1
|
Bai Y, Tan R, Yan Y, Chen T, Feng Y, Sun Q, Li J, Wang Y, Liu F, Wang J, Zhang Y, Cheng X, Wu G. Effect of addition of γ-poly glutamic acid on bacterial nanocellulose production under agitated culture conditions. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:68. [PMID: 38802837 PMCID: PMC11129402 DOI: 10.1186/s13068-024-02515-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Bacterial nanocellulose (BNC), a natural polymer material, gained significant popularity among researchers and industry. It has great potential in areas, such as textile manufacturing, fiber-based paper, and packaging products, food industry, biomedical materials, and advanced functional bionanocomposites. The main current fermentation methods for BNC involved static culture, as the agitated culture methods had lower raw material conversion rates and resulted in non-uniform product formation. Currently, studies have shown that the production of BNC can be enhanced by incorporating specific additives into the culture medium. These additives included organic acids or polysaccharides. γ-Polyglutamic acid (γ-PGA), known for its high polymerization, excellent biodegradability, and environmental friendliness, has found extensive application in various industries including daily chemicals, medicine, food, and agriculture. RESULTS In this particular study, 0.15 g/L of γ-PGA was incorporated as a medium additive to cultivate BNC under agitated culture conditions of 120 rpm and 30 ℃. The BNC production increased remarkably by 209% in the medium with 0.15 g/L γ-PGA and initial pH of 5.0 compared to that in the standard medium, and BNC production increased by 7.3% in the medium with 0.06 g/L γ-PGA. The addition of γ-PGA as a medium additive resulted in significant improvements in BNC production. Similarly, at initial pH levels of 4.0 and 6.0, the BNC production also increased by 39.3% and 102.3%, respectively. To assess the characteristics of the BNC products, scanning electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis were used. The average diameter of BNC fibers, which was prepared from the medium adding 0.15 g/L γ-PGA, was twice thicker than that of BNC fibers prepared from the control culture medium. That might be because that polyglutamic acid relieved the BNC synthesis from the shear stress from the agitation. CONCLUSIONS This experiment held great significance as it explored the use of a novel medium additive, γ-PGA, to improve the production and the glucose conversion rate in BNC fermentation. And the BNC fibers became thicker, with better thermal stability, higher crystallinity, and higher degree of polymerization (DPv). These findings lay a solid foundation for future large-scale fermentation production of BNC using bioreactors.
Collapse
Affiliation(s)
- Yang Bai
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai, 264025, China
| | - Ran Tan
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai, 264025, China
| | - Yiran Yan
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai, 264025, China
| | - Tao Chen
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai, 264025, China
| | - Yetong Feng
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai, 264025, China
| | - Qiwei Sun
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai, 264025, China
| | - Jiakun Li
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai, 264025, China
| | - Yifei Wang
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai, 264025, China
| | - Futao Liu
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai, 264025, China
| | - Jingwen Wang
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai, 264025, China
| | - Yao Zhang
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, China
| | - Xianhao Cheng
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai, 264025, China
| | - Guochao Wu
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai, 264025, China.
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, School of Agriculture, Ludong University, Yantai, 264025, China.
| |
Collapse
|
2
|
Lu C, Wijffels RH, Martins dos Santos VAP, Weusthuis RA. Pseudomonas putida as a platform for medium-chain length α,ω-diol production: Opportunities and challenges. Microb Biotechnol 2024; 17:e14423. [PMID: 38528784 PMCID: PMC10963910 DOI: 10.1111/1751-7915.14423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 03/27/2024] Open
Abstract
Medium-chain-length α,ω-diols (mcl-diols) play an important role in polymer production, traditionally depending on energy-intensive chemical processes. Microbial cell factories offer an alternative, but conventional strains like Escherichia coli and Saccharomyces cerevisiae face challenges in mcl-diol production due to the toxicity of intermediates such as alcohols and acids. Metabolic engineering and synthetic biology enable the engineering of non-model strains for such purposes with P. putida emerging as a promising microbial platform. This study reviews the advancement in diol production using P. putida and proposes a four-module approach for the sustainable production of diols. Despite progress, challenges persist, and this study discusses current obstacles and future opportunities for leveraging P. putida as a microbial cell factory for mcl-diol production. Furthermore, this study highlights the potential of using P. putida as an efficient chassis for diol synthesis.
Collapse
Affiliation(s)
- Chunzhe Lu
- Bioprocess EngineeringWageningen University & ResearchWageningenThe Netherlands
- Groningen Biomolecular Sciences & Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| | - Rene H. Wijffels
- Bioprocess EngineeringWageningen University & ResearchWageningenThe Netherlands
- Faculty of Biosciences and AquacultureNord UniversityBodøNorway
| | | | - Ruud A. Weusthuis
- Bioprocess EngineeringWageningen University & ResearchWageningenThe Netherlands
| |
Collapse
|