1
|
Sufianov A, Agaverdiev M, Mashkin A, Ilyasova T. The functions of immune system-derived miRNAs in cardiovascular diseases. Noncoding RNA Res 2025; 11:91-103. [PMID: 39736852 PMCID: PMC11683256 DOI: 10.1016/j.ncrna.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/02/2024] [Accepted: 11/13/2024] [Indexed: 01/01/2025] Open
Abstract
Cardiovascular diseases (CVD) are the foremost cause of mortality worldwide, with recent advances in immunology underscoring the critical roles of immune cells in their onset and progression. MicroRNAs (miRNAs), particularly those derived from the immune system, have emerged as vital regulators of cellular functions within the cardiovascular landscape. This review focuses on "immuno-miRs," a class of miRNAs that are highly expressed in immune cells, including T cells, B cells, NK cells, neutrophils, and monocytes/macrophages, and their significant role in controlling immune signaling pathways. Highlighting recent studies in human and animal models, this review examines how miRNAs influence both innate and adaptive immune responses and explores their potential as therapeutic targets for CVD. Special emphasis is placed on miRNAs that regulate T cells, suggesting that targeted manipulation of these miRNA pathways could offer new strategies for CVD treatment. As research in cardiovascular immunology advances, this review aims to provide a thorough overview of the potential of immune system-derived miRNAs to revolutionize CVD management and therapy, addressing a major global health challenge.
Collapse
Affiliation(s)
- Albert Sufianov
- Educational and Scientific Institute of Neurosurgery, Рeoples’ Friendship University of Russia (RUDN University), Moscow, Russia
- Department of Neurosurgery, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Murad Agaverdiev
- Bashkir State Medical University, Ufa, Republic of Bashkortostan, 3 Lenin Street, 450008, Russia
| | - Andrey Mashkin
- Educational and Scientific Institute of Neurosurgery, Рeoples’ Friendship University of Russia (RUDN University), Moscow, Russia
- Department of Neurosurgery, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Tatiana Ilyasova
- Bashkir State Medical University, Ufa, Republic of Bashkortostan, 3 Lenin Street, 450008, Russia
| |
Collapse
|
2
|
Cruz-Ramos JA, de la Mora-Jiménez E, Llanes-Cervantes BA, Damián-Mejía MÁ. MicroRNAs in the Mitochondria-Telomere Axis: Novel Insights into Cancer Development and Potential Therapeutic Targets. Genes (Basel) 2025; 16:268. [PMID: 40149420 PMCID: PMC11941991 DOI: 10.3390/genes16030268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/15/2025] [Accepted: 02/21/2025] [Indexed: 03/29/2025] Open
Abstract
The mitochondria-telomere axis is recognized as an important factor in the processes of metabolism, aging and oncogenesis. MicroRNAs (miRNAs) play an essential function in this complex interaction, having an impact on aspects such as cellular homeostasis, oxidative responses and apoptosis. In recent years, miRNAs have been found to be crucial for telomeric stability, as well as for mitochondrial behavior, factors that influence cell proliferation and viability. Furthermore, mitochondrial miRNAs (mitomiRs) are associated with gene expression and the activity of the cGAS/STING pathway activity, linking mitochondrial DNA recognition to immune system responses. Hence, miRNAs maintain a link to mitochondrial biogenesis, metabolic changes in cancer and cellular organelles. This review focuses on the roles of a variety of miRNAs in cancer progression and their potential application as biomarkers or therapeutic agents.
Collapse
Affiliation(s)
- José Alfonso Cruz-Ramos
- Departamento de Clínicas Médicas, Instituto de Patología Infecciosa y Experimental, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- Dirección de Desarrollo Institucional, Instituto Jalisciense de Cancerología, Zapopan 45060, Mexico
| | | | | | - Miguel Ángel Damián-Mejía
- Licenciatura en Médico Cirujano y Partero, Centro Universitario del Sur, Universidad de Guadalajara, Ciudad Guzmán 49000, Mexico;
| |
Collapse
|
3
|
Nai S, Song J, Su W, Liu X. Bidirectional Interplay Among Non-Coding RNAs, the Microbiome, and the Host During Development and Diseases. Genes (Basel) 2025; 16:208. [PMID: 40004537 PMCID: PMC11855195 DOI: 10.3390/genes16020208] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/24/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
It is widely known that the dysregulation of non-coding RNAs (ncRNAs) and dysbiosis of the gut microbiome play significant roles in host development and the progression of various diseases. Emerging evidence has highlighted the bidirectional interplay between ncRNAs and the gut microbiome. This article aims to review the current understanding of the molecular mechanisms underlying the crosstalk between ncRNAs, especially microRNA (miRNA), and the gut microbiome in the context of development and diseases, such as colorectal cancer, inflammatory bowel diseases, neurological disorders, obesity, and cardiovascular disease. Ultimately, this review seeks to provide a foundation for exploring the potential roles of ncRNAs and gut microbiome interactions as biomarkers and therapeutic targets for clinical diagnosis and treatment, such as ncRNA mimics, antisense oligonucleotides, and small-molecule compounds, as well as probiotics, prebiotics, and diets.
Collapse
Affiliation(s)
| | | | | | - Xiaoqian Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (S.N.); (J.S.); (W.S.)
| |
Collapse
|
4
|
Vazquez-Jimenez SI, Gonzalez-Sanchez GD, Guerrero-Velazquez C, Guzman-Flores JM. Interpreting the Function of the IL-23/IL-17 Axis through Bioinformatics. Endocr Metab Immune Disord Drug Targets 2025; 25:429-441. [PMID: 39318016 DOI: 10.2174/0118715303316226240823045641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/21/2024] [Accepted: 07/10/2024] [Indexed: 09/26/2024]
Abstract
INTRODUCTION/OBJECTIVE Bioinformatic analysis is a valuable tool that allows us to collect, archive, analyze, and disseminate biological data for further interpretation. Analysis of the IL-23/IL-17A axis and its receptors will provide us with essential information about their functions, interactions, and relationships with various diseases. This review aims to identify the central genes co-expressed in the IL-23/IL-17A axis and their receptors and to understand their ontology and modifying factors. METHODS We used several databases, including COXPRESdb to obtain the co-expressed genes, ShinyGO and ToppGene platforms to explore gene functional enrichment, and the NetworkAnalyst 3.0 platform for gene expression profiling. RESULTS We found that genes encoding IL-23/IL-17A axis proteins and their receptors mainly respond to microbial components, participate in the inflammatory response, and are primarily associated with inflammatory and autoimmune diseases. In addition, we observed an association of the IL-23/IL-17 axis with Behcet's disease, Graft-versus-host disease, and Hodgkin's disease, although there is no direct evidence of their interaction. CONCLUSION The IL-23/IL-17A axis is associated with several inflammatory and autoimmune pathologies. Therefore, we suggest further research to confirm its role in these pathologies and, if possible, use it as a therapeutic target.
Collapse
Affiliation(s)
- Sonia Isela Vazquez-Jimenez
- Doctorado en Biociencias, Centro Universitario de Los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco, México
- Instituto de Investigación en Odontología, Departamento de clínicas odontológicas integrales, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| | - Grecia Denisse Gonzalez-Sanchez
- Doctorado en Biociencias, Centro Universitario de Los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco, México
| | - Celia Guerrero-Velazquez
- Instituto de Investigación en Odontología, Departamento de clínicas odontológicas integrales, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| | - Juan Manuel Guzman-Flores
- Departamento de Ciencias de la Salud, Centro Universitario de Los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco, México
| |
Collapse
|
5
|
Ranjbarnejad T, Gholaminejad A, Abolhassani H, Sherkat R, Salehi M, Sharifi M. Decreased expression of hsa-miR-142-3p and hsa-miR-155-5p in common variable immunodeficiency and involvement of their target genes and biological pathways. Allergol Immunopathol (Madr) 2025; 53:153-169. [PMID: 39786889 DOI: 10.15586/aei.v53i1.1234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/10/2024] [Indexed: 01/12/2025]
Abstract
Common variable immunodeficiency (CVID) is the most common symptomatic and heterogeneous type of inborn errors of immunity (IEI). However, the pathogenesis process of this disease is often unknown. Epigenetic modifications may be involved in unresolved patients. MiR-142 and miR-155 were identified as immune system modulators and dysregulated in autoimmune and inflammatory diseases. We assessed hsa-miR-142-3p and hsa-miR-155-5p expression in a selected cohort of unresolved CVID cases and identified experimentally validated targets of these miRNAs. We constructed a protein-protein interaction (PPI) network from the common targets of two miRNAs and determined the hub genes. The hub genes' expression was investigated in GEO datasets. Gene ontology (GO) and pathway enrichment analysis were done for target genes. Hsa-miR-142-3p and hsa-miR-155-5p expression were significantly reduced in CVID patients. Evaluation of the PPI network demonstrated some hub genes in which pathogenic mutations have been reported in IEI, and other hub genes directly contribute to immune responses and the pathophysiology of IEI. Expression analysis of hub genes showed that they were significantly dysregulated in validating the CVID cohort. The pathway enrichment analysis indicated the involvement of the FOXO-mediated signaling pathway, TGFβ receptor complex, and VEGFR2-mediated vascular permeability. Considering the dysregulation of hsa-miR-142-3p and hsa-miR-155-5p in CVID and the known role of their target genes in the immune system, their involvement in the pathogenesis of CVID can be suggested.
Collapse
Affiliation(s)
- Tayebeh Ranjbarnejad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Alieh Gholaminejad
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hassan Abolhassani
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Roya Sherkat
- Immunodeficiency Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mansoor Salehi
- Cellular, Molecular and Genetics Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammadreza Sharifi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran;
| |
Collapse
|
6
|
Reyes Soto G, Miranda-Galván V, Uribe-Uribe N, Escobar-Valderrama JM, Alanis-Mendizabal J, Medina-Velázquez LA, Garcia A, Torres Villalobos G, Díaz-Martínez F, Montiel de la Rosa P, Bravo-Reyna C, Cervantes Zentella AG, Vanegas Cerna GJ, Nikolenko V, Cherubin T, Rosario Rosario A, Castillo-Rangel C, Furcal Aybar MA, Wisam Alsaed L, Encarnacion Ramirez MDJ. Standardization of a Model of Vertebral Metastasis of Breast Cancer in CD1/Nu/Nu Mice. Cureus 2025; 17:e77291. [PMID: 39931605 PMCID: PMC11809943 DOI: 10.7759/cureus.77291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2025] [Indexed: 02/13/2025] Open
Abstract
INTRODUCTION Breast cancer is the leading cause of cancer-related death in Mexico, with high mortality associated with spinal bone metastasis. We propose to standardize a murine model of bone metastasis to study and understand the tumor microenvironment. MATERIALS AND METHODS An experimental, prospective, longitudinal study was conducted using 18 CD1/Nu/Nu 30g nude mice. Two cell lines, MCF-7 and 4T1, were inoculated, clinical follow-up was performed, and biopsy samples were obtained for histopathological evaluation. RESULTS Histopathological evaluation of models inoculated with the MCF-7 cell line showed no tumor development, while inoculation with the 4T1 cell line resulted in tumor development, as evidenced by PET-CT and histopathology, using 5,000 and 1,000 cells, respectively. CONCLUSIONS The use of this model is proposed for studying the clinical, molecular, and prognostic aspects of breast cancer progression by inoculating 1,000 cells of the 4T1 cell line.
Collapse
Affiliation(s)
| | - Vladimir Miranda-Galván
- Experimental Surgery, Instituto Nacional De Ciencias Médicas Y Nutrición Salvador Zubirán, Mexico City, MEX
| | - Norma Uribe-Uribe
- Pathology, Instituto Nacional De Ciencias Médicas Y Nutrición Salvador Zubirán, Mexico City, MEX
| | | | - Jorge Alanis-Mendizabal
- Experimental Surgery, Instituto Nacional De Ciencias Médicas Y Nutrición Salvador Zubirán, Mexico City, MEX
| | | | - Alejandro Garcia
- Biochemistry, Instituto Nacional De Ciencias Médicas Y Nutrición Salvador Zubirán, Mexico City, MEX
| | - Gonzalo Torres Villalobos
- Experimental Surgery, Instituto Nacional De Ciencias Médicas Y Nutrición Salvador Zubirán, Mexico City, MEX
| | - Fabian Díaz-Martínez
- Physiology and Cell Development, Instituto Nacional De Perinatología, Mexico City, MEX
| | - Paola Montiel de la Rosa
- Experimental Surgery, Instituto Nacional De Ciencias Médicas Y Nutrición Salvador Zubirán, Mexico City, MEX
| | - Carlos Bravo-Reyna
- Experimental Surgery, Instituto Nacional De Ciencias Médicas Y Nutrición Salvador Zubirán, Mexico City, MEX
| | | | | | - Vladimir Nikolenko
- Human Anatomy and Histology, N.V. Sklifosovskiy Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, RUS
| | | | | | - Carlos Castillo-Rangel
- Neurosurgery, Hospital Regional 1° De Octubre, Instituto De Seguridad Y Servicios Sociales de Los Trabajadores Del Estado, Mexico City, MEX
| | - Mario Antonio Furcal Aybar
- Oncological Surgery, Instituto Nacional Del Cáncer Rosa Emilia Sánchez Pérez De Tavares (INCART), Santo Domingo, DOM
| | | | - Manuel De Jesus Encarnacion Ramirez
- Neurosurgery, Russian People's Friendship University, Moscow, RUS
- Human Anatomy and Histology, N.V. Sklifosovskiy Institute of Clinical Medicine, Moscow, RUS
| |
Collapse
|
7
|
Liu Z, Lv S, Qin Z, Shu J, Zhu F, Luo Y, Fan L, Chen M, Bo H, Liu L. LINC00470 promotes malignant progression of testicular germ cell tumors. Mol Biol Rep 2024; 51:1152. [PMID: 39541046 DOI: 10.1007/s11033-024-10083-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Testicular germ cell tumor (TGCT) is a common malignant tumor in adolescents. Now, many long non-coding RNAs (LncRNAs) have been found to have an important function in TGCT. LINC00470 is specifically and highly expressed in TGCT, however, there is still no definite information concerning its role and underlying mechanism in TGCT. The purpose of this research was to look into the involvement of LINC00470 in TGCT and its intrinsic mechanism. METHODS AND RESULTS UCSC and GEPIA2 databases were used to analyze the expression of LINC00470, and the BEST website was used to perform GSEA enrichment analysis, immune infiltration analysis, and drug susceptibility analysis. SiRNA transfection was used to silence LINC00470 in TCAM-2 and NCCIT cells. Clone formation and Transwell assays were performed in TGCT cells to confirm the effects of LINC00470 on clone formation, migration, and invasion. Western Blot was performed to determine the expression of proteins related to the EMT and AKT signaling pathways. LINC00470 was specifically highly expressed in TGCT, and played a role in promoting tumor cell clone formation and cell metastasis by affecting the TGF-β and PI3K-AKT-mTOR signaling pathways to regulate the epithelial-mesenchymal transition (EMT) process; LINC00470 may also play a pro-tumor role by negatively regulating immune infiltration; in addition, the expression of LINC00470 was negatively correlated with the chemosensitivity of cisplatin in TGCT patients. CONCLUSIONS LINC00470 may play a significant role in the etiology and metastasis of TGCT through EMT and AKT-mediated signaling pathways.
Collapse
Affiliation(s)
- Zhizhong Liu
- Department of Urology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Shanshan Lv
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zailong Qin
- Laboratory of Genetics and Metabolism, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Jinhui Shu
- Reproductive Medicine Center, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Fang Zhu
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Yanwei Luo
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Liqing Fan
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China
| | - Mengqian Chen
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Hao Bo
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China.
| | - Lvjun Liu
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Center of Reproductive Medicine, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, Hunan, China.
| |
Collapse
|
8
|
Alhajlah S. Participation of TLRs in cancer immunopathogenesis and drug resistance via interacting with immunological and/or non-immunological signaling pathways as well as lncRNAs. Int Immunopharmacol 2024; 140:112764. [PMID: 39079348 DOI: 10.1016/j.intimp.2024.112764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/06/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024]
Abstract
Toll-like receptors (TLRs) have a convoluted role in cancer even though they are crucial to the immune system. By bridging the innate immune system and cancer, TLRs have a very complex impact on the formation of tumors and the effectiveness of anti-cancer treatments. TLR signaling links the innate and adaptive immune systems and initiates direct pathogen eradication. In cancer immunopathogenesis and treatment resistance, long non-coding RNAs (lncRNAs) modify TLR signaling linkages with immunological and non-immunological pathways. We identified lncRNAs that positively and negatively control TLR signaling, impacting immunological response and drug sensitivity. These results highlight the complex interactions between long non-coding RNAs and TLRs that influence the start of cancer and its response to treatment. Targeting specific lncRNAs is a practical way to control TLR signaling and perhaps enhance anti-tumor immunity while overcoming medication resistance. We provide a framework for developing novel immunotherapeutic regimens and customized medicine approaches for cancer treatment. The exact mechanisms by which lncRNAs regulate TLR signaling pathways should be defined by further research, and these findings should be validated in clinical situations. This finding makes future research of lncRNA-based drugs in combination with existing cancer treatments feasible.
Collapse
Affiliation(s)
- Sharif Alhajlah
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia.
| |
Collapse
|
9
|
Díaz CR, Hernández-Huerta MT, Mayoral LPC, Villegas MEA, Zenteno E, Cruz MM, Mayoral EPC, del Socorro Pina Canseco M, Andrade GM, Castellanos MÁ, Matías Salvador JM, Cruz Parada E, Martínez Barras A, Cruz Fernández JN, Scott-Algara D, Pérez-Campos E. Non-Coding RNAs and Innate Immune Responses in Cancer. Biomedicines 2024; 12:2072. [PMID: 39335585 PMCID: PMC11429077 DOI: 10.3390/biomedicines12092072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/27/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Non-coding RNAs (ncRNAs) and the innate immune system are closely related, acting as defense mechanisms and regulating gene expression and innate immunity. Both are modulators in the initiation, development and progression of cancer. We aimed to review the major types of ncRNAs, including small interfering RNAs (siRNAs), microRNAs (miRNAs), piwi-interacting RNAs (piRNAs), and long non-coding RNAs (lncRNAs), with a focus on cancer, innate immunity, and inflammation. We found that ncRNAs are closely related to innate immunity, epigenetics, chronic inflammation, and cancer and share properties such as inducibility, specificity, memory, and transfer. These similarities and interrelationships suggest that ncRNAs and modulators of trained immunity, together with the control of chronic inflammation, can be combined to develop novel therapeutic approaches for personalized cancer treatment. In conclusion, the close relationship between ncRNAs, the innate immune system, and inflammation highlights their importance in cancer pathways and their potential as targets for novel therapeutic strategies.
Collapse
Affiliation(s)
- Carlos Romero Díaz
- Tecnológico Nacional de México/IT Oaxaca, Oaxaca 68030, Mexico; (C.R.D.); (M.E.A.V.); (M.M.C.); (E.C.P.)
| | - María Teresa Hernández-Huerta
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCyT), Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca (UABJO), Oaxaca 68020, Mexico;
| | - Laura Pérez-Campos Mayoral
- Centro de Investigación, Facultad de Medicina UNAM-UABJO, Universidad Autónoma “Benito Juárez” de Oaxaca (UABJO), Oaxaca 68020, Mexico; (L.P.-C.M.); (E.P.-C.M.); (M.d.S.P.C.); (G.M.A.); (J.N.C.F.)
| | | | - Edgar Zenteno
- Facultad de Medicina, Universidad Nacional Autónoma de Mexico, Ciudad de México 04510, Mexico; (E.Z.); (M.Á.C.)
| | - Margarito Martínez Cruz
- Tecnológico Nacional de México/IT Oaxaca, Oaxaca 68030, Mexico; (C.R.D.); (M.E.A.V.); (M.M.C.); (E.C.P.)
| | - Eduardo Pérez-Campos Mayoral
- Centro de Investigación, Facultad de Medicina UNAM-UABJO, Universidad Autónoma “Benito Juárez” de Oaxaca (UABJO), Oaxaca 68020, Mexico; (L.P.-C.M.); (E.P.-C.M.); (M.d.S.P.C.); (G.M.A.); (J.N.C.F.)
| | - María del Socorro Pina Canseco
- Centro de Investigación, Facultad de Medicina UNAM-UABJO, Universidad Autónoma “Benito Juárez” de Oaxaca (UABJO), Oaxaca 68020, Mexico; (L.P.-C.M.); (E.P.-C.M.); (M.d.S.P.C.); (G.M.A.); (J.N.C.F.)
| | - Gabriel Mayoral Andrade
- Centro de Investigación, Facultad de Medicina UNAM-UABJO, Universidad Autónoma “Benito Juárez” de Oaxaca (UABJO), Oaxaca 68020, Mexico; (L.P.-C.M.); (E.P.-C.M.); (M.d.S.P.C.); (G.M.A.); (J.N.C.F.)
| | - Manuel Ángeles Castellanos
- Facultad de Medicina, Universidad Nacional Autónoma de Mexico, Ciudad de México 04510, Mexico; (E.Z.); (M.Á.C.)
| | | | - Eli Cruz Parada
- Tecnológico Nacional de México/IT Oaxaca, Oaxaca 68030, Mexico; (C.R.D.); (M.E.A.V.); (M.M.C.); (E.C.P.)
| | | | - Jaydi Nora Cruz Fernández
- Centro de Investigación, Facultad de Medicina UNAM-UABJO, Universidad Autónoma “Benito Juárez” de Oaxaca (UABJO), Oaxaca 68020, Mexico; (L.P.-C.M.); (E.P.-C.M.); (M.d.S.P.C.); (G.M.A.); (J.N.C.F.)
| | - Daniel Scott-Algara
- Unité de Biologie Cellulaire des Lymphocytes and Direction of International Affairs, Institut Pasteur, 75015 Paris, France
| | - Eduardo Pérez-Campos
- Tecnológico Nacional de México/IT Oaxaca, Oaxaca 68030, Mexico; (C.R.D.); (M.E.A.V.); (M.M.C.); (E.C.P.)
- Laboratorio de Patología Clínica “Dr. Eduardo Pérez Ortega”, Oaxaca 68000, Mexico
| |
Collapse
|
10
|
Rathore D, Marino MJ, Issara-Amphorn J, Yoon SH, Manes NP, Nita-Lazar A. Lipopolysaccharide Regulates the Macrophage RNA-Binding Proteome. J Proteome Res 2024; 23:3280-3293. [PMID: 38527097 PMCID: PMC11296930 DOI: 10.1021/acs.jproteome.3c00838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
RNA-protein interactions within cellular signaling pathways have significant modulatory effects on RNA binding proteins' (RBPs') effector functions. During the innate immune response, specific RNA-protein interactions have been reported as a regulatory layer of post-transcriptional control. We investigated changes in the RNA-bound proteome of immortalized mouse macrophages (IMM) following treatment with lipopolysaccharide (LPS). Stable isotope labeling by amino acids in cell culture (SILAC) of cells followed by unbiased purification of RNP complexes at two time points after LPS stimulation and bottom-up proteomic analysis by LC-MS/MS resulted in a set of significantly affected RBPs. Global RNA sequencing and LFQ proteomics were used to characterize the correlation of transcript and protein abundance changes in response to LPS at different time points with changes in protein-RNA binding. Il1α, MARCKS, and ACOD1 were noted as RBP candidates involved in innate immune signaling. The binding sites of the RBP and RNA conjugates at amino acid resolution were investigated by digesting the cross-linked oligonucleotide from peptides remaining after elution using Nuclease P1. The combined data sets provide directions for further studies of innate immune signaling regulation by RBP interactions with different classes of RNA.
Collapse
Affiliation(s)
- Deepali Rathore
- Functional Cellular Networks Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Matthew J. Marino
- Functional Cellular Networks Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Jiraphorn Issara-Amphorn
- Functional Cellular Networks Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Sung Hwan Yoon
- Functional Cellular Networks Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Nathan P. Manes
- Functional Cellular Networks Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Aleksandra Nita-Lazar
- Functional Cellular Networks Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
11
|
Kronstein-Wiedemann R, Künzel SR, Thiel J, Tonn T. Role of MiRNA in the Regulation of Blood Group Expression. Transfus Med Hemother 2024; 51:237-251. [PMID: 39135851 PMCID: PMC11318968 DOI: 10.1159/000538866] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/11/2024] [Indexed: 08/15/2024] Open
Abstract
Background MicroRNAs (miRNAs) are small, endogenous non-coding RNA molecules that inhibit gene expression through either destabilization of the target mRNA or translational repression. MiRNAs recognize target sites, most commonly found in the 3'-untranslated regions of cognate mRNAs. This review aims to provide a state-of-the-art overview of the role of miRNAs in the regulation of major blood group antigens such as ABH as well as cancer-specific glycans. Summary Besides their known roles in the control of developmental processes, proliferation, apoptosis, and carcinogenesis, miRNAs have recently been identified to play a regulatory role during erythropoiesis and blood group antigen expression. Since only little is known about the function of the red cell membrane proteins carrying blood group antigens, it is of great interest to shed light on the regulatory mechanisms of blood group gene expression. Some carrier proteins of blood group antigens are not restricted to red blood cells and are widely expressed in other bodily fluids and tissues and quite a few play a crucial role in tumor cells, as either tumor suppressors or promoters. Key Message All available data point at a tremendous physiological as well as pathophysiological relevance of miRNAs in context of blood group regulation. Furthermore, miRNAs are involved in the regulation of pleiotropic genetic pathways such as hematopoiesis and tumorigenesis and thus have to be studied in future research on this subject.
Collapse
Affiliation(s)
- Romy Kronstein-Wiedemann
- Laboratory for Experimental Transfusion Medicine, Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Red Cross Blood Donation Service North-East, Institute for Transfusion Medicine, Dresden, Germany
| | - Stephan R. Künzel
- Laboratory for Experimental Transfusion Medicine, Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Red Cross Blood Donation Service North-East, Institute for Transfusion Medicine, Dresden, Germany
| | - Jessica Thiel
- Laboratory for Experimental Transfusion Medicine, Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Red Cross Blood Donation Service North-East, Institute for Transfusion Medicine, Dresden, Germany
| | - Torsten Tonn
- Laboratory for Experimental Transfusion Medicine, Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Red Cross Blood Donation Service North-East, Institute for Transfusion Medicine, Dresden, Germany
| |
Collapse
|
12
|
Zheng L, He JJ, Zhao KX, Pan YF, Liu WX. Expression of overall survival-EMT-immune cell infiltration genes predict the prognosis of glioma. Noncoding RNA Res 2024; 9:407-420. [PMID: 38511063 PMCID: PMC10950607 DOI: 10.1016/j.ncrna.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 03/22/2024] Open
Abstract
This study investigates the crucial role of immune- and epithelial-mesenchymal transition (EMT)-associated genes and non-coding RNAs in glioma development and diagnosis, given the challenging 5-year survival rates associated with this prevalent CNS malignant tumor. Clinical and RNA data from glioma patients were meticulously gathered from CGGA databases, and EMT-related genes were sourced from dbEMT2.0, while immune-related genes were obtained from MSigDB. Employing consensus clustering, novel molecular subgroups were identified. Subsequent analyses, including ESTIMATE, TIMER, and MCP counter, provided insights into the tumor microenvironment (TIME) and immune status. Functional studies, embracing GO, KEGG, GSVA, and GSEA analyses, unraveled the underlying mechanisms governing these molecular subgroups. Utilizing the LASSO algorithm and multivariate Cox regression, a prognostic risk model was crafted. The study unveiled two distinct molecular subgroups with significantly disparate survival outcomes. A more favorable prognosis was linked to low immune scores, high tumor purity, and an abundance of immune infiltrating cells with differential expression of non-coding RNAs, including miRNAs. Functional analyses illuminated enrichment of immune- and EMT-associated pathways in differentially expressed genes and non-coding RNAs between these subgroups. GSVA and GSEA analyses hinted at abnormal EMT status potentially contributing to glioma-associated immune disorders. The risk model, centered on OS-EMT-ICI genes, exhibited promise in accurately predicting survival in glioma. Additionally, a nomogram integrating the risk model with clinical characteristics demonstrated notable accuracy in prognostic predictions for glioma patients. In conclusion, OS-EMT-ICI gene and non-coding RNA expression emerges as a valuable indicator intricately linked to immune microenvironment dysregulation, offering a robust tool for precise prognosis prediction in glioma patients within the OBMRC framework.
Collapse
Affiliation(s)
- Lei Zheng
- Department of Breast Surgery, Zhejiang Hospital, Hangzhou, Zhejiang Province, 310000, PR China
| | - Jin-jing He
- Department of Operating Room, Zhejiang Hospital, Hangzhou, Zhejiang Province, 310000, PR China
| | - Kai-xiang Zhao
- Department of Thoracic Surgery, Zhejiang Hospital, Hangzhou, Zhejiang Province, 310000, PR China
| | - Ya-fei Pan
- Department of Anesthesiology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang Province, 310000, PR China
| | - Wei-xian Liu
- Department of Neurosurgery, Zhejiang Hospital, Hangzhou, Zhejiang Province, 310000, PR China
| |
Collapse
|
13
|
Zhou G, Zhang L, Shao S. The application of MARCO for immune regulation and treatment. Mol Biol Rep 2024; 51:246. [PMID: 38300385 DOI: 10.1007/s11033-023-09201-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/30/2023] [Indexed: 02/02/2024]
Abstract
Macrophage receptor with collagen structure (MARCO) is a member of scavenger receptor class A (SR-A) and shares structural and functional similarities with SR-A1. In recent years, many studies have shown that MARCO can trigger an immune response and has therapeutic potential as a target for immunotherapy. Studies have shown that alterations in MARCO expression following pathogen infection cause changes in the functions of innate and adaptive immune cells, including macrophages, dendritic cells, B cells, and T cells, affecting the body's immune response to invading pathogens; thus, MARCO plays a crucial role in triggering the immune response, bridging innate and adaptive immunity, and eliminating pathogens. This paper is a comprehensive summary of the recent research on MARCO. This review focuses on the multiple functions of MARCO, including adhesion, migration, phagocytosis, and cytokine secretion with special emphasis on the complex interactions between MARCO and various types of cells involved in the immune response, as well as possible immune-related mechanisms. In summary, in this review, we discuss the structure and function of MARCO and its role in the immune response and highlight the therapeutic potential of MARCO as a target for immunotherapy. We hope that this review provides a theoretical basis for future research on MARCO.
Collapse
Affiliation(s)
- Guiyuan Zhou
- Department of Histology and Embryology, Hebei Medical University, No. 361, Zhongshan East Road, Chang'an District, Shijiazhuang, 050017, China
| | - Lei Zhang
- Shijiazhuang Vocational College of City Economy, No. 12, Wenming Road, Economic and Technological Development Zone, Shijiazhuang, 050017, China.
| | - Suxia Shao
- Department of Histology and Embryology, Hebei Medical University, No. 361, Zhongshan East Road, Chang'an District, Shijiazhuang, 050017, China.
| |
Collapse
|
14
|
Seyhan AA. Trials and Tribulations of MicroRNA Therapeutics. Int J Mol Sci 2024; 25:1469. [PMID: 38338746 PMCID: PMC10855871 DOI: 10.3390/ijms25031469] [Citation(s) in RCA: 102] [Impact Index Per Article: 102.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
The discovery of the link between microRNAs (miRNAs) and a myriad of human diseases, particularly various cancer types, has generated significant interest in exploring their potential as a novel class of drugs. This has led to substantial investments in interdisciplinary research fields such as biology, chemistry, and medical science for the development of miRNA-based therapies. Furthermore, the recent global success of SARS-CoV-2 mRNA vaccines against the COVID-19 pandemic has further revitalized interest in RNA-based immunotherapies, including miRNA-based approaches to cancer treatment. Consequently, RNA therapeutics have emerged as highly adaptable and modular options for cancer therapy. Moreover, advancements in RNA chemistry and delivery methods have been pivotal in shaping the landscape of RNA-based immunotherapy, including miRNA-based approaches. Consequently, the biotechnology and pharmaceutical industry has witnessed a resurgence of interest in incorporating RNA-based immunotherapies and miRNA therapeutics into their development programs. Despite substantial progress in preclinical research, the field of miRNA-based therapeutics remains in its early stages, with only a few progressing to clinical development, none reaching phase III clinical trials or being approved by the US Food and Drug Administration (FDA), and several facing termination due to toxicity issues. These setbacks highlight existing challenges that must be addressed for the broad clinical application of miRNA-based therapeutics. Key challenges include establishing miRNA sensitivity, specificity, and selectivity towards their intended targets, mitigating immunogenic reactions and off-target effects, developing enhanced methods for targeted delivery, and determining optimal dosing for therapeutic efficacy while minimizing side effects. Additionally, the limited understanding of the precise functions of miRNAs limits their clinical utilization. Moreover, for miRNAs to be viable for cancer treatment, they must be technically and economically feasible for the widespread adoption of RNA therapies. As a result, a thorough risk evaluation of miRNA therapeutics is crucial to minimize off-target effects, prevent overdosing, and address various other issues. Nevertheless, the therapeutic potential of miRNAs for various diseases is evident, and future investigations are essential to determine their applicability in clinical settings.
Collapse
Affiliation(s)
- Attila A. Seyhan
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA;
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI 02912, USA
- Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
| |
Collapse
|
15
|
Chen Y, Wang Z, Wu C, Li H, Qian H, Wang M, Wu P, Guo X, Zhang Z. Identification of long noncoding RNAs of silkworm at the early stage of Bombyx mori bidensovirus infection. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 115:e22082. [PMID: 38288492 DOI: 10.1002/arch.22082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/23/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024]
Abstract
Bombyx mori bidensovirus (BmBDV) is one of the most important pathogens of silkworm. It mainly infects midgut cells of silkworm and causes losses to the sericulture industry. Long noncoding RNAs (lncRNAs) have been reported to play an important role in the regulation of antiviral immune response in silkworm. To explore whether lncRNAs are involved in BmBDV infection and immune response of silkworm, we performed a comparative transcriptome analysis to identify the lncRNAs and mRNAs between the BmBDV infected and noninfected silkworm larvae at the early stage. A total of 16,069 genes and 974 candidate lncRNAs were identified, among which 142 messenger RNA (mRNAs) and four lncRNAs were differentially expressed (DE). Target gene prediction revealed that 142 DEmRNAs were coexpressed with four DElncRNAs, suggesting that the expression of mRNA is mainly affected through trans-regulation activities. A regulatory network of DElncRNAs and DEmRNAs was constructed, showing that many genes targeted by different DElncRNAs are involved in metabolism and immunity, which implies that these genes and lncRNAs play an important role in the replication of BmBDV. Our results will help us to improve our understanding of lncRNA-mediated regulatory roles in BmBDV infection, providing a new perspective for further exploring the interaction between host and BmBDV.
Collapse
Affiliation(s)
- Yeping Chen
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Zihe Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Chengyue Wu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Hao Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Heying Qian
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Mengdong Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Ping Wu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Xijie Guo
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Zhendong Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| |
Collapse
|
16
|
Pagoni M, Cava C, Sideris DC, Avgeris M, Zoumpourlis V, Michalopoulos I, Drakoulis N. miRNA-Based Technologies in Cancer Therapy. J Pers Med 2023; 13:1586. [PMID: 38003902 PMCID: PMC10672431 DOI: 10.3390/jpm13111586] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/02/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
The discovery of therapeutic miRNAs is one of the most exciting challenges for pharmaceutical companies. Since the first miRNA was discovered in 1993, our knowledge of miRNA biology has grown considerably. Many studies have demonstrated that miRNA expression is dysregulated in many diseases, making them appealing tools for novel therapeutic approaches. This review aims to discuss miRNA biogenesis and function, as well as highlight strategies for delivering miRNA agents, presenting viral, non-viral, and exosomic delivery as therapeutic approaches for different cancer types. We also consider the therapeutic role of microRNA-mediated drug repurposing in cancer therapy.
Collapse
Affiliation(s)
- Maria Pagoni
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Claudia Cava
- Department of Science, Technology and Society, University School for Advanced Studies IUSS Pavia, 27100 Pavia, Italy;
| | - Diamantis C. Sideris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece;
| | - Margaritis Avgeris
- Laboratory of Clinical Biochemistry—Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, “P. & A. Kyriakou” Children’s Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Vassilios Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece;
| | - Ioannis Michalopoulos
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece;
| | - Nikolaos Drakoulis
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15701 Athens, Greece
| |
Collapse
|
17
|
Seyhan AA. Circulating microRNAs as Potential Biomarkers in Pancreatic Cancer-Advances and Challenges. Int J Mol Sci 2023; 24:13340. [PMID: 37686149 PMCID: PMC10488102 DOI: 10.3390/ijms241713340] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
There is an urgent unmet need for robust and reliable biomarkers for early diagnosis, prognosis, and prediction of response to specific treatments of many aggressive and deadly cancers, such as pancreatic cancer, and liquid biopsy-based miRNA profiling has the potential for this. MiRNAs are a subset of non-coding RNAs that regulate the expression of a multitude of genes post-transcriptionally and thus are potential diagnostic, prognostic, and predictive biomarkers and have also emerged as potential therapeutics. Because miRNAs are involved in the post-transcriptional regulation of their target mRNAs via repressing gene expression, defects in miRNA biogenesis pathway and miRNA expression perturb the expression of a multitude of oncogenic or tumor-suppressive genes that are involved in the pathogenesis of various cancers. As such, numerous miRNAs have been identified to be downregulated or upregulated in many cancers, functioning as either oncomes or oncosuppressor miRs. Moreover, dysregulation of miRNA biogenesis pathways can also change miRNA expression and function in cancer. Profiling of dysregulated miRNAs in pancreatic cancer has been shown to correlate with disease diagnosis, indicate optimal treatment options and predict response to a specific therapy. Specific miRNA signatures can track the stages of pancreatic cancer and hold potential as diagnostic, prognostic, and predictive markers, as well as therapeutics such as miRNA mimics and miRNA inhibitors (antagomirs). Furthermore, identified specific miRNAs and genes they regulate in pancreatic cancer along with downstream pathways can be used as potential therapeutic targets. However, a limited understanding and validation of the specific roles of miRNAs, lack of tissue specificity, methodological, technical, or analytical reproducibility, harmonization of miRNA isolation and quantification methods, the use of standard operating procedures, and the availability of automated and standardized assays to improve reproducibility between independent studies limit bench-to-bedside translation of the miRNA biomarkers for clinical applications. Here I review recent findings on miRNAs in pancreatic cancer pathogenesis and their potential as diagnostic, prognostic, and predictive markers.
Collapse
Affiliation(s)
- Attila A. Seyhan
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA;
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI 02912, USA
- Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
| |
Collapse
|