1
|
Karaca Dogan B, Salman Yilmaz S, Izgi GN, Ozen M. Circulating non-coding RNAs as a tool for liquid biopsy in solid tumors. Epigenomics 2025; 17:335-358. [PMID: 40040488 PMCID: PMC11970797 DOI: 10.1080/17501911.2025.2467021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 02/10/2025] [Indexed: 03/06/2025] Open
Abstract
Solid tumors are significant causes of global mortality and morbidity. Recent research has primarily concentrated on finding pathology-specific molecules that can be acquired non-invasively and that can change as the disease progresses or in response to treatment. The focus of research has moved to RNA molecules that are either freely circulating in body fluids or bundled in microvesicles and exosomes because of their great stability in challenging environments, ease of accessibility, and changes in level in response to therapy. In this context, there are many non-coding RNAs that can be used for this purpose in liquid biopsies. Out of these, microRNAs have been extensively studied. However, there has been an increase of interest in studying long non-coding RNAs, piwi interacting RNAs, circular RNAs, and other small non-coding RNAs. In this article, an overview of the most researched circulating non-coding RNAs in solid tumors will be reviewed, along with a discussion of the significance of these molecules for early diagnosis, prognosis, and therapeutic targets. The publications analyzed were extracted from the PubMed database between 2008 and June 2024.
Collapse
Affiliation(s)
- Beyza Karaca Dogan
- Department of Medical Genetics, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkiye
| | - Seda Salman Yilmaz
- Department of Medical Genetics, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkiye
- Department of Medical Services and Techniques Medical Monitoring Techniques Pr. Vocational School of Health Services, Istanbul University-Cerrahpaşa, Istanbul, Turkiye
| | - Gizem Nur Izgi
- Department of Medical Genetics, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkiye
| | - Mustafa Ozen
- Department of Medical Genetics, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkiye
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
2
|
Schöpe PC, Torke S, Kobelt D, Kortüm B, Treese C, Dumbani M, Güllü N, Walther W, Stein U. MACC1 revisited - an in-depth review of a master of metastasis. Biomark Res 2024; 12:146. [PMID: 39580452 PMCID: PMC11585957 DOI: 10.1186/s40364-024-00689-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/12/2024] [Indexed: 11/25/2024] Open
Abstract
Cancer metastasis remains the most lethal characteristic of tumors mediating the majority of cancer-related deaths. Identifying key molecules responsible for metastasis, understanding their biological functions and therapeutically targeting these molecules is therefore of tremendous value. Metastasis Associated in Colon Cancer 1 (MACC1), a gene first described in 2009, is such a key driver of metastatic processes, initiating cellular proliferation, migration, invasion, and metastasis in vitro and in vivo. Since its discovery, the value of MACC1 as a prognostic biomarker has been confirmed in over 20 cancer entities. Additionally, several therapeutic strategies targeting MACC1 and its pro-metastatic functions have been developed. In this review, we will provide a comprehensive overview on MACC1, from its clinical relevance, towards its structure and role in signaling cascades as well as molecular networks. We will highlight specific biological consequences of MACC1 expression, such as an increase in stem cell properties, its immune-modulatory effects and induced therapy resistance. Lastly, we will explore various strategies interfering with MACC1 expression and/or its functions. Conclusively, this review underlines the importance of understanding the role of individual molecules in mediating metastasis.
Collapse
Affiliation(s)
- Paul Curtis Schöpe
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Sebastian Torke
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Dennis Kobelt
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Benedikt Kortüm
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Christoph Treese
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Malti Dumbani
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Nazli Güllü
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Wolfgang Walther
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Ulrike Stein
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.
- German Cancer Consortium (DKTK), Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
3
|
Saranya I, Dharshini VS, Akshaya RL, Subhashini PS, Selvamurugan N. Regulatory and therapeutic implications of competing endogenous RNA network in breast cancer progression and metastasis: A review. Int J Biol Macromol 2024; 266:131075. [PMID: 38531528 DOI: 10.1016/j.ijbiomac.2024.131075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 03/28/2024]
Abstract
Breast cancer (BC) is a global health concern, and development of diagnostic tools and targeted treatments for BC remains challenging. Therapeutic approaches for BC often involve a combination of surgery, radiation therapy, chemotherapy, targeted therapy, and hormone therapy. In recent years, there has been a growing interest in the role of noncoding RNAs (ncRNAs), including long ncRNAs (lncRNAs) and microRNAs (miRNAs), in BC and their therapeutic implications. Various biological processes such as cell proliferation, migration, and apoptosis rely on the activities of these ncRNAs, and their dysregulation has been implicated in BC progression. The regulatory function of the competitive endogenous RNA (ceRNA) network, which comprises lncRNAs, miRNAs, and mRNAs, has been the subject of extensive pathophysiological research. Most lncRNAs serve as molecular sponges for miRNAs and sequester their activities, thereby regulating the expression of target mRNAs and contributing to the promotion or inhibition of BC progression. This review summarizes recent findings on the role of ceRNA networks in BC progression, metastasis, and therapeutic resistance, and highlights the association of ceRNA networks with transcription factors and signaling pathways. Understanding the ceRNA network can lead to the discovery of biomarkers and targeted treatment methods to prevent the spread and metastasis of BC.
Collapse
Affiliation(s)
- I Saranya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - V Sowfika Dharshini
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - R L Akshaya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - P Sakthi Subhashini
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
4
|
Nousiopoulou E, Vrettou K, Damaskos C, Garmpis N, Garmpi A, Tsikouras P, Nikolettos N, Nikolettos K, Psilopatis I. The Role of Urothelial Cancer-Associated 1 in Gynecological Cancers. Curr Issues Mol Biol 2024; 46:2772-2797. [PMID: 38534790 DOI: 10.3390/cimb46030174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 03/28/2024] Open
Abstract
Gynecological cancers (GC) represent some of the most frequently diagnosed malignancies in women worldwide. Long-non-coding RNAs (lncRNAs) are regulatory RNAs increasingly being recognized for their role in tumor progression and metastasis in various cancers. Urothelial cancer-associated 1 (UCA1) is a lncRNA, first found deregulated in bladder cancer, and many studies have exposed its oncogenic effects in more tumors since. However, the role of UCA1 in gynecological malignancies is still unclear. This review aims to analyze and define the role of UCA1 in GC, in order to identify its potential use as a diagnostic, prognostic, or therapeutic biomarker of GC. By employing the search terms "UCA1", "breast cancer", "endometrial cancer", "ovarian cancer", "cervical cancer", "vaginal cancer", and "vulvar cancer" in the PubMed database for the literature review, we identified a total of sixty-three relevant research articles published between 2014 and 2024. Although there were some opposing results, UCA1 was predominantly found to be upregulated in most of the breast, endometrial, ovarian, cervical, and vulvar cancer cells, tissue samples, and mouse xenograft models. UCA1 overexpression mainly accounts for enhanced tumor proliferation and increased drug resistance, while also being associated with some clinicopathological features, such as a high histological grade or poor prognosis. Nonetheless, no reviews were identified about the involvement of UCA1 in vaginal carcinogenesis. Therefore, further clinical trials are required to explore the role of UCA1 in these malignancies and, additionally, examine its possible application as a target for upcoming treatments, or as a novel biomarker for GC diagnosis and prognosis.
Collapse
Affiliation(s)
- Eleni Nousiopoulou
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Kleio Vrettou
- Department of Cytopathology, Sismanogleio General Hospital, 15126 Athens, Greece
| | - Christos Damaskos
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Nikolaos Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Nikolaos Garmpis
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Nikolaos Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Anna Garmpi
- First Department of Propedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Panagiotis Tsikouras
- Obstetric and Gynecologic Clinic, Medical School, Democritus University of Thrace, 68110 Alexandroupolis, Greece
| | - Nikolaos Nikolettos
- Obstetric and Gynecologic Clinic, Medical School, Democritus University of Thrace, 68110 Alexandroupolis, Greece
| | - Konstantinos Nikolettos
- Obstetric and Gynecologic Clinic, Medical School, Democritus University of Thrace, 68110 Alexandroupolis, Greece
| | - Iason Psilopatis
- Universitätsklinikum Erlangen-Frauenklinik, Universitätsstraße 21/23, 91054 Erlangen, Germany
| |
Collapse
|
5
|
Wang D, Yin GH. Non-coding RNAs mediated inflammation in breast cancers. Semin Cell Dev Biol 2024; 154:215-220. [PMID: 37244867 DOI: 10.1016/j.semcdb.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/20/2023] [Accepted: 05/20/2023] [Indexed: 05/29/2023]
Abstract
Breast cancer is the major cancer that affects women all over the world. The awareness over past several decades has led to intensive screening and detection as well as successful treatments. Still, the breast cancer mortality is unacceptable and needs to be urgently addressed. Among many factors, inflammation has often been associated with tumorigenesis, including breast cancer. More than a third of all breast cancer deaths are marked by deregulated inflammation. The exact mechanisms are still not completely known but among the many putative factors, the epigenetic changes, particularly those mediated by non-coding RNAs are fascinating. microRNAs, long non-coding RNAs as well as circular RNAs seem to impact the inflammation in breast cancer which further highlights their important regulatory role in breast cancer pathogenesis. Understanding inflammation in breast cancer and its regulation by non-coding RNAs is the primary objective of this review article. We attempt to provide the most complete information on the topic in hopes of opening new areas of research and discoveries.
Collapse
Affiliation(s)
- Dan Wang
- Department of Breast Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Guang-Hao Yin
- Department of Breast Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, China.
| |
Collapse
|
6
|
Adeeb M, Therachiyil L, Moton S, Buddenkotte J, Alam MA, Uddin S, Steinhoff M, Ahmad A. Non-coding RNAs in the epigenetic landscape of cutaneous T-cell lymphoma. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 380:149-171. [PMID: 37657857 DOI: 10.1016/bs.ircmb.2023.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Cutaneous T-cell lymphoma (CTCL) is a type of cancer that affects skin, and is characterized by abnormal T-cells in the skin. Epigenetic changes have been found to play a significant role in the development and progression of CTCL. Recently, non-coding RNAs (ncRNAs), such as microRNAs and long non-coding RNAs, have been identified as key players in the regulation of gene expression in CTCL. These ncRNAs can alter the expression of genes involved in cell growth, differentiation, and apoptosis, leading to the development and progression of CTCL. In this review, we summarize the current understanding of the role of ncRNAs in CTCL, including their involvement in DNA methylation, and other biological processes. We also discuss the types of ncRNAs, their role as oncogenic or tumor suppressive, and their putative use as diagnostic and prognostic biomarkers, based on the emerging evidence from laboratory-based as well as patients-based studies. Moreover, we also present the potential targets and pathways affected by ncRNAs. A better understanding of the complex epigenetic landscape of CTCL, including the role of ncRNAs, has the potential to lead to the development of novel targeted therapies for this disease.
Collapse
Affiliation(s)
- Monaza Adeeb
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Lubna Therachiyil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Safwan Moton
- College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Joerg Buddenkotte
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Majid Ali Alam
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, Qatar; Weill Cornell Medicine-Qatar, Medical School, Doha, Qatar; Department of Dermatology, Weill Cornell Medicine, New York, NY, USA
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, Qatar.
| |
Collapse
|
7
|
Yang S, Wang X, Zhou X, Hou L, Wu J, Zhang W, Li H, Gao C, Sun C. ncRNA-mediated ceRNA regulatory network: Transcriptomic insights into breast cancer progression and treatment strategies. Biomed Pharmacother 2023; 162:114698. [PMID: 37060661 DOI: 10.1016/j.biopha.2023.114698] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/17/2023] Open
Abstract
With the rapid development of next-generation sequencing technology, several studies have shown that ncRNAs can act as competitive endogenous RNAs (ceRNAs) and are involved in various biological processes, such as proliferation, differentiation, apoptosis, and migration of breast cancer (BC) cells, and plays an important role in BC progression as a molecular target for its diagnosis, treatment, prognosis, and differentiation of subtypes and age groups of BC patients. Based on the description of ceRNA-related biological functions, this study screened and sorted the sequencing analysis and experimental verification conclusions of BC-related ceRNAs and found that the ncRNAs mediated ceRNA networks can promote the development of BC by promoting the expression of genes related to BC proliferation, drug resistance, and apoptosis, inducing the production of epithelial-mesenchymal transition (EMT) to promote metastasis and activating cancer-related signaling pathways.
Collapse
Affiliation(s)
- Shu Yang
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| | - Xiaomin Wang
- Special Medicine Department, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xintong Zhou
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lin Hou
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| | - Jibiao Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenfeng Zhang
- School of Traditional Chinese Medicine, Macau University of Science and Technology, Macao Special Administrative Region, China
| | - Huayao Li
- College of Chinese Medicine, Weifang Medical University, Weifang, China
| | - Chundi Gao
- College of Chinese Medicine, Weifang Medical University, Weifang, China
| | - Changgang Sun
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China; College of Chinese Medicine, Weifang Medical University, Weifang, China.
| |
Collapse
|
8
|
MACC1 as a Potential Target for the Treatment and Prevention of Breast Cancer. BIOLOGY 2023; 12:biology12030455. [PMID: 36979146 PMCID: PMC10045309 DOI: 10.3390/biology12030455] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
Metastasis associated in colon cancer 1 (MACC1) is an oncogene first identified in colon cancer. MACC1 has been identified in more than 20 different types of solid cancers. It is a key prognostic biomarker in clinical practice and is involved in recurrence, metastasis, and survival in many types of human cancers. MACC1 is significantly associated with the primary tumor, lymph node metastasis, distant metastasis classification, and clinical staging in patients with breast cancer (BC), and MACC1 overexpression is associated with reduced recurrence-free survival (RFS) and worse overall survival (OS) in patients. In addition, MACC1 is involved in BC progression in multiple ways. MACC1 promotes the immune escape of BC cells by affecting the infiltration of immune cells in the tumor microenvironment. Since the FGD5AS1/miR-497/MACC1 axis inhibits the apoptotic pathway in radiation-resistant BC tissues and cell lines, the MACC1 gene may play an important role in BC resistance to radiation. Since MACC1 is involved in numerous biological processes inside and outside BC cells, it is a key player in the tumor microenvironment. Focusing on MACC1, this article briefly discusses its biological effects, emphasizes its molecular mechanisms and pathways of action, and describes its use in the treatment and prevention of breast cancer.
Collapse
|