1
|
Hernandez-Herrera GA, Calcano GA, Nagelschneider AA, Routman DM, Van Abel KM. Imaging Modalities for Head and Neck Cancer: Present and Future. Surg Oncol Clin N Am 2024; 33:617-649. [PMID: 39244284 DOI: 10.1016/j.soc.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Several imaging modalities are utilized in the diagnosis, treatment, and surveillance of head and neck cancer. First-line imaging remains computed tomography (CT); however, MRI, PET with CT (PET/CT), and ultrasound are often used. In the last decade, several new imaging modalities have been developed that have the potential to improve early detection, modify treatment, decrease treatment morbidity, and augment surveillance. Among these, molecular imaging, lymph node mapping, and adjustments to endoscopic techniques are promising. The present review focuses on existing imaging, novel techniques, and the recent changes to imaging practices within the field.
Collapse
|
2
|
Netufo O, Connor K, Shiels LP, Sweeney KJ, Wu D, O’Shea DF, Byrne AT, Miller IS. Refining Glioblastoma Surgery through the Use of Intra-Operative Fluorescence Imaging Agents. Pharmaceuticals (Basel) 2022; 15:550. [PMID: 35631376 PMCID: PMC9143023 DOI: 10.3390/ph15050550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023] Open
Abstract
Glioblastoma (GBM) is the most aggressive adult brain tumour with a dismal 2-year survival rate of 26-33%. Maximal safe resection plays a crucial role in improving patient progression-free survival (PFS). Neurosurgeons have the significant challenge of delineating normal tissue from brain tumour to achieve the optimal extent of resection (EOR), with 5-Aminolevulinic Acid (5-ALA) the only clinically approved intra-operative fluorophore for GBM. This review aims to highlight the requirement for improved intra-operative imaging techniques, focusing on fluorescence-guided imaging (FGS) and the use of novel dyes with the potential to overcome the limitations of current FGS. The review was performed based on articles found in PubMed an.d Google Scholar, as well as articles identified in searched bibliographies between 2001 and 2022. Key words for searches included 'Glioblastoma' + 'Fluorophore'+ 'Novel' + 'Fluorescence Guided Surgery'. Current literature has favoured the approach of using targeted fluorophores to achieve specific accumulation in the tumour microenvironment, with biological conjugates leading the way. These conjugates target specific parts overexpressed in the tumour. The positive results in breast, ovarian and colorectal tissue are promising and may, therefore, be applied to intracranial neoplasms. Therefore, this design has the potential to produce favourable results in GBM by reducing the residual tumour, which translates to decreased tumour recurrence, morbidity and ultimately, mortality in GBM patients. Several preclinical studies have shown positive results with targeted dyes in distinguishing GBM cells from normal brain parenchyma, and targeted dyes in the Near-Infrared (NIR) emission range offer promising results, which may be valuable future alternatives.
Collapse
Affiliation(s)
- Oluwakanyinsolami Netufo
- Precision Cancer Medicine Group, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 2, D02 YN77 Dublin, Ireland; (O.N.); (K.C.); (L.P.S.); (K.J.S.); (A.T.B.)
| | - Kate Connor
- Precision Cancer Medicine Group, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 2, D02 YN77 Dublin, Ireland; (O.N.); (K.C.); (L.P.S.); (K.J.S.); (A.T.B.)
| | - Liam P. Shiels
- Precision Cancer Medicine Group, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 2, D02 YN77 Dublin, Ireland; (O.N.); (K.C.); (L.P.S.); (K.J.S.); (A.T.B.)
| | - Kieron J. Sweeney
- Precision Cancer Medicine Group, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 2, D02 YN77 Dublin, Ireland; (O.N.); (K.C.); (L.P.S.); (K.J.S.); (A.T.B.)
- National Centre for Neurosurgery, Beaumont Hospital, 9, D09 V2N0 Dublin, Ireland
| | - Dan Wu
- Department of Chemistry, Royal College of Surgeons in Ireland (RCSI), 2, D02 YN77 Dublin, Ireland; (D.W.); (D.F.O.)
| | - Donal F. O’Shea
- Department of Chemistry, Royal College of Surgeons in Ireland (RCSI), 2, D02 YN77 Dublin, Ireland; (D.W.); (D.F.O.)
| | - Annette T. Byrne
- Precision Cancer Medicine Group, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 2, D02 YN77 Dublin, Ireland; (O.N.); (K.C.); (L.P.S.); (K.J.S.); (A.T.B.)
- National Pre-Clinical Imaging Centre (NPIC), 2, D02 YN77 Dublin, Ireland
| | - Ian S. Miller
- Precision Cancer Medicine Group, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 2, D02 YN77 Dublin, Ireland; (O.N.); (K.C.); (L.P.S.); (K.J.S.); (A.T.B.)
- National Pre-Clinical Imaging Centre (NPIC), 2, D02 YN77 Dublin, Ireland
| |
Collapse
|
3
|
Unique Benefits of Tumor-Specific Nanobodies for Fluorescence Guided Surgery. Biomolecules 2021; 11:biom11020311. [PMID: 33670740 PMCID: PMC7921980 DOI: 10.3390/biom11020311] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/11/2021] [Accepted: 02/14/2021] [Indexed: 12/11/2022] Open
Abstract
Tumor-specific fluorescence labeling is promising for real-time visualization of solid malignancies during surgery. There are a number of technologies to confer tumor-specific fluorescence. Antibodies have traditionally been used due to their versatility in modifications; however, their large size hampers efficient fluorophore delivery. Nanobodies are a novel class of molecules, derived from camelid heavy-chain only antibodies, that have shown promise for tumor-specific fluorescence labeling. Nanobodies are ten times smaller than standard antibodies, while maintaining antigen-binding capacity and have advantageous features, including rapidity of tumor labeling, that are reviewed in the present report. The present report reviews special considerations needed in developing nanobody probes, the status of current literature on the use of nanobody probes in fluorescence guided surgery, and potential challenges to be addressed for clinical translation.
Collapse
|