1
|
Abstract
Modern transcranial magnetic resonance-guided focused ultrasound is an incisionless, ablative treatment modality for a growing number of neurologic disorders. This procedure selectively destroys a targeted volume of cerebral tissue and relies on real-time MR thermography to monitor tissue temperatures. By focusing on a submillimeter target through a hemispheric phased array of transducers, ultrasound waves pass through the skull and avoid overheating and brain damage. High-intensity focused ultrasound techniques are increasingly used to create safe and effective stereotactic ablations for medication-refractory movement and other neurologic and psychiatric disorders.
Collapse
Affiliation(s)
- Jonathan Pomeraniec
- Department of Neurosurgery, University of Virginia, School of Medicine, PO Box 800212, Charlottesville, VA 22908, USA
| | - W Jeffrey Elias
- Department of Neurosurgery, University of Virginia, School of Medicine, PO Box 800212, Charlottesville, VA 22908, USA.
| | - Shayan Moosa
- Department of Neurosurgery, University of Virginia, School of Medicine, PO Box 800212, Charlottesville, VA 22908, USA
| |
Collapse
|
2
|
di Biase L, Falato E, Caminiti ML, Pecoraro PM, Narducci F, Di Lazzaro V. Focused Ultrasound (FUS) for Chronic Pain Management: Approved and Potential Applications. Neurol Res Int 2021; 2021:8438498. [PMID: 34258062 PMCID: PMC8261174 DOI: 10.1155/2021/8438498] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/19/2021] [Indexed: 02/08/2023] Open
Abstract
Chronic pain is one of the leading causes of disability and disease burden worldwide, accounting for a prevalence between 6.9% and 10% in the general population. Pharmacotherapy alone results ineffective in about 70-60% of patients in terms of a satisfactory degree of pain relief. Focused ultrasound is a promising tool for chronic pain management, being approved for thalamotomy in chronic neuropathic pain and for bone metastases-related pain treatment. FUS is a noninvasive technique for neuromodulation and for tissue ablation that can be applied to several tissues. Transcranial FUS (tFUS) can lead to opposite biological effects, depending on stimulation parameters: from reversible neural activity facilitation or suppression (low-intensity, low-frequency ultrasound, LILFUS) to irreversible tissue ablation (high-intensity focused ultrasounds, HIFU). HIFU is approved for thalamotomy in neuropathic pain at the central nervous system level and for the treatment of facet joint osteoarthritis at the peripheral level. Potential applications include HIFU at the spinal cord level for selected cases of refractory chronic neuropathic pain, knee osteoarthritis, sacroiliac joint disease, intervertebral disc nucleolysis, phantom limb, and ablation of peripheral nerves. FUS at nonablative dosage, LILFUS, has potential reversible and tissue-selective effects. FUS applications at nonablative doses currently are at a research stage. The main potential applications include targeted drug and gene delivery through the Blood-Brain Barrier, assessment of pain thresholds and study of pain, and reversible peripheral nerve conduction block. The aim of the present review is to describe the approved and potential applications of the focused ultrasound technology in the field of chronic pain management.
Collapse
Affiliation(s)
- Lazzaro di Biase
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, Rome 00128, Italy
- Brain Innovations Lab, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, Rome 00128, Italy
| | - Emma Falato
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, Rome 00128, Italy
| | - Maria Letizia Caminiti
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, Rome 00128, Italy
| | - Pasquale Maria Pecoraro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, Rome 00128, Italy
| | - Flavia Narducci
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, Rome 00128, Italy
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, Rome 00128, Italy
| |
Collapse
|
3
|
Franzini A, Moosa S, Prada F, Elias WJ. Ultrasound Ablation in Neurosurgery: Current Clinical Applications and Future Perspectives. Neurosurgery 2020; 87:1-10. [PMID: 31745558 DOI: 10.1093/neuros/nyz407] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 07/21/2019] [Indexed: 11/14/2022] Open
Abstract
The concept of focusing high-intensity ultrasound beams for the purpose of cerebral ablation has interested neurosurgeons for more than 70 yr. However, the need for a craniectomy or a cranial acoustic window hindered the clinical diffusion of this technique. Recent technological advances, including the development of phased-array transducers and magnetic resonance imaging technology, have rekindled the interest in ultrasound for ablative brain surgery and have led to the development of the transcranial magnetic resonance-guided focused ultrasound (MRgFUS) thermal ablation procedure. In the last decade, this method has become increasingly popular, and its clinical applications are broadening. Despite the demonstrated efficacy of MRgFUS, transcranial thermal ablation using ultrasound is limited in that it can target exclusively the central region of the brain where the multiple acoustic beams are most optimally focused. On the contrary, lesioning of the cortex, the superficial subcortical areas, and regions close to the skull base is not possible with the limited treatment envelope of current phased-array transducers. Therefore, new ultrasound ablative techniques, which are not based on thermal mechanisms, have been developed and tested in experimental settings. This review describes the mechanisms by which these novel, nonthermal ablative techniques are based and also presents the current clinical applications of MRgFUS thermal ablation.
Collapse
Affiliation(s)
- Andrea Franzini
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia.,Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Shayan Moosa
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia
| | - Francesco Prada
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia.,Focused Ultrasound Foundation, Charlottesville, Virginia
| | - W Jeffrey Elias
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia
| |
Collapse
|
4
|
Berger A, Hochberg U, Zegerman A, Tellem R, Strauss I. Neurosurgical ablative procedures for intractable cancer pain. J Neurosurg 2020; 133:144-151. [PMID: 31075782 DOI: 10.3171/2019.2.jns183159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/22/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Cancer patients suffering from severe refractory pain may benefit from targeted ablative neurosurgical procedures aimed to disconnect pain pathways in the spinal cord or the brain. These patients often present with a plethora of medical problems requiring careful consideration before surgical interventions. The authors present their experience at an interdisciplinary clinic aimed to facilitate appropriate patient selection for neurosurgical procedures, and the outcome of these interventions. METHODS This study was a retrospective review of all patients who underwent neurosurgical interventions for cancer pain in the authors' hospital between March 2015 and April 2018. All patients had advanced metastatic cancer with limited life expectancy and suffered from intractable oncological pain. RESULTS Sixty patients underwent surgery during the study period. Forty-three patients with localized pain underwent disconnection of the spinal pain pathways: 34 percutaneous-cervical and 5 open-thoracic cordotomies, 2 stereotactic mesencephalotomies, and 2 midline myelotomies. Thirty-nine of 42 patients (93%) who completed these procedures had excellent immediate postoperative pain relief. At 1 month the improvement was maintained in 30/36 patients (83%) available for follow-up. There was 1 case of hemiparesis.Twenty patients with diffuse pain underwent stereotactic cingulotomy. Nineteen of these patients reported substantial pain relief immediately after the operation. At 1 month good pain relief was maintained in 13/17 patients (76%) available for follow-up, and good pain relief was also found at 3 months in 7/11 patients (64%). There was no major morbidity or mortality. CONCLUSIONS With careful patient selection and tailoring of the appropriate procedure to the patient's pain syndrome, the authors' experience indicates that neurosurgical procedures are safe and effective in alleviating suffering in patients with intractable cancer pain.
Collapse
Affiliation(s)
- Assaf Berger
- 1Department of Neurosurgery
- 6Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Uri Hochberg
- 4Institute of Pain Medicine; and
- 6Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Alexander Zegerman
- 5Division of Anesthesiology, Tel Aviv Medical Center; and
- 6Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Rotem Tellem
- 3The Palliative Care Service
- 6Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ido Strauss
- 1Department of Neurosurgery
- 2Neuromodulation Unit
- 6Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
5
|
Franzini A, Moosa S, Servello D, Small I, DiMeco F, Xu Z, Elias WJ, Franzini A, Prada F. Ablative brain surgery: an overview. Int J Hyperthermia 2020; 36:64-80. [PMID: 31537157 DOI: 10.1080/02656736.2019.1616833] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background: Ablative therapies have been used for the treatment of neurological disorders for many years. They have been used both for creating therapeutic lesions within dysfunctional brain circuits and to destroy intracranial tumors and space-occupying masses. Despite the introduction of new effective drugs and neuromodulative techniques, which became more popular and subsequently caused brain ablation techniques to fall out favor, recent technological advances have led to the resurgence of lesioning with an improved safety profile. Currently, the four main ablative techniques that are used for ablative brain surgery are radiofrequency thermoablation, stereotactic radiosurgery, laser interstitial thermal therapy and magnetic resonance-guided focused ultrasound thermal ablation. Object: To review the physical principles underlying brain ablative therapies and to describe their use for neurological disorders. Methods: The literature regarding the neurosurgical applications of brain ablative therapies has been reviewed. Results: Ablative treatments have been used for several neurological disorders, including movement disorders, psychiatric disorders, chronic pain, drug-resistant epilepsy and brain tumors. Conclusions: There are several ongoing efforts to use novel ablative therapies directed towards the brain. The recent development of techniques that allow for precise targeting, accurate delivery of thermal doses and real-time visualization of induced tissue damage during the procedure have resulted in novel techniques for cerebral ablation such as magnetic resonance-guided focused ultrasound or laser interstitial thermal therapy. However, older techniques such as radiofrequency thermal ablation or stereotactic radiosurgery still have a pivotal role in the management of a variety of neurological disorders.
Collapse
Affiliation(s)
- Andrea Franzini
- Department of Neurological Surgery, University of Virginia Health System , Charlottesville , VA , USA.,Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta , Milan , Italy
| | - Shayan Moosa
- Department of Neurological Surgery, University of Virginia Health System , Charlottesville , VA , USA
| | - Domenico Servello
- Department of Neurosurgery, Galeazzi Research and Clinical Hospital , Milan , Italy
| | - Isabella Small
- Focused Ultrasound Foundation , Charlottesville , VA , USA
| | - Francesco DiMeco
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta , Milan , Italy.,Department of Pathophysiology and Transplantation, University of Milan , Milan , Italy.,Department of Neurological Surgery, Johns Hopkins Medical School , Baltimore , MD , USA
| | - Zhiyuan Xu
- Department of Neurological Surgery, University of Virginia Health System , Charlottesville , VA , USA
| | - William Jeffrey Elias
- Department of Neurological Surgery, University of Virginia Health System , Charlottesville , VA , USA
| | - Angelo Franzini
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta , Milan , Italy
| | - Francesco Prada
- Department of Neurological Surgery, University of Virginia Health System , Charlottesville , VA , USA.,Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta , Milan , Italy.,Focused Ultrasound Foundation , Charlottesville , VA , USA
| |
Collapse
|
6
|
Burchiel KJ, Raslan AM. Contemporary concepts of pain surgery. J Neurosurg 2019; 130:1039-1049. [PMID: 30933905 DOI: 10.3171/2019.1.jns181620] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 01/03/2019] [Indexed: 11/06/2022]
Abstract
Pain surgery is one of the historic foundations of neurological surgery. The authors present a review of contemporary concepts in surgical pain management, with reference to past successes and failures, what has been learned as a subspecialty over the past 50 years, as well as a vision for current and future practice. This subspecialty confronts problems of cancer pain, nociceptive pain, and neuropathic pain. For noncancer pain, ablative procedures such as dorsal root entry zone lesions and rhizolysis for trigeminal neuralgia (TN) should continue to be practiced. Other procedures, such as medial thalamotomy, have not been proven effective and require continued study. Dorsal rhizotomy, dorsal root ganglionectomy, and neurotomy should probably be abandoned. For cancer pain, cordotomy is an important and underutilized method for pain control. Intrathecal opiate administration via an implantable system remains an important option for cancer pain management. While there are encouraging results in small case series, cingulotomy, hypophysectomy, and mesencephalotomy deserve further detailed analysis. Electrical neuromodulation is a rapidly changing discipline, and new methods such as high-frequency spinal cord stimulation (SCS), burst SCS, and dorsal root ganglion stimulation may or may not prove to be more effective than conventional SCS. Despite a history of failure, deep brain stimulation for pain may yet prove to be an effective therapy for specific pain conditions. Peripheral nerve stimulation for conditions such as occipital neuralgia and trigeminal neuropathic pain remains an option, although the quality of outcomes data is a challenge to these applications. Based on the evidence, motor cortex stimulation should be abandoned. TN is a mainstay of the surgical treatment of pain, particularly as new evidence and insights into TN emerge. Pain surgery will continue to build on this heritage, and restorative procedures will likely find a role in the armamentarium. The challenge for the future will be to acquire higher-level evidence to support the practice of surgical pain management.
Collapse
|
7
|
Lempka SF, Malone DA, Hu B, Baker KB, Wyant A, Ozinga JG, Plow EB, Pandya M, Kubu CS, Ford PJ, Machado AG. Randomized clinical trial of deep brain stimulation for poststroke pain. Ann Neurol 2017; 81:653-663. [DOI: 10.1002/ana.24927] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/27/2017] [Accepted: 03/29/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Scott F. Lempka
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic
- Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center
| | | | - Bo Hu
- Department of Quantitative Health Sciences; Cleveland Clinic
| | - Kenneth B. Baker
- Department of Neurosciences; Lerner Research Institute, Cleveland Clinic
| | - Alexandria Wyant
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic
| | - John G. Ozinga
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic
| | - Ela B. Plow
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic
- Department of Biomedical Engineering; Lerner Research Institute, Cleveland Clinic
- Department of Physical Medicine and Rehabilitation; Neurological Institute, Cleveland Clinic
| | - Mayur Pandya
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic
| | - Cynthia S. Kubu
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic
- Department of Psychiatry and Psychology; Cleveland Clinic
| | - Paul J. Ford
- NeuroEthics Program, Cleveland Clinic; Cleveland OH
| | - Andre G. Machado
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic
- Department of Neurosciences; Lerner Research Institute, Cleveland Clinic
| |
Collapse
|
8
|
Wang GC, Harnod T, Chiu TL, Chen KP. Effect of an Anterior Cingulotomy on Pain, Cognition, and Sensory Pathways. World Neurosurg 2017; 102:593-597. [PMID: 28342924 DOI: 10.1016/j.wneu.2017.03.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/11/2017] [Accepted: 03/14/2017] [Indexed: 11/17/2022]
Abstract
BACKGROUND Anterior cingulotomy (AC) was originally used to treat patients with a psychiatric disorder, but it is also useful for treating patients with chronic intractable pain. We reviewed 24 patients at our hospital who underwent AC for chronic intractable pain to determine whether surgery influenced patient cognition and the pain circuit. METHODS A visual analog scale (VAS) was used to evaluate patients' pain scale preoperatively, at 1 month and 3-6 months postoperatively, and at the final follow-up. Mini-Mental State Examination (MMSE) and Cognitive Abilities Screening Instrument (CASI) were used to evaluate postoperative cognitive function. The latencies of peaks P20 and P37 of the somatosensory evoked potential (SSEP) conductive time were used to evaluate the intactness of the thalamocortical tract after AC. RESULTS The median preoperative VAS score was 8, MMSE score was 27, and CASI score was 86.8. Six patients underwent a reoperation because of recurrent pain. Pain was significantly reduced after AC, and the median VAS score at the last follow-up was 5. There was no significant pain improvement in patients who underwent a reoperation. There were no significant changes in MMSE and CASI scores or SSEP after cingulotomy. There were no operation-related complications in the patients. CONCLUSIONS A stereotactic AC was safe and effective in resolving chronic refractory pain. It did not affect patient cognition or the sensory conductive pathway. However, patients who had recurrent intractable pain after a cingulotomy did not respond well to the reoperation.
Collapse
Affiliation(s)
- Guan-Chyuan Wang
- Department of Neurosurgery, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Tomor Harnod
- Department of Neurosurgery, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Tsung-Lang Chiu
- Department of Neurosurgery, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Kuan-Pin Chen
- Department of Neurosurgery, Buddhist Tzu Chi General Hospital, Hualien, Taiwan.
| |
Collapse
|
9
|
Morishita T, Inoue T. Brain Stimulation Therapy for Central Post-Stroke Pain from a Perspective of Interhemispheric Neural Network Remodeling. Front Hum Neurosci 2016; 10:166. [PMID: 27148019 PMCID: PMC4838620 DOI: 10.3389/fnhum.2016.00166] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 04/04/2016] [Indexed: 12/25/2022] Open
Abstract
Central post-stroke pain (CPSP) is a debilitating, severe disorder affecting patient quality of life. Since CPSP is refractory to medication, various treatment modalities have been tried with marginal results. Following the first report of epidural motor cortex (M1) stimulation (MCS) for CPSP, many researchers have investigated the mechanisms of electrical stimulation of the M1. CPSP is currently considered to be a maladapted network reorganization problem following stroke, and recent studies have revealed that the activities of the impaired hemisphere after stroke may be inhibited by the contralesional hemisphere. Even though this interhemispheric inhibition (IHI) theory was originally proposed to explain the motor recovery process in stroke patients, we considered that IHI may also contribute to the CPSP mechanism. Based on the IHI theory and the fact that electrical stimulation of the M1 suppresses CPSP, we hypothesized that the inhibitory signals from the contralesional hemisphere may suppress the activities of the M1 in the ipsilesional hemisphere, and therefore pain suppression mechanisms may be malfunctioning in CPSP patients. In this context, transcranial direct current stimulation (tDCS) was considered to be a reasonable procedure to address the interhemispheric imbalance, as the bilateral M1 can be simultaneously stimulated using an anode (excitatory) and cathode (inhibitory). In this article, we review the potential mechanisms and propose a new model of CPSP. We also report two cases where CPSP was addressed with tDCS, discuss the potential roles of tDCS in the treatment of CPSP, and make recommendations for future studies.
Collapse
Affiliation(s)
- Takashi Morishita
- Department of Neurosurgery, Faculty of Medicine, Fukuoka University Fukuoka, Japan
| | - Tooru Inoue
- Department of Neurosurgery, Faculty of Medicine, Fukuoka University Fukuoka, Japan
| |
Collapse
|