1
|
Majumdar N, Pokharel BR, Dickerson A, Cruceanu A, Rajput S, Pokhrel LR, Cook PP, Akula SM. The miRNomics of antiretroviral therapy-induced obesity. Funct Integr Genomics 2025; 25:81. [PMID: 40186666 PMCID: PMC11972218 DOI: 10.1007/s10142-025-01585-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/07/2025]
Abstract
Human immunodeficiency virus (HIV) is a retrovirus that incorporates its genetic material into the host's chromosome. The resulting diseases and related conditions constitute a global health problem as there are no treatments to eliminate HIV from an infected individual. However, the potent, complex, and active antiretroviral therapy (ART) strategies have been able to successfully inhibit HIV replication in patients. Unfortunately, obesity following ART is frequent among HIV-infected patients. The mechanism underlying ART-induced obesity is characterized based on expression of traditional markers such as genes and proteins. However, little is known about, yet another key component of molecular biology known as microRNAs (miRNAs). Micro-RNAs are ~ 22 base-long non-coding nucleotides capable of regulating more than 60% of all human protein-coding genes. The interest in miRNA molecules is increasing and their roles in HIV and obesity are beginning to be apparent. In this review, we provide an overview of HIV and its associated diseases, ART-induced obesity, and discuss the roles and plausible benefits of miRNAs in regulating obesity genes in HIV-infected patients. Understanding the roles of miRNAs in ART-induced obesity will aid in tracking the disease progression and designing beneficial therapeutic approaches.
Collapse
Affiliation(s)
- Niska Majumdar
- Department of Microbiology & Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA
| | - Bishwa R Pokharel
- Department of Microbiology & Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA
| | - Abigail Dickerson
- Department of Microbiology & Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA
| | - Andreea Cruceanu
- Department of Microbiology & Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA
| | - Smit Rajput
- Department of Internal Medicine, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA
| | - Lok R Pokhrel
- Department of Public Health, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA
| | - Paul P Cook
- Department of Internal Medicine, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA.
| | - Shaw M Akula
- Department of Microbiology & Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA.
- Department of Internal Medicine, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA.
| |
Collapse
|
2
|
Wang T, Zheng J, Pan Y, Zhuang Z, Zeng Y. Investigation of key miRNAs and Target-mRNA in Kaposi's sarcoma using bioinformatic methods. Heliyon 2024; 10:e29502. [PMID: 38660282 PMCID: PMC11041027 DOI: 10.1016/j.heliyon.2024.e29502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024] Open
Abstract
Kaposi's sarcoma (KS) is the second most common tumor in human immunodeficiency virus (HIV) infected patients worldwide. While many miRNAs have been confirmed to be involved in KS biological processes, no relevant studies have combined miRNA and mRNA expression profiles using KS patient tissue biopsies. In this study, we performed transcriptome sequencing on tumor and normal tissues from four KS patients and identified differentially expressed mRNA and miRNA, further performed target gene prediction and enrichment analysis. 19,551 target-mRNAs were identified by predicting 106 miRNAs, with 553 overlapping with 571 significantly differentially expressed mRNAs. Enrichment analysis showed significant involvement of the Ubiquitin-mediated proteolysis pathway. Additionally, the miRNA-mRNA interaction network was established, and the topological score of Cytohubba's algorithm was calculated for comparison with three other datasets. The Mutual Clustering Coefficient (MCC) scoring ranking placed ZBTB34, NFIB, and RORA as the top three mRNAs, while hsa-miR-16-5p, hsa-miR-27a-3p, hsa-miR-340-5p, hsa-miR-182-5p, and hsa-miR-186-5p ranked as the top five miRNAs. Hsa-miR-101-3p is the only miRNA that appears both in the top 10 MCC scores and at the intersection of the other two datasets. Finally, qRT-PCR was used to validate the findings at the cellular level. In summary, the miRNA analysis results indicated that hsa-miR-101-3p could be used as a potential diagnostic or therapeutic marker in future studies. Moreover, the mRNA analysis results suggested that the histone binding pathways involved in mRNAs and ubiquitin-related biological processes were closely associated with KS and could serve as promising biomarkers for the diagnosis and treatment of this disease.
Collapse
Affiliation(s)
- Tianye Wang
- Precision Clinical Laboratory, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, Guangdong, China
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
| | - Jun Zheng
- Precision Clinical Laboratory, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, Guangdong, China
- Key Laboratory of Xinjiang Endemic and Ethnic Disease, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Yangyang Pan
- Precision Clinical Laboratory, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, Guangdong, China
- Key Laboratory of Xinjiang Endemic and Ethnic Disease, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Zhaowei Zhuang
- Precision Clinical Laboratory, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, Guangdong, China
- Key Laboratory of Xinjiang Endemic and Ethnic Disease, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Yan Zeng
- Precision Clinical Laboratory, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, Guangdong, China
- Key Laboratory of Xinjiang Endemic and Ethnic Disease, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
3
|
Charkiewicz R, Sulewska A, Mroz R, Charkiewicz A, Naumnik W, Kraska M, Gyenesei A, Galik B, Junttila S, Miskiewicz B, Stec R, Karabowicz P, Zawada M, Miltyk W, Niklinski J. Serum Insights: Leveraging the Power of miRNA Profiling as an Early Diagnostic Tool for Non-Small Cell Lung Cancer. Cancers (Basel) 2023; 15:4910. [PMID: 37894277 PMCID: PMC10605272 DOI: 10.3390/cancers15204910] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/05/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
Non-small cell lung cancer is the predominant form of lung cancer and is associated with a poor prognosis. MiRNAs implicated in cancer initiation and progression can be easily detected in liquid biopsy samples and have the potential to serve as non-invasive biomarkers. In this study, we employed next-generation sequencing to globally profile miRNAs in serum samples from 71 early-stage NSCLC patients and 47 non-cancerous pulmonary condition patients. Preliminary analysis of differentially expressed miRNAs revealed 28 upregulated miRNAs in NSCLC compared to the control group. Functional enrichment analyses unveiled their involvement in NSCLC signaling pathways. Subsequently, we developed a gradient-boosting decision tree classifier based on 2588 miRNAs, which demonstrated high accuracy (0.837), sensitivity (0.806), and specificity (0.859) in effectively distinguishing NSCLC from non-cancerous individuals. Shapley Additive exPlanations analysis improved the model metrics by identifying the top 15 miRNAs with the strongest discriminatory value, yielding an AUC of 0.96 ± 0.04, accuracy of 0.896, sensitivity of 0.884, and specificity of 0.903. Our study establishes the potential utility of a non-invasive serum miRNA signature as a supportive tool for early detection of NSCLC while also shedding light on dysregulated miRNAs in NSCLC biology. For enhanced credibility and understanding, further validation in an independent cohort of patients is warranted.
Collapse
Affiliation(s)
- Radoslaw Charkiewicz
- Center of Experimental Medicine, Medical University of Bialystok, 15-369 Bialystok, Poland
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-269 Bialystok, Poland; (A.S.); (M.K.)
| | - Anetta Sulewska
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-269 Bialystok, Poland; (A.S.); (M.K.)
| | - Robert Mroz
- 2nd Department of Lung Diseases and Tuberculosis, Medical University of Bialystok, 15-540 Bialystok, Poland;
| | - Alicja Charkiewicz
- Department of Analysis and Bioanalysis of Medicines, Medical University of Bialystok, 15-089 Bialystok, Poland; (A.C.); (W.M.)
| | - Wojciech Naumnik
- 1st Department of Lung Diseases and Tuberculosis, Medical University of Bialystok, 15-540 Bialystok, Poland;
| | - Marcin Kraska
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-269 Bialystok, Poland; (A.S.); (M.K.)
- Department of Medical Pathomorphology, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Attila Gyenesei
- Szentagothai Research Center, Genomic and Bioinformatic Core Facility, H-7624 Pecs, Hungary; (A.G.); (B.G.)
| | - Bence Galik
- Szentagothai Research Center, Genomic and Bioinformatic Core Facility, H-7624 Pecs, Hungary; (A.G.); (B.G.)
| | - Sini Junttila
- Turku Bioscience Centre, University of Turku & Åbo Akademi University, FI-20520 Turku, Finland;
| | - Borys Miskiewicz
- Department of Thoracic Surgery, Medical University of Bialystok, 15-276 Bialystok, Poland;
| | - Rafal Stec
- Department of Oncology, Medical University of Warsaw, 02-091 Warsaw, Poland;
| | - Piotr Karabowicz
- Biobank, Medical University of Bialystok, 15-269 Bialystok, Poland;
| | - Magdalena Zawada
- Department of Hematology Diagnostics and Genetics, The University Hospital, 30-688 Krakow, Poland;
| | - Wojciech Miltyk
- Department of Analysis and Bioanalysis of Medicines, Medical University of Bialystok, 15-089 Bialystok, Poland; (A.C.); (W.M.)
| | - Jacek Niklinski
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-269 Bialystok, Poland; (A.S.); (M.K.)
| |
Collapse
|