1
|
Seim I, Zhang V, Jalihal AP, Stormo BM, Cole SJ, Ekena J, Nguyen HT, Thirumalai D, Gladfelter AS. RNA encodes physical information. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.11.627970. [PMID: 39713325 PMCID: PMC11661273 DOI: 10.1101/2024.12.11.627970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Most amino acids are encoded by multiple codons, making the genetic code degenerate. Synonymous mutations affect protein translation and folding, but their impact on RNA itself is often neglected. We developed a genetic algorithm that introduces synonymous mutations to control the diversity of structures sampled by an mRNA. The behavior of the designed mRNAs reveals a physical code layered in the genetic code. We find that mRNA conformational heterogeneity directs physical properties and functional outputs of RNA-protein complexes and biomolecular condensates. The role of structure and disorder of proteins in biomolecular condensates is well appreciated, but we find that RNA conformational heterogeneity is equally important. This feature of RNA enables both evolution and engineers to build cellular structures with specific material and responsive properties.
Collapse
Affiliation(s)
- Ian Seim
- Duke University, Department of Cell Biology, Durham, NC
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Vita Zhang
- Duke University, Department of Cell Biology, Durham, NC
| | | | | | | | - Joanne Ekena
- Duke University, Department of Cell Biology, Durham, NC
| | | | | | | |
Collapse
|
2
|
Gu K, Mok L, Wakefield MJ, Chong MMW. Non-canonical RNA substrates of Drosha lack many of the conserved features found in primary microRNA stem-loops. Sci Rep 2024; 14:6713. [PMID: 38509178 PMCID: PMC10954719 DOI: 10.1038/s41598-024-57330-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 03/18/2024] [Indexed: 03/22/2024] Open
Abstract
The RNase III enzyme Drosha has a central role in microRNA (miRNA) biogenesis, where it is required to release the stem-loop intermediate from primary (pri)-miRNA transcripts. However, it can also cleave stem-loops embedded within messenger (m)RNAs. This destabilizes the mRNA causing target gene repression and appears to occur primarily in stem cells. While pri-miRNA stem-loops have been extensively studied, such non-canonical substrates of Drosha have yet to be characterized in detail. In this study, we employed high-throughput sequencing to capture all polyA-tailed RNAs that are cleaved by Drosha in mouse embryonic stem cells (ESCs) and compared the features of non-canonical versus miRNA stem-loop substrates. mRNA substrates are less efficiently processed than miRNA stem-loops. Sequence and structural analyses revealed that these mRNA substrates are also less stable and more likely to fold into alternative structures than miRNA stem-loops. Moreover, they lack the sequence and structural motifs found in miRNA stem-loops that are required for precise cleavage. Notably, we discovered a non-canonical Drosha substrate that is cleaved in an inverse manner, which is a process that is normally inhibited by features in miRNA stem-loops. Our study thus provides valuable insights into the recognition of non-canonical targets by Drosha.
Collapse
Affiliation(s)
- Karen Gu
- St Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia
- Department of Medicine (St Vincent's), University of Melbourne, Fitzroy, VIC, 3065, Australia
| | - Lawrence Mok
- St Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia
| | - Matthew J Wakefield
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Mark M W Chong
- St Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia.
- Department of Medicine (St Vincent's), University of Melbourne, Fitzroy, VIC, 3065, Australia.
| |
Collapse
|
3
|
Andrews RJ, Rouse WB, O’Leary CA, Booher NJ, Moss WN. ScanFold 2.0: a rapid approach for identifying potential structured RNA targets in genomes and transcriptomes. PeerJ 2022; 10:e14361. [PMID: 36389431 PMCID: PMC9651051 DOI: 10.7717/peerj.14361] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/18/2022] [Indexed: 11/11/2022] Open
Abstract
A major limiting factor in target discovery for both basic research and therapeutic intervention is the identification of structural and/or functional RNA elements in genomes and transcriptomes. This was the impetus for the original ScanFold algorithm, which provides maps of local RNA structural stability, evidence of sequence-ordered (potentially evolved) structure, and unique model structures comprised of recurring base pairs with the greatest structural bias. A key step in quantifying this propensity for ordered structure is the prediction of secondary structural stability for randomized sequences which, in the original implementation of ScanFold, is explicitly evaluated. This slow process has limited the rapid identification of ordered structures in large genomes/transcriptomes, which we seek to overcome in this current work introducing ScanFold 2.0. In this revised version of ScanFold, we no longer explicitly evaluate randomized sequence folding energy, but rather estimate it using a machine learning approach. For high randomization numbers, this can increase prediction speeds over 100-fold compared to ScanFold 1.0, allowing for the analysis of large sequences, as well as the use of additional folding algorithms that may be computationally expensive. In the testing of ScanFold 2.0, we re-evaluate the Zika, HIV, and SARS-CoV-2 genomes and compare both the consistency of results and the time of each run to ScanFold 1.0. We also re-evaluate the SARS-CoV-2 genome to assess the quality of ScanFold 2.0 predictions vs several biochemical structure probing datasets and compare the results to those of the original ScanFold program.
Collapse
Affiliation(s)
- Ryan J. Andrews
- Department of Biochemistry, University of Utah, Salt Lake City, UT, United States
| | - Warren B. Rouse
- The Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, United States
| | - Collin A. O’Leary
- The Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, United States
| | - Nicholas J. Booher
- Infrastructure and Research IT Services, Iowa State University, Ames, IA, United States
| | - Walter N. Moss
- The Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, United States
| |
Collapse
|
4
|
Rouse WB, Gart J, Peysakhova L, Moss WN. Analysis of key genes in Mycobacterium ulcerans reveals conserved RNA structural motifs and regions with apparent pressure to remain unstructured. FRONTIERS IN TROPICAL DISEASES 2022; 3. [PMID: 37006713 PMCID: PMC10062443 DOI: 10.3389/fitd.2022.1009362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Buruli Ulcer is a neglected tropical disease that results in disfiguring and dangerous lesions in affected persons across a wide geographic area, including much of West Africa. The causative agent of Buruli Ulcer is Mycobacterium ulcerans, a relative of the bacterium that causes tuberculosis and leprosy. Few therapeutic options exist for the treatment of this disease beyond antibiotics in the early stages, which are frequently ineffective, and surgical removal in the later stage. In this study we analyze six genes in Mycobacterium ulcerans that have high potential of therapeutic targeting. We focus our analysis on a combined in silico and comparative sequence study of potential RNA secondary structure across these genes. The result of this work was the comprehensive local RNA structural landscape across each of these significant genes. This revealed multiple sites of ordered and evolved RNA structure interspersed between sequences that either have no bias for structure or, indeed, appear to be ordered to be unstructured and (potentially) accessible. In addition to providing data that could be of interest to basic biology, our results provide guides for efforts aimed at targeting this pathogen at the RNA level. We explore this latter possibility through the in silico analysis of antisense oligonucleotides that could potentially be used to target pathogen RNA.
Collapse
Affiliation(s)
- Warren B. Rouse
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, United States
| | - Jessica Gart
- Science and Engineering Research Program (SERP), Staten Island Technical High School, Staten Island, NY, United States
| | - Lauren Peysakhova
- Science and Engineering Research Program (SERP), Staten Island Technical High School, Staten Island, NY, United States
| | - Walter N. Moss
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, United States
- CORRESPONDENCE: Walter N. Moss,
| |
Collapse
|
5
|
Rouse WB, O'Leary CA, Booher NJ, Moss WN. Expansion of the RNAStructuromeDB to include secondary structural data spanning the human protein-coding transcriptome. Sci Rep 2022; 12:14515. [PMID: 36008510 PMCID: PMC9403969 DOI: 10.1038/s41598-022-18699-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/17/2022] [Indexed: 11/22/2022] Open
Abstract
RNA plays vital functional roles in almost every component of biology, and these functional roles are often influenced by its folding into secondary and tertiary structures. An important role of RNA secondary structure is in maintaining proper gene regulation; therefore, making accurate predictions of the structures involved in these processes is important. In this study, we have expanded on our previous work that led to the creation of the RNAStructuromeDB. Unlike this previous study that analyzed the human genome at low resolution, we have now scanned the protein-coding human transcriptome at high (single nt) resolution. This provides more robust structure predictions for over 100,000 isoforms of known protein-coding genes. Notably, we also utilize the motif identification tool, ScanFold, to model structures with high propensity for ordered/evolved stability. All data have been uploaded to the RNAStructuromeDB, allowing for easy searching of transcripts, visualization of data tracks (via the Integrative Genomics Viewer or IGV), and download of ScanFold data—including unique highly-ordered motifs. Herein, we provide an example analysis of MAT2A to demonstrate the utility of ScanFold at finding known and novel secondary structures, highlighting regions of potential functionality, and guiding generation of functional hypotheses through use of the data.
Collapse
Affiliation(s)
- Warren B Rouse
- Roy J. Carver Department of Biophysics, Biochemistry and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Collin A O'Leary
- Roy J. Carver Department of Biophysics, Biochemistry and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Nicholas J Booher
- Infrastructure and Research IT Services, Iowa State University, Ames, IA, 50011, USA
| | - Walter N Moss
- Roy J. Carver Department of Biophysics, Biochemistry and Molecular Biology, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
6
|
Rouse WB, Andrews RJ, Booher NJ, Wang J, Woodman M, Dow E, Jessop TC, Moss WN. Prediction and analysis of functional RNA structures within the integrative genomics viewer. NAR Genom Bioinform 2022; 4:lqab127. [PMID: 35047817 PMCID: PMC8759568 DOI: 10.1093/nargab/lqab127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/03/2021] [Accepted: 12/22/2021] [Indexed: 12/14/2022] Open
Abstract
In recent years, interest in RNA secondary structure has exploded due to its implications in almost all biological functions and its newly appreciated capacity as a therapeutic agent/target. This surge of interest has driven the development and adaptation of many computational and biochemical methods to discover novel, functional structures across the genome/transcriptome. To further enhance efforts to study RNA secondary structure, we have integrated the functional secondary structure prediction tool ScanFold, into IGV. This allows users to directly perform structure predictions and visualize results—in conjunction with probing data and other annotations—in one program. We illustrate the utility of this new tool by mapping the secondary structural landscape of the human MYC precursor mRNA. We leverage the power of vast ‘omics’ resources by comparing individually predicted structures with published data including: biochemical structure probing, RNA binding proteins, microRNA binding sites, RNA modifications, single nucleotide polymorphisms, and others that allow functional inferences to be made and aid in the discovery of potential drug targets. This new tool offers the RNA community an easy to use tool to find, analyze, and characterize RNA secondary structures in the context of all available data, in order to find those worthy of further analyses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Walter N Moss
- To whom correspondence should be addressed. Tel: +1 515 294 6116;
| |
Collapse
|
7
|
Andrews RJ, O’Leary CA, Moss WN. A survey of RNA secondary structural propensity encoded within human herpesvirus genomes: global comparisons and local motifs. PeerJ 2020; 8:e9882. [PMID: 32974099 PMCID: PMC7487152 DOI: 10.7717/peerj.9882] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/16/2020] [Indexed: 12/13/2022] Open
Abstract
There are nine herpesviruses known to infect humans, of which Epstein-Barr virus (EBV) is the most widely distributed (>90% of adults infected). This ubiquitous virus is implicated in a variety of cancers and autoimmune diseases. Previous analyses of the EBV genome revealed numerous regions with evidence of generating unusually stable and conserved RNA secondary structures and led to the discovery of a novel class of EBV non-coding (nc)RNAs: the stable intronic sequence (sis)RNAs. To gain a better understanding of the roles of RNA structure in EBV biology and pathogenicity, we revisit EBV using recently developed tools for genome-wide motif discovery and RNA structural characterization. This corroborated previous results and revealed novel motifs with potential functionality; one of which has been experimentally validated. Additionally, since many herpesviruses increasingly rival the seroprevalence of EBV (VZV, HHV-6 and HHV-7 being the most notable), analyses were expanded to include all sequenced human Herpesvirus RefSeq genomes, allowing for genomic comparisons. In total 10 genomes were analyzed, for EBV (types 1 and 2), HCMV, HHV-6A, HHV-6B, HHV-7, HSV-1, HSV-2, KSHV, and VZV. All resulting data were archived in the RNAStructuromeDB (https://structurome.bb.iastate.edu/herpesvirus) to make them available to a wide array of researchers.
Collapse
Affiliation(s)
- Ryan J. Andrews
- The Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States of America
| | - Collin A. O’Leary
- The Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States of America
| | - Walter N. Moss
- The Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States of America
| |
Collapse
|
8
|
Chen JL, Moss WN, Spencer A, Zhang P, Childs-Disney JL, Disney MD. The RNA encoding the microtubule-associated protein tau has extensive structure that affects its biology. PLoS One 2019; 14:e0219210. [PMID: 31291322 PMCID: PMC6619747 DOI: 10.1371/journal.pone.0219210] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/18/2019] [Indexed: 12/31/2022] Open
Abstract
Tauopathies are neurodegenerative diseases that affect millions of people worldwide including those with Alzheimer’s disease. While many efforts have focused on understanding the role of tau protein in neurodegeneration, there has been little done to systematically analyze and study the structures within tau’s encoding RNA and their connection to disease pathology. Knowledge of RNA structure can provide insights into disease mechanisms and how to affect protein production for therapeutic benefit. Using computational methods based on thermodynamic stability and evolutionary conservation, we identified structures throughout the tau pre-mRNA, especially at exon-intron junctions and within the 5′ and 3′ untranslated regions (UTRs). In particular, structures were identified at twenty exon-intron junctions. The 5′ UTR contains one structured region, which lies within a known internal ribosome entry site. The 3′ UTR contains eight structured regions, including one that contains a polyadenylation signal. A series of functional experiments were carried out to assess the effects of mutations associated with mis-regulation of alternative splicing of exon 10 and to identify regions of the 3′ UTR that contain cis-regulatory elements. These studies defined novel structural regions within the mRNA that affect stability and pre-mRNA splicing and may lead to new therapeutic targets for treating tau-associated diseases.
Collapse
Affiliation(s)
- Jonathan L. Chen
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Walter N. Moss
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Adam Spencer
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Peiyuan Zhang
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Jessica L. Childs-Disney
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Matthew D. Disney
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida, United States of America
- * E-mail:
| |
Collapse
|