1
|
Rodriguez-Tirado C, Sosa MS. How much do we know about the metastatic process? Clin Exp Metastasis 2024; 41:275-299. [PMID: 38520475 PMCID: PMC11374507 DOI: 10.1007/s10585-023-10248-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/17/2023] [Indexed: 03/25/2024]
Abstract
Cancer cells can leave their primary sites and travel through the circulation to distant sites, where they lodge as disseminated cancer cells (DCCs), even during the early and asymptomatic stages of tumor progression. In experimental models and clinical samples, DCCs can be detected in a non-proliferative state, defined as cellular dormancy. This state can persist for extended periods until DCCs reawaken, usually in response to niche-derived reactivation signals. Therefore, their clinical detection in sites like lymph nodes and bone marrow is linked to poor survival. Current cancer therapy designs are based on the biology of the primary tumor and do not target the biology of the dormant DCC population and thus fail to eradicate the initial or subsequent waves of metastasis. In this brief review, we discuss the current methods for detecting DCCs and highlight new strategies that aim to target DCCs that constitute minimal residual disease to reduce or prevent metastasis formation. Furthermore, we present current evidence on the relevance of DCCs derived from early stages of tumor progression in metastatic disease and describe the animal models available for their study. We also discuss our current understanding of the dissemination mechanisms utilized by genetically less- and more-advanced cancer cells, which include the functional analysis of intermediate or hybrid states of epithelial-mesenchymal transition (EMT). Finally, we raise some intriguing questions regarding the clinical impact of studying the crosstalk between evolutionary waves of DCCs and the initiation of metastatic disease.
Collapse
Affiliation(s)
- Carolina Rodriguez-Tirado
- Department of Microbiology and Immunology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, 10461, USA.
- Department of Oncology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, 10461, USA.
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, 10461, USA.
- Cancer Dormancy and Tumor Microenvironment Institute/Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, 10461, USA.
| | - Maria Soledad Sosa
- Department of Microbiology and Immunology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, 10461, USA.
- Department of Oncology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, 10461, USA.
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, 10461, USA.
- Cancer Dormancy and Tumor Microenvironment Institute/Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, 10461, USA.
| |
Collapse
|
2
|
Ruze R, Song J, Yin X, Chen Y, Xu R, Wang C, Zhao Y. Mechanisms of obesity- and diabetes mellitus-related pancreatic carcinogenesis: a comprehensive and systematic review. Signal Transduct Target Ther 2023; 8:139. [PMID: 36964133 PMCID: PMC10039087 DOI: 10.1038/s41392-023-01376-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/31/2023] [Accepted: 02/15/2023] [Indexed: 03/26/2023] Open
Abstract
Research on obesity- and diabetes mellitus (DM)-related carcinogenesis has expanded exponentially since these two diseases were recognized as important risk factors for cancers. The growing interest in this area is prominently actuated by the increasing obesity and DM prevalence, which is partially responsible for the slight but constant increase in pancreatic cancer (PC) occurrence. PC is a highly lethal malignancy characterized by its insidious symptoms, delayed diagnosis, and devastating prognosis. The intricate process of obesity and DM promoting pancreatic carcinogenesis involves their local impact on the pancreas and concurrent whole-body systemic changes that are suitable for cancer initiation. The main mechanisms involved in this process include the excessive accumulation of various nutrients and metabolites promoting carcinogenesis directly while also aggravating mutagenic and carcinogenic metabolic disorders by affecting multiple pathways. Detrimental alterations in gastrointestinal and sex hormone levels and microbiome dysfunction further compromise immunometabolic regulation and contribute to the establishment of an immunosuppressive tumor microenvironment (TME) for carcinogenesis, which can be exacerbated by several crucial pathophysiological processes and TME components, such as autophagy, endoplasmic reticulum stress, oxidative stress, epithelial-mesenchymal transition, and exosome secretion. This review provides a comprehensive and critical analysis of the immunometabolic mechanisms of obesity- and DM-related pancreatic carcinogenesis and dissects how metabolic disorders impair anticancer immunity and influence pathophysiological processes to favor cancer initiation.
Collapse
Affiliation(s)
- Rexiati Ruze
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Jianlu Song
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Xinpeng Yin
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Yuan Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Ruiyuan Xu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Chengcheng Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China.
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China.
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China.
| |
Collapse
|
3
|
Li X, He J, Xie K. Molecular signaling in pancreatic ductal metaplasia: emerging biomarkers for detection and intervention of early pancreatic cancer. Cell Oncol (Dordr) 2022; 45:201-225. [PMID: 35290607 DOI: 10.1007/s13402-022-00664-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2022] [Indexed: 11/27/2022] Open
Abstract
Pancreatic ductal metaplasia (PDM) is the transformation of potentially various types of cells in the pancreas into ductal or ductal-like cells, which eventually replace the existing differentiated somatic cell type(s). PDM is usually triggered by and manifests its ability to adapt to environmental stimuli and genetic insults. The development of PDM to atypical hyperplasia or dysplasia is an important risk factor for pancreatic intraepithelial neoplasia (PanIN) and pancreatic ductal adenocarcinoma (PDA). Recent studies using genetically engineered mouse models, cell lineage tracing, single-cell sequencing and others have unraveled novel cellular and molecular insights in PDM formation and evolution. Those novel findings help better understand the cellular origins and functional significance of PDM and its regulation at cellular and molecular levels. Given that PDM represents the earliest pathological changes in PDA initiation and development, translational studies are beginning to define PDM-associated cell and molecular biomarkers that can be used to screen and detect early PDA and to enable its effective intervention, thereby truly and significantly reducing the dreadful mortality rate of PDA. This review will describe recent advances in the understanding of PDM biology with a focus on its underlying cellular and molecular mechanisms, and in biomarker discovery with clinical implications for the management of pancreatic regeneration and tumorigenesis.
Collapse
Affiliation(s)
- Xiaojia Li
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, 510006, China
- Department of Pathology, The South China University of Technology School of Medicine, Guangzhou, China
| | - Jie He
- Institute of Digestive Diseases Research, The South China University of Technology School of Medicine, Guangzhou, China
| | - Keping Xie
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, 510006, China.
- Department of Pathology, The South China University of Technology School of Medicine, Guangzhou, China.
| |
Collapse
|
4
|
Li S, Xie K. Ductal metaplasia in pancreas. Biochim Biophys Acta Rev Cancer 2022; 1877:188698. [DOI: 10.1016/j.bbcan.2022.188698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 02/07/2023]
|
5
|
Eurola A, Ristimäki A, Mustonen H, Nurmi AM, Hagström J, Kallio P, Alitalo K, Haglund C, Seppänen H. β-catenin plus PROX1 immunostaining stratifies disease progression and patient survival in neoadjuvant-treated pancreatic cancer. Tumour Biol 2022; 44:69-84. [PMID: 35786664 DOI: 10.3233/tub-211581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Wnt/β-catenin signaling is a highly conserved signaling pathway that regulates the transcription factor PROX1. The role of β-catenin and PROX1 in pancreatic cancer is ambiguous, as some studies have associated their expression with tumor regression and some with tumor progression. OBJECTIVE We have investigated their expression in surgically treated pancreatic cancer patients receiving neoadjuvant therapy (NAT), and patients treated upfront with surgery (US). We furthermore compared the expression of β-catenin and PROX1 between patients who had a good or poor response to NAT. METHODS We evaluated β-catenin and PROX1 expression through immunohistochemistry in 88 neoadjuvant and 144 upfront surgery patients by scoring the intensity of the immunopositivity as 0-3, corresponding to negative, weak, moderate, or strong. We developed a six-tier grading scheme for the neoadjuvant responses by analyzing the remaining tumor cells in surgical specimen histological sections. RESULTS Strong β-catenin immunopositivity associated with improved survival in the patients with good NAT-response (≤10% residual tumor cells) (Hazard ratio [HR] 0.26 95%, confidence interval [CI] 0.07-0.88 p = 0.030). Additionally, the combined moderate β-catenin and PROX1 expression associated with improved survival (HR 0.20 95% CI 0.05-0-76 p = 0.018) among the good responders. Among the patients with a poor NAT-response (> 10% residual tumor cells), both strong β-catenin immunopositivity and strong combined β-catenin and PROX1 associated with shorter survival (HR 2.03 95% CI 1.16-3.55 p = 0.013, and HR 3.1 95% CI 1.08-8.94 p = 0.03, respectively). PROX1 alone was not associated with survival. CONCLUSIONS Strong β-catenin immunopositivity and combined strong or moderate β-catenin and PROX1 immunopositivity associated with improved survival among the good NAT-responders and worse survival among the poor NAT-responders.
Collapse
Affiliation(s)
- Annika Eurola
- Department of Surgery, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ari Ristimäki
- Department of Pathology, HUSLAB, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Applied Tumor Genomics (ATG), Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Harri Mustonen
- Department of Surgery, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anna-Maria Nurmi
- Department of Surgery, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jaana Hagström
- Department of Pathology, HUSLAB, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Oral Pathology and Radiology, University of Turku, Turku, Finland
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Finland
| | - Pauliina Kallio
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Finland
| | - Kari Alitalo
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Finland
| | - Caj Haglund
- Department of Surgery, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Finland
| | - Hanna Seppänen
- Department of Surgery, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Finland
| |
Collapse
|
6
|
Zhao X, Li H, Lyu S, Zhai J, Ji Z, Zhang Z, Zhang X, Liu Z, Wang H, Xu J, Fan H, Kou J, Li L, Lang R, He Q. Single-cell transcriptomics reveals heterogeneous progression and EGFR activation in pancreatic adenosquamous carcinoma. Int J Biol Sci 2021; 17:2590-2605. [PMID: 34326696 PMCID: PMC8315026 DOI: 10.7150/ijbs.58886] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/08/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic adenosquamous carcinoma (PASC) - a rare pathological pancreatic cancer (PC) type - has a poor prognosis due to high malignancy. To examine the heterogeneity of PASC, we performed single-cell RNA sequencing (scRNA-seq) profiling with sample tissues from a healthy donor pancreas, an intraductal papillary mucinous neoplasm, and a patient with PASC. Of 9,887 individual cells, ten cell subpopulations were identified, including myeloid, immune, ductal, fibroblast, acinar, stellate, endothelial, and cancer cells. Cancer cells were divided into five clusters. Notably, cluster 1 exhibited stem-like phenotypes expressing UBE2C, ASPM, and TOP2A. We found that S100A2 is a potential biomarker for cancer cells. LGALS1, NPM1, RACK1, and PERP were upregulated from ductal to cancer cells. Furthermore, the copy number variations in ductal and cancer cells were greater than in the reference cells. The expression of EREG, FCGR2A, CCL4L2, and CTSC increased in myeloid cells from the normal pancreas to PASC. The gene sets expressed by cancer-associated fibroblasts were enriched in the immunosuppressive pathways. We demonstrate that EGFR-associated ligand-receptor pairs are activated in ductal-stromal cell communications. Hence, this study revealed the heterogeneous variations of ductal and stromal cells, defined cancer-associated signaling pathways, and deciphered intercellular interactions following PASC progression.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital affiliated to Capital Medical University, Beijing 100020, China
| | - Han Li
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shaocheng Lyu
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital affiliated to Capital Medical University, Beijing 100020, China
| | - Jialei Zhai
- Department of Pathology, Beijing Chaoyang Hospital affiliated to Capital Medical University, Beijing 100020, China
| | - Zhiwei Ji
- College of Artificial Intelligence, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhigang Zhang
- School of Information Management and Statistics, Hubei University of Economics, Wuhan 430205, Hubei, China
| | - Xinxue Zhang
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital affiliated to Capital Medical University, Beijing 100020, China
| | - Zhe Liu
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital affiliated to Capital Medical University, Beijing 100020, China
| | - Huaguang Wang
- Department of Pharmacology, Beijing Chaoyang Hospital affiliated to Capital Medical University, Beijing 100020, China
| | - Junming Xu
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital affiliated to Capital Medical University, Beijing 100020, China
| | - Hua Fan
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital affiliated to Capital Medical University, Beijing 100020, China
| | - Jiantao Kou
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital affiliated to Capital Medical University, Beijing 100020, China
| | - Lixin Li
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital affiliated to Capital Medical University, Beijing 100020, China
| | - Ren Lang
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital affiliated to Capital Medical University, Beijing 100020, China
| | - Qiang He
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital affiliated to Capital Medical University, Beijing 100020, China
| |
Collapse
|
7
|
Kaltezioti V, Foskolou IP, Lavigne MD, Ninou E, Tsampoula M, Fousteri M, Margarity M, Politis PK. Prox1 inhibits neurite outgrowth during central nervous system development. Cell Mol Life Sci 2021; 78:3443-3465. [PMID: 33247761 PMCID: PMC11072475 DOI: 10.1007/s00018-020-03709-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 12/24/2022]
Abstract
During central nervous system (CNS) development, proper and timely induction of neurite elongation is critical for generating functional, mature neurons, and neuronal networks. Despite the wealth of information on the action of extracellular cues, little is known about the intrinsic gene regulatory factors that control this developmental decision. Here, we report the identification of Prox1, a homeobox transcription factor, as a key player in inhibiting neurite elongation. Although Prox1 promotes acquisition of early neuronal identity and is expressed in nascent post-mitotic neurons, it is heavily down-regulated in the majority of terminally differentiated neurons, indicating a regulatory role in delaying neurite outgrowth in newly formed neurons. Consistently, we show that Prox1 is sufficient to inhibit neurite extension in mouse and human neuroblastoma cell lines. More importantly, Prox1 overexpression suppresses neurite elongation in primary neuronal cultures as well as in the developing mouse brain, while Prox1 knock-down promotes neurite outgrowth. Mechanistically, RNA-Seq analysis reveals that Prox1 affects critical pathways for neuronal maturation and neurite extension. Interestingly, Prox1 strongly inhibits many components of Ca2+ signaling pathway, an important mediator of neurite extension and neuronal maturation. In accordance, Prox1 represses Ca2+ entry upon KCl-mediated depolarization and reduces CREB phosphorylation. These observations suggest that Prox1 acts as a potent suppressor of neurite outgrowth by inhibiting Ca2+ signaling pathway. This action may provide the appropriate time window for nascent neurons to find the correct position in the CNS prior to initiation of neurites and axon elongation.
Collapse
Affiliation(s)
- Valeria Kaltezioti
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou Street, 115 27, Athens, Greece
| | - Iosifina P Foskolou
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou Street, 115 27, Athens, Greece
| | - Matthieu D Lavigne
- Institute for Fundamental Biomedical Research, BSRC 'Alexander Fleming', 34 Fleming Street, Vari, 16672, Athens, Greece
| | - Elpinickie Ninou
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou Street, 115 27, Athens, Greece
| | - Matina Tsampoula
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou Street, 115 27, Athens, Greece
| | - Maria Fousteri
- Institute for Fundamental Biomedical Research, BSRC 'Alexander Fleming', 34 Fleming Street, Vari, 16672, Athens, Greece
| | - Marigoula Margarity
- Laboratory of Human and Animal Physiology, Department of Biology, School of Natural Sciences, University of Patras, 26500, Rio Achaias, Greece
| | - Panagiotis K Politis
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou Street, 115 27, Athens, Greece.
| |
Collapse
|
8
|
Jin Y, Weng Y, Wang Y, Lin J, Deng X, Shen B, Zhan Q, Lu X. miR-934 as a Prognostic Marker Facilitates Cell Proliferation and Migration of Pancreatic Tumor by Targeting PROX1. Onco Targets Ther 2020; 13:3389-3399. [PMID: 32368095 PMCID: PMC7183785 DOI: 10.2147/ott.s249662] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/06/2020] [Indexed: 01/09/2023] Open
Abstract
Background Pancreatic cancer is an extremely lethal digestive cancer with late diagnosis and poor prognosis. miR-934 has been reported to serve as an oncogene in multiple cancers, such as ovarian cancer and bladder cancer. However, its role in pancreatic cancer remains undiscovered. Materials and Methods The expression data of miR-934 were obtained from the Gene Expression Omnibus database and from our own patient samples. The clinicopathological data and corresponding follow-up data were retrieved from The Cancer Genome Atlas database. CCK8 and colony formation assays were conducted to measure cell proliferation capacity in vitro. Wound healing and transwell assays were performed to detect the migration ability of pancreatic cancer cell. Results We found that miR-934 was significantly upregulated in pancreatic tumor samples and cell lines. The expression of miR-934 was related to pathological stages. Upregulated miR-934 was associated with poor prognosis in patients with pancreatic cancer. Mir-934 inhibition reduced, while overexpression promoted, cell proliferation and migration. Mechanically, we found miR-934 could directly bind to 3'-UTR of PROX1 leading to mRNA derogation. Furthermore, increased cell proliferation and migration caused by miR-934 overexpression could be reversed by forced PROX1 expression. Conclusion miR-934 is an oncogene in pancreatic cancer and could serve as a prognosis indicator for patients with pancreatic cancer, suggesting that miR-934 is a promising therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Yangbing Jin
- Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, People's Republic of China.,Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Yuanchi Weng
- Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, People's Republic of China.,Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Yue Wang
- Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, People's Republic of China.,Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Jiewei Lin
- Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, People's Republic of China.,Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Xiaxing Deng
- Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, People's Republic of China.,Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Baiyong Shen
- Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, People's Republic of China.,Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Qian Zhan
- Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, People's Republic of China.,Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Xiongxiong Lu
- Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, People's Republic of China.,Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai 200025, People's Republic of China
| |
Collapse
|
9
|
Quilichini E, Fabre M, Dirami T, Stedman A, De Vas M, Ozguc O, Pasek RC, Cereghini S, Morillon L, Guerra C, Couvelard A, Gannon M, Haumaitre C. Pancreatic Ductal Deletion of Hnf1b Disrupts Exocrine Homeostasis, Leads to Pancreatitis, and Facilitates Tumorigenesis. Cell Mol Gastroenterol Hepatol 2019; 8:487-511. [PMID: 31229598 PMCID: PMC6722301 DOI: 10.1016/j.jcmgh.2019.06.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS The exocrine pancreas consists of acinar cells that produce digestive enzymes transported to the intestine through a branched ductal epithelium. Chronic pancreatitis is characterized by progressive inflammation, fibrosis, and loss of acinar tissue. These changes of the exocrine tissue are risk factors for pancreatic cancer. The cause of chronic pancreatitis cannot be identified in one quarter of patients. Here, we investigated how duct dysfunction could contribute to pancreatitis development. METHODS The transcription factor Hnf1b, first expressed in pancreatic progenitors, is strictly restricted to ductal cells from late embryogenesis. We previously showed that Hnf1b is crucial for pancreas morphogenesis but its postnatal role still remains unelucidated. To investigate the role of pancreatic ducts in exocrine homeostasis, we inactivated the Hnf1b gene in vivo in mouse ductal cells. RESULTS We uncovered that postnatal Hnf1b inactivation in pancreatic ducts leads to chronic pancreatitis in adults. Hnf1bΔduct mutants show dilatation of ducts, loss of acinar cells, acinar-to-ductal metaplasia, and lipomatosis. We deciphered the early events involved, with down-regulation of cystic disease-associated genes, loss of primary cilia, up-regulation of signaling pathways, especially the Yap pathway, which is involved in acinar-to-ductal metaplasia. Remarkably, Hnf1bΔduct mutants developed pancreatic intraepithelial neoplasia and promote pancreatic intraepithelial neoplasia progression in concert with KRAS. We further showed that adult Hnf1b inactivation in pancreatic ducts is associated with impaired regeneration after injury, with persistent metaplasia and initiation of neoplasia. CONCLUSIONS Loss of Hnf1b in ductal cells leads to chronic pancreatitis and neoplasia. This study shows that Hnf1b deficiency may contribute to diseases of the exocrine pancreas and gains further insight into the etiology of pancreatitis and tumorigenesis.
Collapse
Affiliation(s)
- Evans Quilichini
- UMR7622 Sorbonne Université, Centre National de la Recherche Scientifique, Institut de Biologie Paris-Seine, Paris, France
| | - Mélanie Fabre
- UMR7622 Sorbonne Université, Centre National de la Recherche Scientifique, Institut de Biologie Paris-Seine, Paris, France
| | - Thassadite Dirami
- UMR7622 Sorbonne Université, Centre National de la Recherche Scientifique, Institut de Biologie Paris-Seine, Paris, France
| | - Aline Stedman
- UMR7622 Sorbonne Université, Centre National de la Recherche Scientifique, Institut de Biologie Paris-Seine, Paris, France
| | - Matias De Vas
- UMR7622 Sorbonne Université, Centre National de la Recherche Scientifique, Institut de Biologie Paris-Seine, Paris, France
| | - Ozge Ozguc
- UMR7622 Sorbonne Université, Centre National de la Recherche Scientifique, Institut de Biologie Paris-Seine, Paris, France
| | - Raymond C. Pasek
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Silvia Cereghini
- UMR7622 Sorbonne Université, Centre National de la Recherche Scientifique, Institut de Biologie Paris-Seine, Paris, France
| | - Lucie Morillon
- UMR7622 Sorbonne Université, Centre National de la Recherche Scientifique, Institut de Biologie Paris-Seine, Paris, France
| | - Carmen Guerra
- Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Anne Couvelard
- Hôpital Bichat, Département de Pathologie, Assistance Publique-Hôpitaux de Paris, Université Paris Diderot, Paris, France
| | - Maureen Gannon
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Cécile Haumaitre
- UMR7622 Sorbonne Université, Centre National de la Recherche Scientifique, Institut de Biologie Paris-Seine, Paris, France,Correspondence Address correspondence to: Cecile Haumaitre, PhD, Sorbonne Université, Centre National de la Recherche Scientifique, Institut de Biologie Paris-Seine, 9 Quai Saint-Bernard, Batiment C-7eme Etage-Case 24, 75252 Paris Cedex 05, France. fax: (33) 1-44-27-34-45.
| |
Collapse
|
10
|
Drosos Y, Escobar D, Chiang MY, Roys K, Valentine V, Valentine MB, Rehg JE, Sahai V, Begley LA, Ye J, Paul L, McKinnon PJ, Sosa-Pineda B. ATM-deficiency increases genomic instability and metastatic potential in a mouse model of pancreatic cancer. Sci Rep 2017; 7:11144. [PMID: 28894253 PMCID: PMC5593966 DOI: 10.1038/s41598-017-11661-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 08/29/2017] [Indexed: 12/11/2022] Open
Abstract
Germline mutations in ATM (encoding the DNA-damage signaling kinase, ataxia-telangiectasia-mutated) increase Familial Pancreatic Cancer (FPC) susceptibility, and ATM somatic mutations have been identified in resected human pancreatic tumors. Here we investigated how Atm contributes to pancreatic cancer by deleting this gene in a murine model of the disease expressing oncogenic Kras (KrasG12D). We show that partial or total ATM deficiency cooperates with KrasG12D to promote highly metastatic pancreatic cancer. We also reveal that ATM is activated in pancreatic precancerous lesions in the context of DNA damage and cell proliferation, and demonstrate that ATM deficiency leads to persistent DNA damage in both precancerous lesions and primary tumors. Using low passage cultures from primary tumors and liver metastases we show that ATM loss accelerates Kras-induced carcinogenesis without conferring a specific phenotype to pancreatic tumors or changing the status of the tumor suppressors p53, p16Ink4a and p19Arf. However, ATM deficiency markedly increases the proportion of chromosomal alterations in pancreatic primary tumors and liver metastases. More importantly, ATM deficiency also renders murine pancreatic tumors highly sensitive to radiation. These and other findings in our study conclusively establish that ATM activity poses a major barrier to oncogenic transformation in the pancreas via maintaining genomic stability.
Collapse
Affiliation(s)
- Yiannis Drosos
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - David Escobar
- Department of Medicine and the Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Ming-Yi Chiang
- Department of Medicine and the Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Kathryn Roys
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Virginia Valentine
- Department of Cytogenetics, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Marc B Valentine
- Department of Cytogenetics, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Jerold E Rehg
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Vaibhav Sahai
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Lesa A Begley
- Department of General Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Jianming Ye
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Leena Paul
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Peter J McKinnon
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Beatriz Sosa-Pineda
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, United States.
- Department of Medicine and the Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.
| |
Collapse
|