3
|
Ramamurthy VP, Ramalingam S, Gediya LK, Njar VCO. The retinamide VNLG-152 inhibits f-AR/AR-V7 and MNK-eIF4E signaling pathways to suppress EMT and castration-resistant prostate cancer xenograft growth. FEBS J 2018; 285:1051-1063. [PMID: 29323792 DOI: 10.1111/febs.14383] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/27/2017] [Accepted: 01/08/2018] [Indexed: 12/14/2022]
Abstract
VNLG-152 is a novel retinamide (NR) shown to suppress growth and progression of genetically diverse prostate cancer cells via inhibition of androgen receptor signaling and eukaryotic initiation factor 4E (eIF4E) translational machinery. Herein, we report therapeutic effects of VNLG-152 on castration-resistant prostate cancer (CRPC) growth and metastatic phenotype in a CRPC tumor xenograft model. Administration of VNLG-152 significantly and dose-dependently suppressed the growth of aggressive CWR22Rv1 tumors by 63.4% and 76.3% at 10 and 20 mg·kg-1 bw, respectively (P < 0.0001), vs. vehicle with no host toxicity. Strikingly, the expression of full-length androgen receptor (f-AR)/androgen receptor splice variant-7 (AR-V7), mitogen-activated protein kinase-interacting kinases 1 and 2 (MNK1/2), phosphorylated eIF4E and their associated target proteins, including prostate-specific antigen, cyclin D1 and Bcl-2, were strongly decreased in VNLG-152-treated tumors signifying inhibition of f-AR/AR-V7 and MNK-eIF4E signaling in VNLG-152-treated CWR22Rv1 tumors as observed in vitro. VNLG-152 also suppressed the epithelial to mesenchymal transition in CWR22Rv1 tumors as evidenced by repression of N-cadherin, β-catenin, claudin, Slug, Snail, Twist, vimentin and matrix metalloproteinases (MMP-2 and MMP-9) with upsurge in E-cadherin. These results highlight the promising use of VNLG-152 in CRPC therapy and justify its further development towards clinical trials.
Collapse
Affiliation(s)
- Vidya P Ramamurthy
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA.,Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Senthilmurugan Ramalingam
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA.,Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Lalji K Gediya
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA.,Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Vincent C O Njar
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA.,Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, MD, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
4
|
Wei R, Yu F, Yang J, Gao H, Wang H, Hong T. Anti-proliferative effect of rosiglitazone in the human T-lymphocyte leukaemia cell line Jurkat cells. Cell Biol Int 2017; 42:515-524. [PMID: 29274299 DOI: 10.1002/cbin.10925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/20/2017] [Indexed: 11/10/2022]
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is expressed in various types of human cancer cells including leukaemia cells, and activation of PPARγ can inhibit cancer cell growth. However, whether PPARγ is expressed in Jurkat cells, a human T-lymphocyte leukaemia cell line, and whether activation of PPARγ affects cell biological behaviors remains to be clarified. In this study, we investigated the effect of a PPARγ activator rosiglitazone, under clinically relevant pharmacological concentrations, on the growth and apoptosis of Jurkat cells in vitro and explored the possible mechanism. Metformin was also included as a positive control for the anti-proliferative and pro-apoptotic effects. We found that PPARγ mRNA was transcribed in Jurkat cells. Treatment with rosiglitazone (5 µM, 10 µM, and 20 µM) or metformin (1 mM and 10 mM) inhibited cell proliferation, and induced cell cycle arrest at G0/G1 or S phase, respectively, in a dose-dependent manner. Although metformin significantly upregulated the protein levels of the pro-apoptotic markers cleaved-caspase 3 and Bax in Jurkat cells, rosiglitazone did not have such an effect. Moreover, rosiglitazone significantly upregulated the level of PPARγ, and downregulated the expression of insulin receptor (IR) and insulin-like growth factor 1 receptor (IGF-1R) in a dose-dependent manner. Our data indicate that rosiglitazone has an anti-proliferative effect in Jurkat cells, which may be at least partly mediated via downregulating IR and IGF-1R expression. Therefore, rosiglitazone may have a potential role not only for management of hyperglycaemia but also for control of tumor progression in patients with T-lymphocyte leukaemia and diabetes.
Collapse
Affiliation(s)
- Rui Wei
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
| | - Fei Yu
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
| | - Jin Yang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
| | - Hongwei Gao
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
| | - Haining Wang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
| | - Tianpei Hong
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
| |
Collapse
|
5
|
Wang L, Nanayakkara G, Yang Q, Tan H, Drummer C, Sun Y, Shao Y, Fu H, Cueto R, Shan H, Bottiglieri T, Li YF, Johnson C, Yang WY, Yang F, Xu Y, Xi H, Liu W, Yu J, Choi ET, Cheng X, Wang H, Yang X. A comprehensive data mining study shows that most nuclear receptors act as newly proposed homeostasis-associated molecular pattern receptors. J Hematol Oncol 2017; 10:168. [PMID: 29065888 PMCID: PMC5655880 DOI: 10.1186/s13045-017-0526-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/19/2017] [Indexed: 12/16/2022] Open
Abstract
Background Nuclear receptors (NRs) can regulate gene expression; therefore, they are classified as transcription factors. Despite the extensive research carried out on NRs, still several issues including (1) the expression profile of NRs in human tissues, (2) how the NR expression is modulated during atherosclerosis and metabolic diseases, and (3) the overview of the role of NRs in inflammatory conditions are not fully understood. Methods To determine whether and how the expression of NRs are regulated in physiological/pathological conditions, we took an experimental database analysis to determine expression of all 48 known NRs in 21 human and 17 murine tissues as well as in pathological conditions. Results We made the following significant findings: (1) NRs are differentially expressed in tissues, which may be under regulation by oxygen sensors, angiogenesis pathway, stem cell master regulators, inflammasomes, and tissue hypo-/hypermethylation indexes; (2) NR sequence mutations are associated with increased risks for development of cancers and metabolic, cardiovascular, and autoimmune diseases; (3) NRs have less tendency to be upregulated than downregulated in cancers, and autoimmune and metabolic diseases, which may be regulated by inflammation pathways and mitochondrial energy enzymes; and (4) the innate immune sensor inflammasome/caspase-1 pathway regulates the expression of most NRs. Conclusions Based on our findings, we propose a new paradigm that most nuclear receptors are anti-inflammatory homeostasis-associated molecular pattern receptors (HAMPRs). Our results have provided a novel insight on NRs as therapeutic targets in metabolic diseases, inflammations, and malignancies. Electronic supplementary material The online version of this article (10.1186/s13045-017-0526-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Luqiao Wang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China.,Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.,Department of Cardiovascular Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Gayani Nanayakkara
- Centers for Cardiovascular Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Qian Yang
- Centers for Cardiovascular Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.,Department of Ultrasound, Xijing Hospital and Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Hongmei Tan
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Charles Drummer
- Centers for Cardiovascular Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Yu Sun
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Ying Shao
- Centers for Cardiovascular Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Hangfei Fu
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Ramon Cueto
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Huimin Shan
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Teodoro Bottiglieri
- Institute of Metabolic Disease, Baylor Research Institute, 3500 Gaston Avenue, Dallas, TX, 75246, USA
| | - Ya-Feng Li
- Centers for Cardiovascular Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Candice Johnson
- Centers for Cardiovascular Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - William Y Yang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Fan Yang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Yanjie Xu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Hang Xi
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Weiqing Liu
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Jun Yu
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.,Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Eric T Choi
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.,Department of Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Xiaoshu Cheng
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China.
| | - Hong Wang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.,Centers for Cardiovascular Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Xiaofeng Yang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA. .,Centers for Cardiovascular Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA. .,Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
6
|
Abstract
Testicular nuclear receptors 2 and 4 (TR2, TR4), also known as NR2C1 and NR2C2, belong to the nuclear receptor superfamily and were first cloned in 1989 and 1994, respectively. Although classified as orphan receptors, several natural molecules, their metabolites, and synthetic compounds including polyunsaturated fatty acids (PUFAs), PUFA metabolites 13-hydroxyoctadecadienoic acid, 15-hydroxyeicosatetraenoic acid, and the antidiabetic drug thiazolidinediones can transactivate TR4. Importantly, many of these ligands/activators can also transactivate peroxisome proliferator-activated receptor gamma (PPARγ), also known as NR1C3 nuclear receptor. Both TR4 and PPARγ can bind to similar hormone response elements (HREs) located in the promoter of their common downstream target genes. However, these two nuclear receptors, even with shared ligands/activators and shared binding ability for similar HREs, have some distinct functions in many diseases they influence. In cancer, PPARγ inhibits thyroid, lung, colon, and prostate cancers but enhances bladder cancer. In contrast, TR4 inhibits liver and prostate cancer initiation but enhances pituitary corticotroph, liver, and prostate cancer progression. In type 2 diabetes, PPARγ increases insulin sensitivity but TR4 decreases insulin sensitivity. In cardiovascular disease, PPARγ inhibits atherosclerosis but TR4 enhances atherosclerosis through increasing foam cell formation. In bone physiology, PPARγ inhibits bone formation but TR4 increases bone formation. Together, the contrasting impact of TR4 and PPARγ on different diseases may raise a critical issue about drug used to target any one of these nuclear receptors.
Collapse
|
8
|
Lin SJ, Yang DR, Li G, Chang C. TR4 Nuclear Receptor Different Roles in Prostate Cancer Progression. Front Endocrinol (Lausanne) 2015; 6:78. [PMID: 26074876 PMCID: PMC4445305 DOI: 10.3389/fendo.2015.00078] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/30/2015] [Indexed: 01/03/2023] Open
Abstract
Nuclear receptors are important to maintain the tissue homeostasis. Each receptor is tightly controlled and under a very complicated balance. In this review, we summarize the current findings regarding the nuclear receptor TR4 and its role in prostate cancer (PCa) progression. In general, TR4 can inhibit the PCa carcinogenesis. However, when PPARγ is knocked out, activation of TR4 can have an opposite effect to promote the PCa carcinogenesis. Clinical data also indicates that higher TR4 expression is found in PCa tissues with high Gleason scores compared to those tissues with low Gleason scores. In vitro and in vivo studies show that TR4 can promote PCa progression. Mechanism dissection indicates that TR4 inhibits PCa carcinogenesis through regulating the tumor suppressor ATM to reduce DNA damages. On the other hand, in the absence of PPARγ, TR4 tends to increase the stem cell population and epithelial-mesenchymal transition (EMT) via regulating CCL2, Oct4, EZH2, and miRNA-373-3p expression that results in increased PCa carcinogenesis. In opposition to PCa initiation, TR4 can increase PCa metastasis via modulating the CCL2 signals. Finally, targeting TR4 enhances the chemotherapy and radiation therapy sensitivity in PCa. Together, these data suggest TR4 is a key player to control PCa progression, and targeting TR4 with small molecules may provide us a new and better therapy to suppress PCa progression.
Collapse
Affiliation(s)
- Shin-Jen Lin
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and the Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Dong-Rong Yang
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and the Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
- Department of Urology, The Second Affiliated Hospital of Soochow University, Soochow, China
| | - Gonghui Li
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and the Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
- Department of Urology, Sir-Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Chawnshang Chang
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and the Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
- Sex Hormone Research Center, China Medical University Hospital, Taichung, Taiwan
- *Correspondence: Chawnshang Chang, George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center. University of Rochester Medical Center, Rochester, NY 14642, USA,
| |
Collapse
|