process kinetics of the microbial growth phase and the phase of product formation. The multistage continuous production in a bioreactor cascade was described for the first time in a continuously operated, flexible five-stage bioreactor cascade that mimics the characteristics involved in the engineering process of tubular plug flow reactors. This process was developed and used for Cupriavidus necator-mediated PHA production at high volumetric and specific PHA productivity (up to 2.31 g/(Lh) and 0.105 g/(gh), respectively). Based on the experimental data, formal kinetic and high structured kinetic models were established, accompanied by footprint area analysis of binary imaged cells. As a result of the study, there has been an enhanced understanding of the long-term continuous PHA production under balanced, transient, and nutrient-deficient conditions that was achieved on both the micro and the macro kinetic level. It can also be concluded that there were novel insights into the complex metabolic occurrences that developed during the multistage- continuous production of PHA as a secondary metabolite. This development was essential in paving the way for further process improvement. At the same time, a new method of specific growth rate and specific production rate based on footprint area analysis was established by using the electron microscope.
Collapse
Affiliation(s)
- Martin Koller
- University of Graz, Office of Research Management and Service, c/o Institute of Chemistry, NAWI Graz , Austria
- ARENA (Association for Resource Efficient and Sustainable Technologies), Graz , Austria
| | - Denis Vadlja
- University of Zagreb, Faculty of Food Technology and Biotechnology, Department of Biochemical Engineering, Zagreb , Croatia
| | - Gerhart Braunegg
- ARENA (Association for Resource Efficient and Sustainable Technologies), Graz , Austria
| | - Aid Atlić
- VTU Technology GmbH, Grambach/ Graz , Austria
| | - Predrag Horvat
- University of Zagreb, Faculty of Food Technology and Biotechnology, Department of Biochemical Engineering, Zagreb , Croatia
| |
Collapse
|
40
|
Fed-Batch Synthesis of Poly(3-Hydroxybutyrate) and Poly(3-Hydroxybutyrate-co-4-Hydroxybutyrate) from Sucrose and 4-Hydroxybutyrate Precursors by Burkholderia sacchari Strain DSM 17165. Bioengineering (Basel) 2017; 4:bioengineering4020036. [PMID: 28952515 PMCID: PMC5590455 DOI: 10.3390/bioengineering4020036] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 04/13/2017] [Accepted: 04/19/2017] [Indexed: 11/22/2022] Open
Abstract
Based on direct sucrose conversion, the bacterium Burkholderia sacchari is an excellent producer of the microbial homopolyester poly(3-hydroxybutyrate) (PHB). Restrictions of the strain’s wild type in metabolizing structurally related 3-hydroxyvalerate (3HV) precursors towards 3HV-containing polyhydroxyalkanoate (PHA) copolyester calls for alternatives. We demonstrate the highly productive biosynthesis of PHA copolyesters consisting of 3-hydroxybuytrate (3HB) and 4-hydroxybutyrate (4HB) monomers. Controlled bioreactor cultivations were carried out using saccharose from the Brazilian sugarcane industry as the main carbon source, with and without co-feeding with the 4HB-related precursor γ-butyrolactone (GBL). Without GBL co-feeding, the homopolyester PHB was produced at a volumetric productivity of 1.29 g/(L·h), a mass fraction of 0.52 g PHB per g biomass, and a final PHB concentration of 36.5 g/L; the maximum specific growth rate µmax amounted to 0.15 1/h. Adding GBL, we obtained 3HB and 4HB monomers in the polyester at a volumetric productivity of 1.87 g/(L·h), a mass fraction of 0.72 g PHA per g biomass, a final PHA concentration of 53.7 g/L, and a µmax of 0.18 1/h. Thermoanalysis revealed improved material properties of the second polyester in terms of reduced melting temperature Tm (161 °C vs. 178 °C) and decreased degree of crystallinity Xc (24% vs. 71%), indicating its enhanced suitability for polymer processing.
Collapse
|