1
|
Cañizo CG, Guerrero-Ramos F, Perez Escavy M, Lodewijk I, Suárez-Cabrera C, Morales L, Nunes SP, Munera-Maravilla E, Rubio C, Sánchez R, Rodriguez-Izquierdo M, Martínez de Villarreal J, Real FX, Castellano D, Martín-Arriscado C, Lora Pablos D, Rodríguez Antolín A, Dueñas M, Paramio JM, Martínez VG. Characterisation of the tumour microenvironment and PD-L1 granularity reveals the prognostic value of cancer-associated myofibroblasts in non-invasive bladder cancer. Oncoimmunology 2025; 14:2438291. [PMID: 39698899 DOI: 10.1080/2162402x.2024.2438291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/29/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024] Open
Abstract
High-risk non-muscle-invasive bladder cancer (NMIBC) presents high recurrence and progression rates. Despite the use of Bacillus Calmette-Guérin gold-standard immunotherapy and the recent irruption of anti-PD-1/PD-L1 drugs, we are missing a comprehensive understanding of the tumor microenvironment (TME) that may help us find biomarkers associated to treatment outcome. Here, we prospectively analyzed TME composition and PD-L1 expression of tumor and non-tumoral tissue biopsies from 73 NMIBC patients and used scRNA-seq, transcriptomic cohorts and tissue micro-array to validate the prognostic value of cell types of interest. Compared to non-tumoral tissue, NMIBC presented microvascular alterations, increased cancer-associated fibroblast (CAF) and myofibroblast (myoCAF) presence, and varied immune cell distribution, such as increased macrophage infiltration. Heterogeneous PD-L1 expression was observed across subsets, with macrophages showing the highest expression levels, but cancer cells as the primary potential anti-PD-L1 binding targets. Unbiased analysis revealed that myoCAF and M2-like macrophages are specifically enriched in high-grade NMIBC tumors. The topological distribution of these two cell types changed as NMIBC progresses, as shown by immunofluorescence. Only myoCAFs were associated with higher rates of progression and recurrence in three independent cohorts (888 total patients), reaching prediction values comparable to transcriptomic classes, which we further validated using tissue micro-array. Our study provides a roadmap to establish the landscape of the NMIBC TME, highlighting myoCAFs as potential prognostic markers.
Collapse
Affiliation(s)
- Carmen G Cañizo
- Urology Department, University Hospital '12 de Octubre', Madrid, Spain
| | | | - Mercedes Perez Escavy
- Molecular and Translational Oncology Division, Biomedical Innovation Unit, CIEMAT, Madrid, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
- Institute of Biomedical Research, University Hospital '12 de Octubre', Madrid, Spain
| | - Iris Lodewijk
- Molecular and Translational Oncology Division, Biomedical Innovation Unit, CIEMAT, Madrid, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
- Institute of Biomedical Research, University Hospital '12 de Octubre', Madrid, Spain
| | - Cristian Suárez-Cabrera
- Molecular and Translational Oncology Division, Biomedical Innovation Unit, CIEMAT, Madrid, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
- Institute of Biomedical Research, University Hospital '12 de Octubre', Madrid, Spain
| | - Lucía Morales
- Molecular and Translational Oncology Division, Biomedical Innovation Unit, CIEMAT, Madrid, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
- Institute of Biomedical Research, University Hospital '12 de Octubre', Madrid, Spain
| | - Sandra P Nunes
- Molecular and Translational Oncology Division, Biomedical Innovation Unit, CIEMAT, Madrid, Spain
- Institute of Biomedical Research, University Hospital '12 de Octubre', Madrid, Spain
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP@RISE (Health Research Network) Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Porto, Portugal
| | - Ester Munera-Maravilla
- Molecular and Translational Oncology Division, Biomedical Innovation Unit, CIEMAT, Madrid, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
- Institute of Biomedical Research, University Hospital '12 de Octubre', Madrid, Spain
| | - Carolina Rubio
- Molecular and Translational Oncology Division, Biomedical Innovation Unit, CIEMAT, Madrid, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
- Institute of Biomedical Research, University Hospital '12 de Octubre', Madrid, Spain
| | - Rebeca Sánchez
- Cell Technology Division, Biomedical Innovation Unit, CIEMAT, Madrid, Spain
- Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), Madrid, Spain
| | | | - Jaime Martínez de Villarreal
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
- Epithelial Carcinogenesis Group, Spanish National Cancer Centre-CNIO, Madrid, Spain
| | - Francisco X Real
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
- Epithelial Carcinogenesis Group, Spanish National Cancer Centre-CNIO, Madrid, Spain
- Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Barcelona, Spain
| | - Daniel Castellano
- Oncology Department, University Hospital '12 de Octubre', Madrid, Spain
| | | | - David Lora Pablos
- Scientific Support Unit, Research Institute I+12, University Hospital 12 de Octubre, Madrid, Spain
| | | | - Marta Dueñas
- Molecular and Translational Oncology Division, Biomedical Innovation Unit, CIEMAT, Madrid, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
- Institute of Biomedical Research, University Hospital '12 de Octubre', Madrid, Spain
| | - Jesús M Paramio
- Molecular and Translational Oncology Division, Biomedical Innovation Unit, CIEMAT, Madrid, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
- Institute of Biomedical Research, University Hospital '12 de Octubre', Madrid, Spain
| | - Victor G Martínez
- Molecular and Translational Oncology Division, Biomedical Innovation Unit, CIEMAT, Madrid, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
- Institute of Biomedical Research, University Hospital '12 de Octubre', Madrid, Spain
| |
Collapse
|
2
|
Nagumo Y, Hattori K, Kimura T, Sekino Y, Naiki T, Kobayashi Y, Matsumoto T, Osawa T, Kita Y, Takemura M, Mathis BJ, Suzuki S, Tsuzuki T, Ishikawa H, Nishiyama H. Combined Molecular Subclass and Immune Phenotype Correlate to Atezolizumab Plus Radiation Therapy Response in Invasive Bladder Cancer: BPT-ART Phase 2 Study. Int J Radiat Oncol Biol Phys 2025; 122:168-180. [PMID: 39755215 DOI: 10.1016/j.ijrobp.2024.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/04/2024] [Accepted: 12/22/2024] [Indexed: 01/06/2025]
Abstract
PURPOSE Bladder preservation therapy in combination with atezolizumab and radiation therapy trial, which was a multicenter, open-label, single-arm phase 2 study, showed a promisingly high interim clinical complete response (cCR) rate of 84.4% (38/45). In the present study, we aimed to identify potential tissue biomarkers for achieving cCR using bladder preservation therapy in combination with atezolizumab and radiation therapy. METHODS AND MATERIALS We used tumor tissue samples of the bladder and blood samples collected from patients at baseline to analyze the tumor immune microenvironment at baseline using an integrated approach of immunophenotyping, genomic, and tumor-infiltrating lymphocyte (TIL) profiling. RESULTS Immune phenotype analysis revealed that cCR rates of patients with the desert phenotype were as similarly high as patients with excluded/inflamed phenotypes (73.3% [11/15] vs 93.3% [14/15], P = .33) despite lower programmed death-ligand 1 expression levels in the desert phenotype. Genomic and TIL profiling then revealed that increased CD8+ and CD204+ TIL infiltration, high CD8:forkhead box protein P3 ratios in the stroma of the excluded/inflamed phenotypes, and gene alterations, such as CDK12, GNAS, NOTCH2, and AR1D1A, were associated with a high cCR rate (93.3%). Furthermore, the characteristics of these dual TILs, CD8-forkhead box protein P3 ratios, and gene alterations (especially FGFR3) bifurcated the desert phenotype into 2 subgroups with different cCR rates (100% [11/11] and 0% [0/4]). CONCLUSIONS These potential subgroups, defined by combined molecular subclass and immune phenotype, could lead to the identification of good responders to atezolizumab plus radiation therapy for invasive bladder cancer. However, given the small cohort size and limited number of tumor samples, these findings should be viewed as hypothesis-generating and require further validation in larger studies.
Collapse
Affiliation(s)
| | - Kyosuke Hattori
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Surgical Pathology, Aichi Medical University Hospital, Aichi, Japan
| | - Tomokazu Kimura
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuta Sekino
- Department of Radiation Oncology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Taku Naiki
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yasuyuki Kobayashi
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Takashi Matsumoto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takahiro Osawa
- Department of Urology, Hokkaido University Hospital, Sapporo, Japan
| | - Yuki Kita
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masae Takemura
- Department of Clinical Research Support Center, Tsukuba Clinical Research and Development Organization (T-CReDO), University of Tsukuba, Ibaraki, Japan
| | - Bryan J Mathis
- Department of Cardiovascular Surgery, University of Tsukuba Institute of Medicine, Ibaraki, Japan
| | - Susumu Suzuki
- Research Creation Support Centre, Aichi Medical University, Nagakute, Aichi, Japan
| | - Toyonori Tsuzuki
- Department of Surgical Pathology, Aichi Medical University Hospital, Aichi, Japan
| | - Hitoshi Ishikawa
- National Institutes for Quantum Science and Technology Hospital, Chiba, Japan
| | | |
Collapse
|
3
|
Di Spirito A, Balkhi S, Vivona V, Mortara L. Key immune cells and their crosstalk in the tumor microenvironment of bladder cancer: insights for innovative therapies. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2025; 6:1002304. [PMID: 40177538 PMCID: PMC11964778 DOI: 10.37349/etat.2025.1002304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/27/2025] [Indexed: 04/05/2025] Open
Abstract
Bladder cancer (BC) is a heterogeneous disease associated with high mortality if not diagnosed early. BC is classified into non-muscle-invasive BC (NMIBC) and muscle-invasive BC (MIBC), with MIBC linked to poor systemic therapy response and high recurrence rates. Current treatments include transurethral resection with Bacillus Calmette-Guérin (BCG) therapy for NMIBC and radical cystectomy with chemotherapy and/or immunotherapy for MIBC. The tumor microenvironment (TME) plays a critical role in cancer progression, metastasis, and therapeutic efficacy. A comprehensive understanding of the TME's complex interactions holds substantial translational significance for developing innovative treatments. The TME can contribute to therapeutic resistance, particularly in immune checkpoint inhibitor (ICI) therapies, where resistance arises from tumor-intrinsic changes or extrinsic TME factors. Recent advancements in immunotherapy highlight the importance of translational research to address these challenges. Strategies to overcome resistance focus on remodeling the TME to transform immunologically "cold" tumors, which lack immune cell infiltration, into "hot" tumors that respond better to immunotherapy. These strategies involve disrupting cancer-microenvironment interactions, inhibiting angiogenesis, and modulating immune components to enhance anti-tumor responses. Key mechanisms include cytokine involvement [e.g., interleukin-6 (IL-6)], phenotypic alterations in macrophages and natural killer (NK) cells, and the plasticity of cancer-associated fibroblasts (CAFs). Identifying potential therapeutic targets within the TME can improve outcomes for MIBC patients. This review emphasizes the TME's complexity and its impact on guiding novel therapeutic approaches, offering hope for better survival in MIBC.
Collapse
Affiliation(s)
- Anna Di Spirito
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Sahar Balkhi
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Veronica Vivona
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Lorenzo Mortara
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| |
Collapse
|
4
|
Jian N, Yu L, Ma L, Zheng B, Huang W. BCG therapy in bladder cancer and its tumor microenvironment interactions. Clin Microbiol Rev 2025:e0021224. [PMID: 40111053 DOI: 10.1128/cmr.00212-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025] Open
Abstract
SUMMARYBacillus Calmette-Guérin (BCG) has been the standard treatment for non-muscle-invasive bladder cancer for over 30 years. Despite its proven efficacy, challenges persist, including unclear mechanisms of action, resistance in 30%-50% of patients, and significant side effects. This review presents an updated and balanced discussion of the antitumor mechanisms of BCG, focusing on its direct effects on bladder cancer and its interactions with various cell types within the bladder tumor microenvironment. Notably, recent research on the interactions between BCG and the bladder microbiome is also incorporated. We further summarize and analyze the latest preclinical and clinical studies regarding both intrinsic and adaptive resistance to BCG in bladder cancer. Based on the current understanding of BCG's therapeutic principles and resistance mechanisms, we systematically explore strategies to improve BCG-based tumor immunotherapy. These include the development of recombinant BCG, combination therapy with different drugs, optimization of therapeutic regimens and management, and the exploration of new approaches by targeting changes in the bladder microbiota and its metabolites. These measures aim to effectively address the BCG resistance in bladder cancer, reduce its toxicity, and ultimately enhance the clinical anti-tumor efficacy. Bacterial therapy, represented by genetically engineered oncolytic bacteria, has gradually emerged in the field of cancer treatment in recent years. As the only bacterial drug successfully approved for oncology use, BCG has provided decades of clinical experience. By consolidating lessons from BCG's successes and limitations, we hope to provide valuable insights for the development and application of bacterial therapies in cancer treatment.
Collapse
Affiliation(s)
- Ni Jian
- Synthetic Biology Research Center, Institute for Advanced Study, International Cancer Center of Shenzhen University, Shenzhen, China
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Lei Yu
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Lijuan Ma
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Binbin Zheng
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Weiren Huang
- Synthetic Biology Research Center, Institute for Advanced Study, International Cancer Center of Shenzhen University, Shenzhen, China
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau, China
| |
Collapse
|
5
|
Yu F, Yu N, Zhang L, Xu X, Zhao Y, Cao Z, Wang F. Emodin Decreases Tumor-Associated Macrophages Accumulation and Suppresses Bladder Cancer Development by Inhibiting CXCL1 Secretion from Cancer-Associated Fibroblasts. Nutr Cancer 2025:1-16. [PMID: 40114381 DOI: 10.1080/01635581.2025.2480309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
Tumor-associated macrophages (TAMs) and cancer-associated fibroblasts (CAFs) are the most abundant stromal cells in the bladder cancer (BC) microenvironment (TME). However, the detailed mechanisms underlying TAM-CAF communication and their contributions to BC progression remain incompletely understood. Emerging evidence shows that Emodin exerts anti-tumor effect on several tumor models by targeting TME. To date, the impact of Emodin on BC has not been previously reported. Our study firstly demonstrated that Emodin significantly inhibited tumor growth and reduced TAM accumulation in a murine BC model. Emodin markedly decreased serum levels of multiple chemokines in tumor-bearing mice, with CXCL1 showing the most pronounced reduction. Strikingly, Emodin selectively suppressed CXCL1 secretion in CAFs but not in TAMs or tumor cells. Furthermore, the decrease in TAM migration induced by Emodin was dependent on CAF-derived CXCL1. Using a subcutaneous tumor model, we found that Emodin failed to inhibit tumor growth when CXCL1-deficient CAFs were co-injected with tumor cells, underscoring the critical role of CXCL1 in this process. Bioinformatics analysis further revealed that elevated CXCL1 levels correlated negatively with invasive/metastatic potential and overall survival in BC patients. In conclusion, our findings establish that Emodin delays BC progression by disrupting CXCL1-mediated crosstalk between CAFs and TAMs.
Collapse
Affiliation(s)
- Fang Yu
- Department of Nutrition and Food Hygiene & Department of Health Education and Health Management, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Laboratory of Hazard Assessment and Protection in Environmental Health, Shaanxi Key Laboratory of Free Radical Biology and Medicine, Fourth Military Medical University, Xi'an, China
| | - Nan Yu
- Department of Ophthalmology, Heping Hospital affiliated with Changzhi Medical College, Changzhi, China
| | - Lei Zhang
- Department of Nutrition and Food Hygiene & Department of Health Education and Health Management, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Laboratory of Hazard Assessment and Protection in Environmental Health, Shaanxi Key Laboratory of Free Radical Biology and Medicine, Fourth Military Medical University, Xi'an, China
| | - Xiaona Xu
- Department of Nutrition and Food Hygiene & Department of Health Education and Health Management, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Laboratory of Hazard Assessment and Protection in Environmental Health, Shaanxi Key Laboratory of Free Radical Biology and Medicine, Fourth Military Medical University, Xi'an, China
| | - Yan Zhao
- Department of Basic Science, Fourth Military Medical University, Xi'an, China
| | - Zipeng Cao
- Department of Nutrition and Food Hygiene & Department of Health Education and Health Management, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Laboratory of Hazard Assessment and Protection in Environmental Health, Shaanxi Key Laboratory of Free Radical Biology and Medicine, Fourth Military Medical University, Xi'an, China
| | - Feng Wang
- Department of Nutrition and Food Hygiene & Department of Health Education and Health Management, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Laboratory of Hazard Assessment and Protection in Environmental Health, Shaanxi Key Laboratory of Free Radical Biology and Medicine, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
6
|
Liatsos GD, Mariolis I, Hadziyannis E, Bamias A, Vassilopoulos D. Review of BCG immunotherapy for bladder cancer. Clin Microbiol Rev 2025; 38:e0019423. [PMID: 39932308 PMCID: PMC11905372 DOI: 10.1128/cmr.00194-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025] Open
Abstract
SUMMARYFor several decades, intravesical Bacillus Calmette-Guérin (iBCG) immunotherapy has been the gold standard adjuvant treatment for high-risk and selected intermediate-risk patients with non-muscle-invasive bladder cancer (NMIBC). In this review, the mechanisms of iBCG immune-mediated anti-cancer activity and resistance are presented. Furthermore, a literature review of short-term and systemic iBCG-related side effects was performed. A high incidence (75.5%) of iBCG-related short-term, self-limiting adverse events was observed, while more severe iBCG-related local/systemic complications (iBCG-rL/SCs) that required medical treatment or hospitalization occurred at a lower rate (2.35%). Disseminated was the most common form of iBCG-rSCs, while two-thirds of the cases were classified as infectious. The implementation of molecular-based techniques resulted in significantly higher diagnostic rates. Anti-tuberculous treatment (ATT) is the mainstay of treatment, while in patients with any iBCG-rL/SC form involving the vasculature, ATT should be combined with surgery. Local and osteoarticular forms have the lowest mortality, but their management necessitates severe and debilitating surgical procedures. The overall iBCG-attributed mortality in patients with iBCG-rL/SC was 7.4%, with disseminated, vascular, and lung involvements exhibiting the highest rates. Given the global shortage of BCG for the last two decades, as well as the paucity of effective options for iBCG-refractory or relapsing NMIBC patients, new therapeutic strategies are being tested with promising early results.
Collapse
Affiliation(s)
- George D. Liatsos
- 2nd Department of Medicine and Laboratory, National and Kapodistrian University of Athens, School of Medicine, General Hospital of Athens "Hippokration", Athens, Greece
| | - Ilias Mariolis
- 2nd Department of Medicine and Laboratory, National and Kapodistrian University of Athens, School of Medicine, General Hospital of Athens "Hippokration", Athens, Greece
| | - Emilia Hadziyannis
- 2nd Department of Medicine and Laboratory, National and Kapodistrian University of Athens, School of Medicine, General Hospital of Athens "Hippokration", Athens, Greece
| | - Aristotelis Bamias
- 2nd Propaedeutic Department of Internal Medicine, National and Kapodistrian University of Athens, School of Medicine, Attikon University General Hospital, Athens, Greece
| | - Dimitrios Vassilopoulos
- 2nd Department of Medicine and Laboratory, National and Kapodistrian University of Athens, School of Medicine, General Hospital of Athens "Hippokration", Athens, Greece
| |
Collapse
|
7
|
Chang J, Lu J, Liu Q, Xiang T, Zhang S, Yi Y, Li D, Liu T, Liu Z, Chen X, Dong Z, Li C, Yi H, Yu S, Huang L, Qu F, Wang M, Wang D, Dong H, Cheng G, Zhu L, Li J, Li C, Wu P, Xie X, Teschendorff AE, Lin D, Wang X, Wu C. Single-cell multi-stage spatial evolutional map of esophageal carcinogenesis. Cancer Cell 2025; 43:380-397.e7. [PMID: 40068596 DOI: 10.1016/j.ccell.2025.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 01/09/2025] [Accepted: 02/10/2025] [Indexed: 05/13/2025]
Abstract
Cancer development involves the co-evolution of cancer cells and their surrounding microenvironment, yet the dynamics of this interaction within the physical architecture remains poorly understood. Here, we present a spatial transcriptomic map at single-cell resolution, encompassing 127 multi-stage fields of view from 43 patients, to chart the evolutionary trajectories of human esophageal squamous cell carcinoma (ESCC). By analyzing 6.4 million cells, we reveal that ESCC progression is driven by a proliferative epithelial cell subpopulation that acquires dedifferentiated and invasive characteristics. At the late precancerous stage, these cells disrupt the epithelial-stromal interface and recruit normal fibroblasts via JAG1-NOTCH1 signaling, transforming them into cancer-associated fibroblasts (CAFs). This interaction leads to the formation of a "CAF-Epi" (CAF and epithelial cell) niche at the tumor edge that shields the tumor from immune surveillance. The CAF-Epi niche formation is a key indicator of progression in ESCC and other squamous cell carcinomas and patient outcomes.
Collapse
Affiliation(s)
- Jiang Chang
- Department of Health Toxicology, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Junting Lu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Qingyi Liu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Tao Xiang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shaosen Zhang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yonglin Yi
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Dongxu Li
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Tianyuan Liu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China
| | - Zeyuan Liu
- Changping Laboratory, Beijing 102206, China
| | - Xinjie Chen
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zhenghao Dong
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China
| | - Cainan Li
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - HanZhang Yi
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Siqi Yu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Luwei Huang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100875, China
| | - Fangfei Qu
- Changping Laboratory, Beijing 102206, China
| | - Mengdi Wang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100875, China
| | - Dehe Wang
- Changping Laboratory, Beijing 102206, China
| | - Hao Dong
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100875, China
| | - Guoyu Cheng
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Liang Zhu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jiachen Li
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Chenying Li
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Pujie Wu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xiaoting Xie
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Andrew E Teschendorff
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Dongxin Lin
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China; Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou 510060, China.
| | - Xiaoqun Wang
- Changping Laboratory, Beijing 102206, China; State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100875, China; State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, New Cornerstone Science Laboratory, Beijing Normal University, Beijing 100875, China.
| | - Chen Wu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China; CAMS Oxford Institute, Chinese Academy of Medical Sciences, Beijing 100006, China.
| |
Collapse
|
8
|
Ion G, Bostan M, Hardman WE, Putt McFarland M, Bleotu C, Radu N, Diaconu CC, Mihaila M, Caramihai MD, Hotnog CM. Nutrients Lowering Obesity-Linked Chemokines Blamable for Metastasis. Int J Mol Sci 2025; 26:2275. [PMID: 40076892 PMCID: PMC11899810 DOI: 10.3390/ijms26052275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
Food intake is an essential contributor to both health and disease. Nutrients contribute to a beneficial metabolic equilibrium at the cellular level, preventing or delaying disease onset. Dietary intake contributes to obesity, and obesity supports further cancer and metastasis. Metastasis, a multifactorial and multistep process, is supported by the systemic inflammation of obesity. Spreading of the cancer cells requires the presence of a plethora of recruiter and regulator molecules. Molecules such as chemokines are provided at high levels by obesity-associated fat depots. Chemokine up-regulation in adipose tissue of obese individuals has been associated with different types of cancers such as breast, prostate, colon, liver, and stomach. Chemokines support all metastasis steps from invasion/migration to intravasation, circulation, extravasation, and ending with colonization. The obesity pool of chemokines supporting these processes includes CCL2, CCL3, CCL4, CCL5, CCL7, CCL8, CCL11, CCL18, CCL19, CCL20, CXCL1, CXCL5, CXCL 8, CXCL10, and CXCL12. Keeping obesity under control can be beneficial in reducing the levels of pro-inflammatory chemokines and the risk of poor cancer outcome. Nutrients can help, support, and boost cancer treatment effects or jeopardize the treatment. Constituents with anti-inflammatory and anti-obesity properties such as polyphenols, organosulfur components, fatty acids, curcumin, and vitamin E have a proven beneficial effect in lowering obesity and its contribution to metastasis.
Collapse
Affiliation(s)
- Gabriela Ion
- Center of Immunology, Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (G.I.); (C.M.H.)
| | - Marinela Bostan
- Center of Immunology, Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (G.I.); (C.M.H.)
- Department of Immunology, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania
| | - Wanda Elaine Hardman
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA (M.P.M.)
| | - Margaret Putt McFarland
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA (M.P.M.)
| | - Coralia Bleotu
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.B.); (C.C.D.)
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 060023 Bucharest, Romania
- The Academy of Romanian Scientist, 050711 Bucharest, Romania
| | - Nicoleta Radu
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464 Bucharest, Romania;
- Biotechnology Department, National Institute for Chemistry and Petrochemistry R&D of Bucharest, 060021 Bucharest, Romania
| | - Carmen Cristina Diaconu
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.B.); (C.C.D.)
| | - Mirela Mihaila
- Center of Immunology, Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (G.I.); (C.M.H.)
- Faculty of Pharmacy, Titu Maiorescu University, 040314 Bucharest, Romania
| | - Mihai Dan Caramihai
- Faculty of Automatic Control and Computer Science, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania;
| | - Camelia Mia Hotnog
- Center of Immunology, Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (G.I.); (C.M.H.)
- Department of Biochemistry and Biophysics, Faculty of Midwives and Nursing, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania
| |
Collapse
|
9
|
Chen L, Hao Y, Zhai T, Yang F, Chen S, Lin X, Li J. Single-cell Analysis Highlights Anti-apoptotic Subpopulation Promoting Malignant Progression and Predicting Prognosis in Bladder Cancer. Cancer Inform 2025; 24:11769351251323569. [PMID: 40018511 PMCID: PMC11866393 DOI: 10.1177/11769351251323569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 02/06/2025] [Indexed: 03/01/2025] Open
Abstract
Backgrounds Bladder cancer (BLCA) has a high degree of intratumor heterogeneity, which significantly affects patient prognosis. We performed single-cell analysis of BLCA tumors and organoids to elucidate the underlying mechanisms. Methods Single-cell RNA sequencing (scRNA-seq) data of BLCA samples were analyzed using Seurat, harmony, and infercnv for quality control, batch correction, and identification of malignant epithelial cells. Gene set enrichment analysis (GSEA), cell trajectory analysis, cell cycle analysis, and single-cell regulatory network inference and clustering (SCENIC) analysis explored the functional heterogeneity between malignant epithelial cell subpopulations. Cellchat was used to infer intercellular communication patterns. Co-expression analysis identified co-expression modules of the anti-apoptotic subpopulation. A prognostic model was constructed using hub genes and Cox regression, and nomogram analysis was performed. The tumor immune dysfunction and exclusion (TIDE) algorithm was applied to predict immunotherapy response. Results Organoids recapitulated the cellular and mutational landscape of the parent tumor. BLCA progression was characterized by mesenchymal features, epithelial-mesenchymal transition (EMT), immune microenvironment remodeling, and metabolic reprograming. An anti-apoptotic tumor subpopulation was identified, characterized by aberrant gene expression, transcriptional instability, and a high mutational burden. Key regulators of this subpopulation included CEBPB, EGR1, ELF3, and EZH2. This subpopulation interacted with immune and stromal cells through signaling pathways such as FGF, CXCL, and VEGF to promote tumor progression. Myofibroblast cancer-associated fibroblasts (mCAFs) and inflammatory cancer-associated fibroblasts (iCAFs) differentially contributed to metastasis. Protein-protein interaction (PPI) network analysis identified functional modules related to apoptosis, proliferation, and metabolism in the anti-apoptotic subpopulation. A 5-gene risk model was developed to predict patient prognosis, which was significantly associated with immune checkpoint gene expression, suggesting potential implications for immunotherapy. Conclusions We identified a distinct anti-apoptotic tumor subpopulation as a key driver of tumor progression with prognostic significance, laying the foundation for the development of new therapeutic strategies to improve patient outcomes.
Collapse
Affiliation(s)
- Linhuan Chen
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Yangyang Hao
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Tianzhang Zhai
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Fan Yang
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Shuqiu Chen
- Department of Urology, Southeast University Zhongda Hospital, Nanjing, China
| | - Xue Lin
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Jian Li
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| |
Collapse
|
10
|
Nakagawa R, Izumi K, Hiratsuka K, Inaba T, Koketsu Y, Toriumi R, Aoyama S, Kamijima T, Kano H, Makino T, Naito R, Kadomoto S, Iwamoto H, Yaegashi H, Kawaguchi S, Nohara T, Shigehara K, Nakata H, Lin WJ, Mizokami A. Tumor-associated macrophages promote bladder cancer metastasis through the CCL20-CCR6 axis. Neoplasia 2025; 60:101103. [PMID: 39700633 PMCID: PMC11729035 DOI: 10.1016/j.neo.2024.101103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/07/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024]
Abstract
We investigated the mechanisms of interaction between bladder cancer (BC) cells and tumor-associated macrophages (TAMs). Coculturing BC cell lines (UMUC3 and T24) with macrophage-like cells differentiated from THP-1 into M2-like TAMs revealed a decrease in Cluster of Differentiation (CD) 68 expression and an increase in CD206 expression. This differentiation enhanced BC cell migration and invasion. Additionally, M2-like TAMs significantly increased the secretion of C-C motif chemokine ligand (CCL) 20, which promotes BC cell migration and invasion via the MEK/ERK signaling pathway through its paracrine effects. Coculturing with TAMs also elevated the expression of CC chemokine receptor (CCR) 6 in BC cells, indicating increased sensitivity to CCL20. Immunohistochemistry analysis of human BC tissues showed a significant correlation between CCR6 expression levels and BC prognosis. Inhibition of CCR6 reduced BC cell metastasis both in vitro and in vivo. Additionally, CXCL1 secretion from BC cells was found to contribute to the M2-like polarization of macrophages and to enhance BC cell migration and invasion through autocrine and indirect effects. In summary, CCL20 and CXCL1 play crucial roles in the interaction between BC cells and TAMs.
Collapse
Affiliation(s)
- Ryunosuke Nakagawa
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Kouji Izumi
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan.
| | - Kaoru Hiratsuka
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Takahiro Inaba
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Yoshiki Koketsu
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Ren Toriumi
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Shuhei Aoyama
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Taiki Kamijima
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Hiroshi Kano
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Tomoyuki Makino
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Renato Naito
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Suguru Kadomoto
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Hiroaki Iwamoto
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Hiroshi Yaegashi
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Shohei Kawaguchi
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Takahiro Nohara
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Kazuyoshi Shigehara
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Hiroki Nakata
- Department of Clinical Engineering, Faculty of Health Sciences, Komatsu University, Komatsu, Japan
| | - Wen-Jye Lin
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Atsushi Mizokami
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| |
Collapse
|
11
|
Cao Z, Quazi S, Arora S, Osellame LD, Burvenich IJ, Janes PW, Scott AM. Cancer-associated fibroblasts as therapeutic targets for cancer: advances, challenges, and future prospects. J Biomed Sci 2025; 32:7. [PMID: 39780187 PMCID: PMC11715488 DOI: 10.1186/s12929-024-01099-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 11/09/2024] [Indexed: 01/11/2025] Open
Abstract
Research into cancer treatment has been mainly focused on developing therapies to directly target cancer cells. Over the past decade, extensive studies have revealed critical roles of the tumour microenvironment (TME) in cancer initiation, progression, and drug resistance. Notably, cancer-associated fibroblasts (CAFs) have emerged as one of the primary contributors in shaping TME, creating a favourable environment for cancer development. Many preclinical studies have identified promising targets on CAFs, demonstrating remarkable efficacy of some CAF-targeted treatments in preclinical models. Encouraged by these compelling findings, therapeutic strategies have now advanced into clinical evaluation. We aim to provide a comprehensive review of relevant subjects on CAFs, including CAF-related markers and targets, their multifaceted roles, and current landscape of ongoing clinical trials. This knowledge can guide future research on CAFs and advocate for clinical investigations targeting CAFs.
Collapse
Affiliation(s)
- Zhipeng Cao
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia.
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia.
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VIC, 3084, Australia.
| | - Sadia Quazi
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Sakshi Arora
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Laura D Osellame
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Ingrid J Burvenich
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Peter W Janes
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Andrew M Scott
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia.
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia.
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VIC, 3084, Australia.
- Department of Medicine, University of Melbourne, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
12
|
Wen YF, Huang WJ, Chen XL, Cai HT, Zhang YB, Song XL, Xie CB, Peng HH, Yu HW, Chen CC, Wei LQ, Zhou TC, Cai S, Wang F, Lin XD. Predictive value of CXCL1 +_FAP + phenotype in CAFs for distant metastasis and its correlation with PD-L1 expression in locoregionally advanced nasopharyngeal carcinoma patients. Oral Oncol 2024; 157:106963. [PMID: 39032343 DOI: 10.1016/j.oraloncology.2024.106963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
OBJECTIVE There is a lack of effective biomarkers for predicting the distant metastasis in nasopharyngeal carcinoma (NPC). We aimed to explore the expression of FAP+Cancer-associated fibroblasts (CAFs) derived CXCL1 in NPC and its predictive values for distant metastasis and correlation with PD-L1 expression. MATERIALS AND METHODS A total of 345 patients with locoregionally advanced NPC were retrospectively enrolled (the training cohort: the validation cohort = 160:185). Co-expression of CXCL1 and FAP and the expression of PD-L1 were detected by multi-immunofluorescence staining and immunohistochemistry, respectively. The primary end-point was distant metastasis-free survival (DMFS). The Kaplan-Meier method was used to calculate the survival. The Cox proportional hazards model was used to assess prognostic risk factors. RESULTS A novel CXCL1+_FAP+ phenotype in CAFs was identified in NPC and then used to divide patients into low and high risk groups. Both in the training cohort and validation cohort, patients in the high risk group had poorer DMFS, overall survival (OS), progression-free survival (PFS) and locoregional relapse-free survival (LRFS) than patients in the low risk group. Multivariate analysis revealed CXCL1+_FAP+ phenotype was an independent prognostic factor for DMFS, OS, PFS and LRFS. Further results showed patients in the high risk group had higher PD-L1 expression than those in the low risk group. CONCLUSION Our study showed CXCL1+_FAP+ phenotype in CAFs could effectively classified locoregionally advanced NPC patients into different risk groups for distant metastasis and might be a potential biomarker for anti-PD-1/PD-L1 immunotherapy.
Collapse
Affiliation(s)
- Yue-Feng Wen
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou Province, China.
| | - Wen-Jin Huang
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou Province, China.
| | - Xiao-Long Chen
- Department of Spinal and Spinal Cord Rehabilitation, Guangdong Province Work Injury Rehabilitation Hospital, Guangzhou Province, China.
| | - Hui-Tang Cai
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou Province, China.
| | - Yi-Bin Zhang
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou Province, China.
| | - Xian-Lu Song
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou Province, China.
| | - Chang-Bin Xie
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou Province, China.
| | - Hai-Hua Peng
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou Province, China.
| | - Hong-Wei Yu
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou Province, China.
| | - Cheng-Cong Chen
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou Province, China.
| | - Li-Qiu Wei
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou Province, China.
| | - Tong-Chong Zhou
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou Province, China.
| | - Shuang Cai
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou Province, China.
| | - Fang Wang
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou Province, China.
| | - Xiao-Dan Lin
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou Province, China.
| |
Collapse
|
13
|
Mao S, Wang Y, Chao N, Zeng L, Zhang L. Integrated analysis of single-cell RNA-seq and bulk RNA-seq reveals immune suppression subtypes and establishes a novel signature for determining the prognosis in lung adenocarcinoma. Cell Oncol (Dordr) 2024; 47:1697-1713. [PMID: 38616208 DOI: 10.1007/s13402-024-00948-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2024] [Indexed: 04/16/2024] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is the most common histological type of lung cancer with lower survival rates. Recent advancements in targeted therapies and immunotherapies targeting immune checkpoints have achieved remarkable success, there is still a large percentage of LUAD that lacks available therapeutic options. Due to tumor heterogeneity, the diagnosis and treatment of LUAD are challenging. Exploring the biology of LUAD and identifying new biomarker and therapeutic targets options are essential. METHOD We performed single-cell RNA sequencing (scRNA-seq) of 6 paired primary and adjacent LUAD tissues, and integrative omics analysis of the scRNA-seq, bulk RNA-seq and whole-exome sequencing data revealed molecular subtype characteristics. Our experimental results confirm that CDC25C gene can serve as a potential marker for poor prognosis in LUAD. RESULTS We investigated aberrant gene expression in diverse cell types in LUAD via the scRNA-seq data. Moreover, multi-omics clustering revealed four subgroups defined by transcriptional profile and molecular subtype 4 (MS4) with poor survival probability, and immune cell infiltration signatures revealed that MS4 tended to be the immunosuppressive subtype. Our study revealed that the CDC25C gene can be a distinct prognostic biomarker that indicates immune infiltration levels and response to immunotherapy in LUAD patients. Our experimental results concluded that CDC25C expression affects lung cancer cell invasion and migration, might play a key role in regulating Epithelial-Mesenchymal Transition (EMT) pathways. CONCLUSIONS Our multi-omics result revealed a comprehensive set of molecular attributes associated with prognosis-related genes in LUAD at the cellular and tissue level. Identification of a subtype of immunosuppressive TME and prognostic signature for LUAD. We identified the cell cycle regulation gene CDC25C affects lung cancer cell invasion and migration, which can be used as a potential biomarker for LUAD.
Collapse
Affiliation(s)
- Shengqiang Mao
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yilong Wang
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ningning Chao
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Lingyan Zeng
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Li Zhang
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
14
|
Tatsuno R, Komohara Y, Pan C, Kawasaki T, Enomoto A, Jubashi T, Kono H, Wako M, Ashizawa T, Haro H, Ichikawa J. Surface Markers and Chemokines/Cytokines of Tumor-Associated Macrophages in Osteosarcoma and Other Carcinoma Microenviornments-Contradictions and Comparisons. Cancers (Basel) 2024; 16:2801. [PMID: 39199574 PMCID: PMC11353089 DOI: 10.3390/cancers16162801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
Osteosarcoma (OS) is the most common primary bone tumor in children and adolescents. Prognosis is improving with advances in multidisciplinary treatment strategies, but the development of new anticancer agents has not, and improvement in prognosis for patients with pulmonary metastases has stalled. In recent years, the tumor microenvironment (TME) has gained attention as a therapeutic target for cancer. The immune component of OS TME consists mainly of tumor-associated macrophages (TAMs). They exhibit remarkable plasticity, and their phenotype is influenced by the TME. In general, surface markers such as CD68 and CD80 show anti-tumor effects, while CD163 and CD204 show tumor-promoting effects. Surface markers have potential value as diagnostic and prognostic biomarkers. The cytokines and chemokines produced by TAMs promote tumor growth and metastasis. However, the role of TAMs in OS remains unclear to date. In this review, we describe the role of TAMs in OS by focusing on TAM surface markers and the TAM-produced cytokines and chemokines in the TME, and by comparing their behaviors in other carcinomas. We found contrary results from different studies. These findings highlight the urgency for further research in this field to improve the stalled OS prognosis percentages.
Collapse
Affiliation(s)
- Rikito Tatsuno
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi 400-0016, Japan; (R.T.); (T.J.); (H.K.); (M.W.); (T.A.); (H.H.)
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8555, Japan; (Y.K.); (C.P.)
| | - Cheng Pan
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8555, Japan; (Y.K.); (C.P.)
| | - Tomonori Kawasaki
- Department of Pathology, Saitama Medical University International Medical Center, Saitama 350-1298, Japan;
| | - Atsushi Enomoto
- Department of Pathology, Graduate School of Medicine, Nagoya University, Nagoya 464-8601, Japan;
| | - Takahiro Jubashi
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi 400-0016, Japan; (R.T.); (T.J.); (H.K.); (M.W.); (T.A.); (H.H.)
| | - Hiroyuki Kono
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi 400-0016, Japan; (R.T.); (T.J.); (H.K.); (M.W.); (T.A.); (H.H.)
| | - Masanori Wako
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi 400-0016, Japan; (R.T.); (T.J.); (H.K.); (M.W.); (T.A.); (H.H.)
| | - Tomoyuki Ashizawa
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi 400-0016, Japan; (R.T.); (T.J.); (H.K.); (M.W.); (T.A.); (H.H.)
| | - Hirotaka Haro
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi 400-0016, Japan; (R.T.); (T.J.); (H.K.); (M.W.); (T.A.); (H.H.)
| | - Jiro Ichikawa
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi 400-0016, Japan; (R.T.); (T.J.); (H.K.); (M.W.); (T.A.); (H.H.)
| |
Collapse
|
15
|
Zhang L, Gu S, Wang L, Zhao L, Li T, Zhao X, Zhang L. M2 macrophages promote PD-L1 expression in triple-negative breast cancer via secreting CXCL1. Pathol Res Pract 2024; 260:155458. [PMID: 39003998 DOI: 10.1016/j.prp.2024.155458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/26/2024] [Accepted: 07/07/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND M2 macrophages are known to play a significant role in the progression of triple-negative breast cancer (TNBC) by creating an immunosuppressive microenvironment. The aim of this study is to investigate the impact of M2 macrophages on TNBC and their correlation with programmed death-ligand 1 (PD-L1) expression. METHODS We employed a co-culture system to analyze the role of the mutual regulation of M2 macrophages and TNBC cells. Employing a multifaceted approach, including bioinformatics analysis, Western blotting, flow cytometry analysis, ELISA, qRT-PCR, lentivirus infection, mouse models, and IHC, we aimed to elucidate the influence and mechanism of M2 macrophages on PD-L1 expression. RESULTS The results showed a substantial infiltration of M2 macrophages in TNBC tissue, which demonstrated a positive correlation with PD-L1 expression. CXCL1 exhibited abnormally high expression in M2 macrophages and enhanced the expression of PD-L1 in TNBC cells. Notably, silencing CXCL1 or its receptor CXCR2 inhibited M2 macrophages-induced expression of PD-L1. Mechanistically, CXCL1 derived from M2 macrophages binding to CXCR2 activated the PI3K/AKT/NF-κB signaling pathway, resulting in increased PD-L1 expression in TNBC. CONCLUSION Broadly speaking, these results provide evidence for the immunosuppressive role of M2 macrophages and CXCL1 in TNBC cells, indicating their potential as therapeutic biomarkers.
Collapse
Affiliation(s)
- Lifen Zhang
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Shanzhi Gu
- Department of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Lu Wang
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Lin Zhao
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Xinhan Zhao
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Lingxiao Zhang
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
16
|
Iwanaga R, Yamamoto TM, Gomez K, Nguyen LL, Woodruff ER, Post MD, Mikeska RG, Danis E, Danhorn T, Boorgula MP, Mitra SS, Marjon NA, Bitler BG, Brubaker LW. Tumor-Intrinsic Activity of Chromobox 2 Remodels the Tumor Microenvironment in High-grade Serous Carcinoma. CANCER RESEARCH COMMUNICATIONS 2024; 4:1919-1932. [PMID: 38984891 PMCID: PMC11298703 DOI: 10.1158/2767-9764.crc-24-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/29/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024]
Abstract
Chromobox 2 (CBX2), an epigenetic reader and component of polycomb repressor complex 1, is highly expressed in >75% of high-grade serous carcinoma. Increased CBX2 expression is associated with poorer survival, whereas CBX2 knockdown leads to improved chemotherapy sensitivity. In a high-grade serous carcinoma immune-competent murine model, knockdown of CBX2 decreased tumor progression. We sought to explore the impact of modulation of CBX2 on the tumor immune microenvironment (TIME), understanding that the TIME plays a critical role in disease progression and development of therapy resistance. Exploration of existing datasets demonstrated that elevated CBX2 expression significantly correlated with specific immune cell types in the TIME. RNA sequencing and pathway analysis of differentially expressed genes demonstrated immune signature enrichment. Confocal microscopy and co-culture experiments found that modulation of CBX2 leads to increased recruitment and infiltration of macrophages. Flow cytometry of macrophages cultured with CBX2-overexpressing cells showed increased M2-like macrophages and decreased phagocytosis activity. Cbx2 knockdown in the Trp53-null, Brca2-null ID8 syngeneic murine model (ID8 Trp53-/-Brca2-/-) led to decreased tumor progression compared with the control. NanoString immuno-oncology panel analysis suggested that knockdown in Cbx2 shifts immune cell composition, with an increase in macrophages. Multispectral immunohistochemistry (mIHC) further confirmed an increase in macrophage infiltration. Increased CBX2 expression leads to recruitment and polarization of protumor macrophages, and targeting CBX2 may serve to modulate the TIME to enhance the efficacy of immune therapies. SIGNIFICANCE CBX2 expression correlates with the TIME. CBX2 modulation shifts the macrophage population, potentially leading to an immunosuppressive microenvironment, highlighting CBX2 as a target to improve efficacy of immunotherapy.
Collapse
Affiliation(s)
- Ritsuko Iwanaga
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado.
| | - Tomomi M. Yamamoto
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado.
| | - Karina Gomez
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado.
| | - Lily L. Nguyen
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado.
| | - Elizabeth R. Woodruff
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado.
| | - Miriam D. Post
- Department of Pathology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado.
| | - Railey G. Mikeska
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado.
| | - Etienne Danis
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| | - Thomas Danhorn
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| | - Meher P. Boorgula
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| | - Siddhartha S. Mitra
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado.
| | - Nicole A. Marjon
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado.
| | - Benjamin G. Bitler
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado.
| | - Lindsay W. Brubaker
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado.
| |
Collapse
|
17
|
Nishimura N, Miyake M, Onishi S, Fujii T, Miyamoto T, Tomizawa M, Shimizu T, Morizawa Y, Hori S, Gotoh D, Nakai Y, Torimoto K, Tanaka N, Fujimoto K. Photodynamic Therapeutic Effect during 5-Aminolevulinic Acid-Mediated Photodynamic Diagnosis-Assisted Transurethral Resection of Bladder Tumors. Adv Urol 2024; 2024:7548001. [PMID: 39104915 PMCID: PMC11300098 DOI: 10.1155/2024/7548001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/11/2024] [Indexed: 08/07/2024] Open
Abstract
Background Photodynamic diagnosis-assisted transurethral resection of bladder tumors (PDD-TURBT) enhances detection of elusive lesions compared to standard white light-transurethral resection of bladder tumors (WL-TURBT). If minimal light exposure during PDD-TURBT induces the accumulation of reactive oxygen species (ROS), potentially resulting in phototoxicity in small lesions, apoptosis may be triggered in residual small tumors, allowing them to escape resection. We investigated the hypothesis of a potential photodynamic therapeutic effect during PDD-TURBT. Methods and Materials Our study, conducted between January 2016 and December 2020 at Nara Medical University Hospital, focused on a specific emphasis on ROS production. Immunohistochemical analysis for thymidine glycol and N ε -hexanoyl-lysine was performed on 69 patients who underwent 5-aminolevulinic acid-mediated PDD-TURBT and 28 patients who underwent WL-TURBT. Additionally, we incrementally applied the minimal irradiation energy to T24 and UM-UC-3 cells treated with 5-aminolevulinic acid using instruments similar to those used in PDD-TURBT and evaluated intracellular ROS production and phototoxicity. Results Immunohistochemical analysis revealed a significant increase in production of thymidine glycol and N ε -hexanoyl-lysine within the PDD-TURBT group. In T24 and UM-UC-3 cells treated with 5-aminolevulinic acid and light exposure, immunofluorescent staining demonstrated a dose-dependent increase in intracellular ROS production. In addition, higher irradiation energy levels were associated with a greater increase in ROS production and phototoxicity, as well as more significant decrease in mitochondrial membrane potential. Conclusion Although the irradiation energy used in PDD-TURBT did not reach the levels commonly used in photodynamic therapy, our findings support the presence of a potential cytotoxic effect on bladder lesions during PDD-TURBT.
Collapse
Affiliation(s)
- Nobutaka Nishimura
- Department of UrologyNara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan
| | - Makito Miyake
- Department of UrologyNara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan
| | - Sayuri Onishi
- Department of UrologyNara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan
| | - Tomomi Fujii
- Department of Diagnostic PathologyNara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan
| | - Tatsuki Miyamoto
- Department of UrologyNara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan
| | - Mitsuru Tomizawa
- Department of UrologyNara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan
| | - Takuto Shimizu
- Department of UrologyNara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan
| | - Yosuke Morizawa
- Department of UrologyNara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan
| | - Shunta Hori
- Department of UrologyNara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan
| | - Daisuke Gotoh
- Department of UrologyNara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan
| | - Yasushi Nakai
- Department of UrologyNara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan
| | - Kazumasa Torimoto
- Department of UrologyNara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan
| | - Nobumichi Tanaka
- Department of Prostate BrachytherapyNara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan
| | - Kiyohide Fujimoto
- Department of UrologyNara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan
| |
Collapse
|
18
|
Huang W, Jiang M, Lin Y, Qi Y, Li B. Crosstalk between cancer cells and macrophages promotes OSCC cell migration and invasion through a CXCL1/EGF positive feedback loop. Discov Oncol 2024; 15:145. [PMID: 38713320 PMCID: PMC11076430 DOI: 10.1007/s12672-024-00972-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 04/04/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND C-X-C motif chemokine ligand 1 (CXCL1) and epithelial growth factor (EGF) are highly secreted by oral squamous cell carcinoma (OSCC) cells and tumor-associated macrophages, respectively. Recent studies have shown that there is intricate "cross-talk" between OSCC cells and macrophages. However, the underlying mechanisms are still poorly elucidated. METHODS The expression of CXCL1 was detected by immunohistochemistry in OSCC clinical samples. CXCL1 levels were evaluated by RT‒PCR and ELISA in an OSCC cell line and a normal epithelial cell line. The expression of EGF was determined by RT‒PCR and ELISA. The effect of EGF on the proliferation of OSCC cells was evaluated by CCK-8 and colony formation assays. The effect of EGF on the migration and invasion ability and epithelial-mesenchymal transition (EMT) of OSCC cells was determined by wound healing, Transwell, RT‒PCR, Western blot and immunofluorescence assays. The polarization of macrophages was evaluated by RT‒PCR and flow cytometry. Western blotting was used to study the molecular mechanism in OSCC. RESULTS The expression of C-X-C motif chemokine ligand 1 (CXCL1) was higher in the OSCC cell line (Cal27) than in immortalized human keratinocytes (Hacat cells). CXCL1 derived from Cal27 cells upregulates the expression of epithelial growth factor (EGF) in macrophages. Paracrine stimulation mediated by EGF further facilitates the epithelial-mesenchymal transition (EMT) of Cal27 cells and initiates the upregulation of CXCL1 in a positive feedback-manner. Mechanistically, EGF signaling-induced OSCC cell invasion and migration can be ascribed to the activation of NF-κB signaling mediated by the epithelial growth factor receptor (EGFR), as determined by western blotting. CONCLUSIONS OSCC cell-derived CXCL1 can stimulate the M2 polarization of macrophages and the secretion of EGF. Moreover, EGF significantly activates NF-κB signaling and promotes the migration and invasion of OSCC cells in a paracrine manner. A positive feedback loop between OSCC cells and macrophages was formed, contributing to the promotion of OSCC progression.
Collapse
Affiliation(s)
- Wei Huang
- Experimental Teaching Center, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, 110001, China
| | - Mingjing Jiang
- Experimental Teaching Center, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, 110001, China
| | - Ying Lin
- Experimental Teaching Center, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, 110001, China
| | - Ying Qi
- Experimental Teaching Center, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, 110001, China
| | - Bo Li
- Experimental Teaching Center, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, 110001, China.
- Department of Oral Anatomy and Physiology, Hospital of Stomatology, Jilin University, Jilin Provincial Key Laboratory of Oral Biomedical Engineering, Changchun, 130021, China.
| |
Collapse
|
19
|
Wu J, Gao F, Meng R, Li H, Mao Z, Xiao Y, Pu Q, Du M, Zhang Z, Shao Q, Zheng R, Wang M. Single-cell and multi-omics analyses highlight cancer-associated fibroblasts-induced immune evasion and epithelial mesenchymal transition for smoking bladder cancer. Toxicology 2024; 504:153782. [PMID: 38493947 DOI: 10.1016/j.tox.2024.153782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/10/2024] [Accepted: 03/15/2024] [Indexed: 03/19/2024]
Abstract
Tobacco carcinogens are recognized as critical hazard factors for bladder tumorigenesis, affecting the prognosis of patients through aromatic amines components. However, the specific function of tobacco carcinogens and systematic assessment models in the prognosis of bladder cancer remains poorly elucidated. We retrieved bladder cancer specific tobacco carcinogens-related genes from Comparative Toxicogenomic Database, our Nanjing Bladder Cancer cohort and TCGA database. Gene×Gene interaction method was utilized to establish a prognostic signature. Integrative assessment of immunogenomics, tumor microenvironments and single-cell RNA-sequencing were performed to illustrate the internal relations of key events from different levels. Finally, we comprehensively identified 33 essential tobacco carcinogens-related genes to construct a novel prognostic signature, and found that high-risk patients were characterized by significantly worse overall survival (HR=2.25; Plog-rank < 0.01). Single-cell RNA-sequencing and multi-omics analysis demonstrated that cancer-associated fibroblasts mediated the crosstalk between epithelial-mesenchymal transition progression and immune evasion. Moreover, an adverse outcome pathway framework was established to facilitate our understanding to the tobacco carcinogens-triggered bladder tumorigenesis. Our study systematically provided immune microenvironmental alternations for smoking-induced adverse survival outcomes in bladder cancer. These findings facilitated the integrative multi-omics insights into risk assessment and toxic mechanisms of tobacco carcinogens.
Collapse
Affiliation(s)
- Jiajin Wu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Fang Gao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Rui Meng
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Huiqin Li
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Zhenguang Mao
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Yanping Xiao
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Qiuyi Pu
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Mulong Du
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhengdong Zhang
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Qiang Shao
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.
| | - Rui Zheng
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| | - Meilin Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.
| |
Collapse
|
20
|
Korbecki J, Bosiacki M, Szatkowska I, Kupnicka P, Chlubek D, Baranowska-Bosiacka I. The Clinical Significance and Involvement in Molecular Cancer Processes of Chemokine CXCL1 in Selected Tumors. Int J Mol Sci 2024; 25:4365. [PMID: 38673949 PMCID: PMC11050300 DOI: 10.3390/ijms25084365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Chemokines play a key role in cancer processes, with CXCL1 being a well-studied example. Due to the lack of a complete summary of CXCL1's role in cancer in the literature, in this study, we examine the significance of CXCL1 in various cancers such as bladder, glioblastoma, hemangioendothelioma, leukemias, Kaposi's sarcoma, lung, osteosarcoma, renal, and skin cancers (malignant melanoma, basal cell carcinoma, and squamous cell carcinoma), along with thyroid cancer. We focus on understanding how CXCL1 is involved in the cancer processes of these specific types of tumors. We look at how CXCL1 affects cancer cells, including their proliferation, migration, EMT, and metastasis. We also explore how CXCL1 influences other cells connected to tumors, like promoting angiogenesis, recruiting neutrophils, and affecting immune cell functions. Additionally, we discuss the clinical aspects by exploring how CXCL1 levels relate to cancer staging, lymph node metastasis, patient outcomes, chemoresistance, and radioresistance.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zyty 28, 65-046 Zielona Góra, Poland
| | - Mateusz Bosiacki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
| | - Iwona Szatkowska
- Department of Ruminants Science, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Klemensa Janickiego 29 St., 71-270 Szczecin, Poland;
| | - Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
| |
Collapse
|
21
|
Tang L, Xu H, Wu T, Wu W, Lu Y, Gu J, Wang X, Zhou M, Chen Q, Sun X, Cai H. Advances in tumor microenvironment and underlying molecular mechanisms of bladder cancer: a systematic review. Discov Oncol 2024; 15:111. [PMID: 38602556 PMCID: PMC11009183 DOI: 10.1007/s12672-024-00902-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/21/2024] [Indexed: 04/12/2024] Open
Abstract
Bladder cancer is one of the most frequent malignant tumors of the urinary system. The prevalence of bladder cancer among men and women is roughly 5:2, and both its incidence and death have been rising steadily over the past few years. At the moment, metastasis and recurrence of advanced bladder cancer-which are believed to be connected to the malfunction of multigene and multilevel cell signaling network-remain the leading causes of bladder cancer-related death. The therapeutic treatment of bladder cancer will be greatly aided by the elucidation of these mechanisms. New concepts for the treatment of bladder cancer have been made possible by the advancement of research technologies and a number of new treatment options, including immunotherapy and targeted therapy. In this paper, we will extensively review the development of the tumor microenvironment and the possible molecular mechanisms of bladder cancer.
Collapse
Affiliation(s)
- Liu Tang
- Department of Nursing, Jiangsu Cancer Hospital and The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Haifei Xu
- Department of Urology, Nantong Tumor Hospital and Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Tong Wu
- Department of Radiology, Nanjing Medical University The Fourth School of Clinical Medicine, Nanjing, Jiangsu, China
| | - Wenhao Wu
- Department of Radiology, Nanjing Medical University The Fourth School of Clinical Medicine, Nanjing, Jiangsu, China
| | - Yuhao Lu
- Department of Radiology, Nanjing Medical University The Fourth School of Clinical Medicine, Nanjing, Jiangsu, China
| | - Jijia Gu
- Department of Radiology, Nanjing Medical University The Fourth School of Clinical Medicine, Nanjing, Jiangsu, China
| | - Xiaoling Wang
- Department of Urology, Nantong Tumor Hospital and Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Mei Zhou
- Department of Nursing, Jiangsu Cancer Hospital and The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China.
| | - Qiuyang Chen
- Department of Radiology, Nanjing Medical University The Fourth School of Clinical Medicine, Nanjing, Jiangsu, China.
| | - Xuan Sun
- Department of Radiology, Nanjing Medical University The Fourth School of Clinical Medicine, Nanjing, Jiangsu, China.
| | - Hongzhou Cai
- Department of Urology, Jiangsu Cancer Hospital and The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China.
| |
Collapse
|
22
|
Lu G, Qiu Y. SPI1-mediated CXCL12 expression in bladder cancer affects the recruitment of tumor-associated macrophages. Mol Carcinog 2024; 63:448-460. [PMID: 38037991 DOI: 10.1002/mc.23663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/08/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023]
Abstract
Bladder cancer (BC) originates principally from the epithelial compartment of the bladder. The immune system and its diverse players, chemokines, in particular, have been related to the responses against BC. The goal of the study here was to examine if C-X-C motif chemokine 12 (CXCL12) in BC cells could manipulate protumorigenic properties of tumor-associated macrophages (TAMs) which affects anticancer immunity supporting tumor development in the tumor microenvironment. CXCL12 was found to be overexpressed in BC and predicted poor survival. CXCL12 in BC was associated with multiple immune cell infiltrations, with TAM infiltration playing a key role. CXCL12 elevated chemotaxis of TAMs. CXCL12 downregulation inhibited cellular activity and TAM and suppressed the ability of TAMs to secrete inflammatory factors and MMP9. Furthermore, chromatin immunoprecipitation analysis revealed that SPI1 was localized to the CXCL12 promoter in BC cells, suggesting that CXCL12 serves a direct target of SPI1, which was consistent with the fact that SPI1 reversed the repressive effects of si-CXCL12 on BC cell activity and TAM recruitment in vitro and in vivo. Collectively, these findings suggest that SPI1 is involved in modulating TAM recruitment, representing a new mechanism through which it may influence tumor growth. This may be partly mediated by regulating CXCL12 expression.
Collapse
Affiliation(s)
- Guimei Lu
- Department of Laboratory, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, People's Republic of China
| | - Yue Qiu
- Medical Oncology Department of Gastrointestinal Cancer, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|
23
|
Wu Y, Li J, Shu L, Tian Z, Wu S, Wu Z. Ultrasound combined with microbubble mediated immunotherapy for tumor microenvironment. Front Pharmacol 2024; 15:1304502. [PMID: 38487163 PMCID: PMC10937735 DOI: 10.3389/fphar.2024.1304502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/11/2024] [Indexed: 03/17/2024] Open
Abstract
The tumor microenvironment (TME) plays an important role in dynamically regulating the progress of cancer and influencing the therapeutic results. Targeting the tumor microenvironment is a promising cancer treatment method in recent years. The importance of tumor immune microenvironment regulation by ultrasound combined with microbubbles is now widely recognized. Ultrasound and microbubbles work together to induce antigen release of tumor cell through mechanical or thermal effects, promoting antigen presentation and T cells' recognition and killing of tumor cells, and improve tumor immunosuppression microenvironment, which will be a breakthrough in improving traditional treatment problems such as immune checkpoint blocking (ICB) and himeric antigen receptor (CAR)-T cell therapy. In order to improve the therapeutic effect and immune regulation of TME targeted tumor therapy, it is necessary to develop and optimize the application system of microbubble ultrasound for organs or diseases. Therefore, the combination of ultrasound and microbubbles in the field of TME will continue to focus on developing more effective strategies to regulate the immunosuppression mechanisms, so as to activate anti-tumor immunity and/or improve the efficacy of immune-targeted drugs, At present, the potential value of ultrasound combined with microbubbles in TME targeted therapy tumor microenvironment targeted therapy has great potential, which has been confirmed in the experimental research and application of breast cancer, colon cancer, pancreatic cancer and prostate cancer, which provides a new alternative idea for clinical tumor treatment. This article reviews the research progress of ultrasound combined with microbubbles in the treatment of tumors and their application in the tumor microenvironment.
Collapse
Affiliation(s)
| | | | | | | | | | - Zuohui Wu
- Department of Ultrasound, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
24
|
Zhang F, Huang B, Utturkar SM, Luo W, Cresswell G, Herr SA, Zheng S, Napoleon JV, Jiang R, Zhang B, Liu M, Lanman N, Srinivasarao M, Ratliff TL, Low PS. Tumor-specific activation of folate receptor beta enables reprogramming of immune cells in the tumor microenvironment. Front Immunol 2024; 15:1354735. [PMID: 38384467 PMCID: PMC10879311 DOI: 10.3389/fimmu.2024.1354735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/22/2024] [Indexed: 02/23/2024] Open
Abstract
Folate receptors can perform folate transport, cell adhesion, and/or transcription factor functions. The beta isoform of the folate receptor (FRβ) has attracted considerable attention as a biomarker for immunosuppressive macrophages and myeloid-derived suppressor cells, however, its role in immunosuppression remains uncharacterized. We demonstrate here that FRβ cannot bind folate on healthy tissue macrophages, but does bind folate after macrophage incubation in anti-inflammatory cytokines or cancer cell-conditioned media. We further show that FRβ becomes functionally active following macrophage infiltration into solid tumors, and we exploit this tumor-induced activation to target a toll-like receptor 7 agonist specifically to immunosuppressive myeloid cells in solid tumors without altering myeloid cells in healthy tissues. We then use single-cell RNA-seq to characterize the changes in gene expression induced by the targeted repolarization of tumor-associated macrophages and finally show that their repolarization not only changes their own phenotype, but also induces a proinflammatory shift in all other immune cells of the same tumor mass, leading to potent suppression of tumor growth. Because this selective reprogramming of tumor myeloid cells is accompanied by no systemic toxicity, we propose that it should constitute a safe method to reprogram the tumor microenvironment.
Collapse
Affiliation(s)
- Fenghua Zhang
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States
| | - Bo Huang
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States
| | - Sagar M. Utturkar
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN, United States
| | - Weichuan Luo
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States
| | - Gregory Cresswell
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States
| | - Seth A. Herr
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States
| | - Suilan Zheng
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States
| | - John V. Napoleon
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States
| | - Rina Jiang
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States
| | - Boning Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Muyi Liu
- University of North Texas Health Science Center at Fort Worth, Fort Worth, TX, United States
- Department of Computer Sciences, Purdue University, West Lafayette, IN, United States
| | - Nadia Lanman
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN, United States
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States
| | - Madduri Srinivasarao
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States
| | - Timothy L. Ratliff
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States
| | - Philip S. Low
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
25
|
Glabman RA, Olkowski CP, Minor HA, Bassel LL, Kedei N, Choyke PL, Sato N. Tumor Suppression by Anti-Fibroblast Activation Protein Near-Infrared Photoimmunotherapy Targeting Cancer-Associated Fibroblasts. Cancers (Basel) 2024; 16:449. [PMID: 38275890 PMCID: PMC10813865 DOI: 10.3390/cancers16020449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs) constitute a prominent cellular component of the tumor stroma, with various pro-tumorigenic roles. Numerous attempts to target fibroblast activation protein (FAP), a highly expressed marker in immunosuppressive CAFs, have failed to demonstrate anti-tumor efficacy in human clinical trials. Near-infrared photoimmunotherapy (NIR-PIT) is a highly selective tumor therapy that utilizes an antibody-photo-absorbing conjugate activated by near-infrared light. In this study, we examined the therapeutic efficacy of CAF depletion by NIR-PIT in two mouse tumor models. Using CAF-rich syngeneic lung and spontaneous mammary tumors, NIR-PIT against FAP or podoplanin was performed. Anti-FAP NIR-PIT effectively depleted FAP+ CAFs, as well as FAP+ myeloid cells, and suppressed tumor growth, whereas anti-podoplanin NIR-PIT was ineffective. Interferon-gamma production by CD8 T and natural killer cells was induced within hours after anti-FAP NIR-PIT. Additionally, lung metastases were reduced in the treated spontaneous mammary cancer model. Depletion of FAP+ stromal as well as FAP+ myeloid cells effectively suppressed tumor growth in bone marrow chimeras, suggesting that the depletion of both cell types in one treatment is an effective therapeutic approach. These findings highlight a promising therapy for selectively eliminating immunosuppressive FAP+ cells within the tumor microenvironment.
Collapse
Affiliation(s)
- Raisa A. Glabman
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (R.A.G.); (C.P.O.); (H.A.M.); (P.L.C.)
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Colleen P. Olkowski
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (R.A.G.); (C.P.O.); (H.A.M.); (P.L.C.)
| | - Hannah A. Minor
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (R.A.G.); (C.P.O.); (H.A.M.); (P.L.C.)
| | - Laura L. Bassel
- Center for Advanced Preclinical Research, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21701, USA;
| | - Noemi Kedei
- Collaborative Protein Technology Resources, Office of Science and Technology Resources, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Peter L. Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (R.A.G.); (C.P.O.); (H.A.M.); (P.L.C.)
| | - Noriko Sato
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (R.A.G.); (C.P.O.); (H.A.M.); (P.L.C.)
| |
Collapse
|
26
|
Quoniou R, Moreau E, Cachin F, Miot-Noirault E, Chautard E, Peyrode C. 3D Coculture between Cancer Cells and Macrophages: From Conception to Experimentation. ACS Biomater Sci Eng 2024; 10:313-325. [PMID: 38110331 DOI: 10.1021/acsbiomaterials.3c01437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
A tumor is a complex cluster with many types of cells in the microenvironment that help it grow. Macrophages, immune cells whose main role is to maintain body homeostasis, represent in the majority of cancers the most important cell population. In this context, they are called tumor-associated macrophages (TAMs) because of their phenotype, which contributes to tumor growth. In order to limit the use of animals, there is a real demand for the creation of in vitro models able to represent more specifically the complexity of the tumor microenvironment (TME) in order to characterize it and evaluate new treatments. However, the two-dimensional (2D) culture, which has been used for a long time, has shown many limitations, especially in terms of tumor representation. The three-dimensional (3D) models, developed over the last 20 years, have made it possible to get closer to what happens in vivo in terms of phenotypic and functional characteristics. Due to their architectural similarity to in vivo tissues, they provide a more physiologically relevant in vitro system. Most recently, it is the development of 3D coculture models in which two or three cell lines are cultured together that has allowed a better representation of TME with cell-cell interactions. Unfortunately, there is no clear direction for the design of these models at this time. In this Review on the coculture between cancer cells and TAMs, an in-depth analysis is performed to answer multiple questions on the conception of these models: Which models to use, and with which material and cancer lineage? Which monocyte or macrophage lines should be added to the coculture? And how can these models be exploited?
Collapse
Affiliation(s)
- Rohan Quoniou
- Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, Université Clermont Auvergne, INSERM, 63000 Clermont-Ferrand, France
| | - Emmanuel Moreau
- Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, Université Clermont Auvergne, INSERM, 63000 Clermont-Ferrand, France
| | - Florent Cachin
- Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, Université Clermont Auvergne, INSERM, 63000 Clermont-Ferrand, France
- Service de Médecine Nucléaire, Centre Jean Perrin, 63000 Clermont-Ferrand, France
| | - Elisabeth Miot-Noirault
- Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, Université Clermont Auvergne, INSERM, 63000 Clermont-Ferrand, France
| | - Emmanuel Chautard
- Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, Université Clermont Auvergne, INSERM, 63000 Clermont-Ferrand, France
- Service de Pathologie, Centre Jean Perrin, 63000 Clermont-Ferrand, France
| | - Caroline Peyrode
- Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, Université Clermont Auvergne, INSERM, 63000 Clermont-Ferrand, France
| |
Collapse
|
27
|
Yue SY, Niu D, Liu XH, Li WY, Ding K, Fang HY, Wu XD, Li C, Guan Y, Du HX. BLCA prognostic model creation and validation based on immune gene-metabolic gene combination. Discov Oncol 2023; 14:232. [PMID: 38103068 PMCID: PMC10725402 DOI: 10.1007/s12672-023-00853-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/14/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Bladder cancer (BLCA) is a prevalent urinary system malignancy. Understanding the interplay of immunological and metabolic genes in BLCA is crucial for prognosis and treatment. METHODS Immune/metabolism genes were extracted, their expression profiles analyzed. NMF clustering found prognostic genes. Immunocyte infiltration and tumor microenvironment were examined. Risk prognostic signature using Cox/LASSO methods was developed. Immunological Microenvironment and functional enrichment analysis explored. Immunotherapy response and somatic mutations evaluated. RT-qPCR validated gene expression. RESULTS We investigated these genes in 614 BLCA samples, identifying relevant prognostic genes. We developed a predictive feature and signature comprising 7 genes (POLE2, AHNAK, SHMT2, NR2F1, TFRC, OAS1, CHKB). This immune and metabolism-related gene (IMRG) signature showed superior predictive performance across multiple datasets and was independent of clinical indicators. Immunotherapy response and immune cell infiltration correlated with the risk score. Functional enrichment analysis revealed distinct biological pathways between low- and high-risk groups. The signature demonstrated higher prediction accuracy than other signatures. qRT-PCR confirmed differential gene expression and immunotherapy response. CONCLUSIONS The model in our work is a novel assessment tool to measure immunotherapy's effectiveness and anticipate BLCA patients' prognosis, offering new avenues for immunological biomarkers and targeted treatments.
Collapse
Affiliation(s)
- Shao-Yu Yue
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, People's Republic of China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Di Niu
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, People's Republic of China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Xian-Hong Liu
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, People's Republic of China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Wei-Yi Li
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, People's Republic of China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Ke Ding
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, People's Republic of China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Hong-Ye Fang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, People's Republic of China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Xin-Dong Wu
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, People's Republic of China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Chun Li
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, People's Republic of China.
- Institute of Urology, Anhui Medical University, Hefei, Anhui, People's Republic of China.
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, People's Republic of China.
| | - Yu Guan
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, People's Republic of China.
- Institute of Urology, Anhui Medical University, Hefei, Anhui, People's Republic of China.
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, People's Republic of China.
| | - He-Xi Du
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, People's Republic of China.
- Institute of Urology, Anhui Medical University, Hefei, Anhui, People's Republic of China.
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, People's Republic of China.
| |
Collapse
|
28
|
Xie J, Deng W, Deng X, Liang JY, Tang Y, Huang J, Tang H, Zou Y, Zhou H, Xie X. Single-cell histone chaperones patterns guide intercellular communication of tumor microenvironment that contribute to breast cancer metastases. Cancer Cell Int 2023; 23:311. [PMID: 38057779 DOI: 10.1186/s12935-023-03166-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/26/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Histone chaperones (HCs) are crucial for governing genome stability and gene expression in multiple cancers. However, the functioning of HCs in the tumor microenvironment (TME) is still not clearly understood. METHODS Self-tested single-cell RNA-seq data derived from 6 breast cancer (BC) patients with brain and liver metastases were reanalyzed by nonnegative matrix factorization (NMF) algorithm for 36 HCs. TME subclusters were observed with BC and immunotherapy public cohorts to assess their prognosis and immune response. The biological effect of HSPA8, one of the HCs, was verified by transwell assay and wound-healing assays. RESULTS Cells including fibroblasts, macrophages, B cells, and T cells, were classified into various subclusters based on marker genes. Additionally, it showed that HCs might be strongly associated with biological and clinical features of BC metastases, along with the pseudotime trajectory of each TME cell type. Besides, the results of bulk-seq analysis revealed that TME cell subclusters mediated by HCs distinguished significant prognostic value for BC patients and were relevant to patients' immunotherapy responses, especially for B cells and macrophages. In particular, CellChat analysis exhibited that HCs-related TME cell subclusters revealed extensive and diverse interactions with malignant cells. Finally, transwell and wound-healing assays exhibited that HSPA8 deficiency inhibited BC cell migration and invasion. CONCLUSIONS Collectively, our study first dissected HCs-guided intercellular communication of TME that contribute to BC metastases.
Collapse
Affiliation(s)
- Jindong Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 East Dongfeng Road, Guangzhou, 510060, China
| | - Wei Deng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 East Dongfeng Road, Guangzhou, 510060, China
| | - Xinpei Deng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 East Dongfeng Road, Guangzhou, 510060, China
| | - Jie-Ying Liang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Medical Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510000, China
| | - Yuhui Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 East Dongfeng Road, Guangzhou, 510060, China
| | - Jun Huang
- College of Basic Medicine, Shaoyang University, Shaoyang, China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 East Dongfeng Road, Guangzhou, 510060, China
| | - Yutian Zou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 East Dongfeng Road, Guangzhou, 510060, China.
| | - Huamao Zhou
- The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China.
| | - Xiaoming Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 East Dongfeng Road, Guangzhou, 510060, China.
| |
Collapse
|
29
|
Peng TJ, Wu YC, Tang SJ, Sun GH, Sun KH. TGFβ1 induces CXCL1 to promote stemness features in lung cancer. Exp Biol Med (Maywood) 2023; 248:2249-2261. [PMID: 38158808 PMCID: PMC10903253 DOI: 10.1177/15353702231220662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/23/2023] [Indexed: 01/03/2024] Open
Abstract
Chemokines critically orchestrate the tumorigenesis, metastasis, and stemness features of cancer cells that lead to poor outcomes. High plasma levels of transforming growth factor-β1 (TGFβ1) correlate with poor prognostic features in advanced lung cancer patients, thus suggesting the importance of TGFβ1 in the lung tumor microenvironment. However, the role of chemokines in TGFβ1-induced tumor stemness features remains unclear. Here, we clarify the previously undocumented role of CXCL1 in TGFβ1-induced lung cancer stemness features. CXCL1 and its receptor CXCR2 were significantly upregulated in TGFβ1-induced lung cancer stem cells (CSCs). CXCL1 silencing (shCXCL1) suppressed stemness gene expression, tumorsphere formation, colony formation, drug resistance, and in vivo tumorigenicity in TGFβ1-induced lung tumorspheres. Immunohistochemistry staining showed that patients with stage II/III lung cancer had higher expression levels of CXCL1. The levels of CXCL1 were positively associated with lymph node metastasis and correlated with the expression of the CSC transcription factor Oct-4. Furthermore, online database analysis revealed that CXCL1 expression was negatively correlated with lung cancer survival in patients. Patients with high TGFβ1/CXCL1/CD44 co-expression had a worse survival rate. We suggest that CXCL1 serves as a crucial factor in TGFβ1-induced stemness features of lung cancer.
Collapse
Affiliation(s)
- Ta-Jung Peng
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei 112304
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei 112304
| | - Yi-Ching Wu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei 112304
| | - Shye-Jye Tang
- Institute of Marine Biotechnology, National Taiwan Ocean University, Keelung 202301
| | - Guang-Huan Sun
- Division of Urology, Department of Surgery, Tri-Service General Hospital and National Defense Medical Center, Taipei 114202
| | - Kuang-Hui Sun
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei 112304
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei 112304
- Department of Education and Research, Taipei City Hospital, Taipei 103212
| |
Collapse
|
30
|
Xiao J, Song Y, Gao R, You M, Deng C, Tan G, Li W. Changes of immune microenvironment in head and neck squamous cell carcinoma in 3D-4-culture compared to 2D-4-culture. J Transl Med 2023; 21:771. [PMID: 37907991 PMCID: PMC10617167 DOI: 10.1186/s12967-023-04650-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/24/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND The immune system plays a crucial role in initiating, progressing, and disseminating HNSCC. This study aims to investigate the differences in immune microenvironments between 2D-4-culture and 3D-4-culture models of head and neck squamous cell carcinoma (HNSCC) cells (FaDu), human fibroblasts (HF), human monocytes (THP-1), and human endothelial cells (HUVEC). METHODS For the 3D-4-culture model, FaDu:HF:THP-1 (2:1:1) were inoculated in an ultra-low attachment culture plate, while HUVECs were placed in a transwell chamber. The ordinary culture plate was used for the 2D-4-culture model. Tumor-associated macrophage markers (CD163), tumor-associated fibroblast markers (FAP), and epithelial-mesenchymal transition (EMT) were detected by western blot. Inflammatory cytokines (IL-4, IL-2, CXCL 10, IL-1 β, TNF-α, CCL 2, IL-17 A, IL-6, IL-10, IFN-γ, IL-12 p 70, CXCL 8, TGFβ1) in the supernatant were measured by flow cytometry. HUVEC migration was observed under a microscope. The 3D spheres were stained and observed with a confocal microscope. CCK8 assay was used to detect the resistance of mixed cells to cisplatin in both 2D-4-culture and 3D-4-culture. RESULTS After three days of co-culture, the 3D-4-culture model showed increased expression levels of CD163 and FAP proteins (both P < 0.001), increased expression of E-cadherin protein and N-cadherin protein expression (P < 0.001), decreased expression of vimentin (P < 0.01) and Twist protein (P < 0.001). HUVEC migration significantly increased (P < 0.001), as did the concentrations of IP-10, MCP-1, IL-6, and IL-8 (all P < 0.001). Confocal microscopy showed that 3D-4-culture formed loose cell clusters on day 1, which gradually became a dense sphere surrounded by FaDu cells invading the inside. After co-culturing for 24 h, 48 h, and 72 h, the resistance of mix cells to cisplatin in 3D-4-culture was significantly higher than in 2D-4-culture (P < 0.01 for all). CONCLUSION Compared to 2D-4-culture, 3D-4-culture better simulates the in vivo immune microenvironment of HNSCC by promoting fibroblast transformation into tumor-associated fibroblasts, monocyte transformation into tumor-associated macrophages, enhancing endothelial cell migration ability, partial EMT formation in HNSCC cells, and is more suitable for studying the immunosuppressive microenvironment of HNSCC.
Collapse
Affiliation(s)
- Jian Xiao
- Department of Otolaryngology-Head and Neck Surgery, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Yexun Song
- Department of Otolaryngology-Head and Neck Surgery, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Ru Gao
- Department of Otolaryngology-Head and Neck Surgery, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Mingyang You
- Department of Otolaryngology-Head and Neck Surgery, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Changxin Deng
- Department of Otolaryngology-Head and Neck Surgery, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Guolin Tan
- Department of Otolaryngology-Head and Neck Surgery, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Wei Li
- Department of Otolaryngology-Head and Neck Surgery, The Third Xiangya Hospital of Central South University, Changsha, 410013, China.
| |
Collapse
|
31
|
Farouk SM, Khafaga AF, Abdellatif AM. Bladder cancer: therapeutic challenges and role of 3D cell culture systems in the screening of novel cancer therapeutics. Cancer Cell Int 2023; 23:251. [PMID: 37880676 PMCID: PMC10601189 DOI: 10.1186/s12935-023-03069-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/17/2023] [Indexed: 10/27/2023] Open
Abstract
Bladder cancer (BC) is the sixth most common worldwide urologic malignancy associated with elevated morbidity and mortality rates if not well treated. The muscle-invasive form of BC develops in about 25% of patients. Moreover, according to estimates, 50% of patients with invasive BC experience fatal metastatic relapses. Currently, resistance to drug-based therapy is the major tumble to BC treatment. The three-dimensional (3D) cell cultures are clearly more relevant not only as a novel evolving gadget in drug screening but also as a bearable therapeutic for different diseases. In this review, various subtypes of BC and mechanisms of drug resistance to the commonly used anticancer therapies are discussed. We also summarize the key lineaments of the latest cell-based assays utilizing 3D cell culture systems and their impact on understanding the pathophysiology of BC. Such knowledge could ultimately help to address the most efficient BC treatment.
Collapse
Affiliation(s)
- Sameh M Farouk
- Department of Cytology & Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt
| | - Ahmed M Abdellatif
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
32
|
Zhang Y, Sun S, Qi Y, Dai Y, Hao Y, Xin M, Xu R, Chen H, Wu X, Liu Q, Kong C, Zhang G, Wang P, Guo Q. Characterization of tumour microenvironment reprogramming reveals invasion in epithelial ovarian carcinoma. J Ovarian Res 2023; 16:200. [PMID: 37817210 PMCID: PMC10563280 DOI: 10.1186/s13048-023-01270-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/29/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Patients with epithelial ovarian carcinoma (EOC) are usually diagnosed at an advanced stage with tumour cell invasion. However, identifying the underlying molecular mechanisms and biomarkers of EOC proliferation and invasion remains challenging. RESULTS Herein, we explored the relationship between tumour microenvironment (TME) reprogramming and tissue invasion based on single-cell RNA sequencing (scRNA-seq) datasets. Interestingly, hypoxia, oxidative phosphorylation (OXPHOS) and glycolysis, which have biologically active trajectories during epithelial mesenchymal transition (EMT), were positively correlated. Moreover, energy metabolism and anti-apoptotic activity were found to be critical contributors to intratumor heterogeneity. In addition, HMGA1, EGR1 and RUNX1 were found to be critical drivers of the EMT process in EOC. Experimental validation revealed that suppressing EGR1 expression inhibited tumour cell invasion, significantly upregulated the expression of E-cadherin and decreased the expression of N-cadherin. In cell components analysis, cancer-associated fibroblasts (CAFs) were found to significantly contribute to immune infiltration and tumour invasion, and the accumulation of CAFs was associated with poorer patient survival. CONCLUSION We revealed the molecular mechanism and biomarkers of tumour invasion and TME reprogramming in EOC, which provides effective targets for the suppression of tumour invasion.
Collapse
Affiliation(s)
- Yuanfu Zhang
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Shu Sun
- Department Gynecology and Obstetrics, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Yue Qi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Yifan Dai
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Yangyang Hao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Mengyu Xin
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Rongji Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Hongyan Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Xiaoting Wu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Qian Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Congcong Kong
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Guangmei Zhang
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, 150081, China.
| | - Peng Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China.
| | - Qiuyan Guo
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
33
|
Khan SM, Das T, Chakraborty S, Choudhury AMAR, Karim HF, Mostofa MA, Ahmed HU, Hossain MA, Le Calvez-Kelm F, Hosen MI, Shekhar HU. A transcriptome study of p53-pathway related prognostic gene signature set in bladder cancer. Heliyon 2023; 9:e21058. [PMID: 37876438 PMCID: PMC10590981 DOI: 10.1016/j.heliyon.2023.e21058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/26/2023] Open
Abstract
p53 pathway is important in tumorigenesis. However, no study has been performed to specifically investigate the role of p53 pathway genes in bladder cancer (BLCA). In this study, transcriptomics data of muscle invasive bladder cancer patients (n = 411) from The Cancer Genome Atlas (TCGA) were investigated. Using the hallmark p53 pathway gene set, the Non-Negative Matrix factorization (NMF) analysis identified two subtypes (C1 and C2). Clinical, survival, and immunological analysis were done to validate distinct characteristics of the subtypes. Pathway enrichment analysis showed the subtype C1 with poor prognosis having enrichment in genes of the immunity related pathways, where C2 subtype with better prognosis being enriched in genes of the steroid synthesis and drug metabolism pathways. A signature gene set consisting of MDGA2, GNLY, GGT2, UGT2B4, DLX1, and DSC1 was created followed by a risk model. Their expressions were analyzed in RNA extracted from the blood and matched tumor tissues of BLCA patients (n = 10). DSC1 had significant difference of expression (p = 0.005) between the blood and tumor tissues in our BLCA samples. Contrary to the usual normal bladder tissue to blood ratio, DLX1 expression was lower (p = 0.02734) in tumor tissues than in blood. Being the first research of p53 pathway related signature gene set in bladder cancer, this study potentially has a substantial impact on the development of biomarkers for BLCA.
Collapse
Affiliation(s)
- Safayat Mahmud Khan
- Clinical Biochemistry and Translational Medicine Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Tonmoy Das
- Systems Cell-Signalling Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Sajib Chakraborty
- Systems Cell-Signalling Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | | | - Howlader Fazlul Karim
- Department. Uro-Oncology, National Institute of Cancer Research Hospital, Bangladesh
| | - Munshi Akid Mostofa
- Department. Uro-Oncology, National Institute of Cancer Research Hospital, Bangladesh
| | - Hasib Uddin Ahmed
- Clinical Biochemistry and Translational Medicine Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Md Akmal Hossain
- Clinical Biochemistry and Translational Medicine Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Florence Le Calvez-Kelm
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC), 69372, Lyon, France
| | - Md Ismail Hosen
- Clinical Biochemistry and Translational Medicine Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Hossain Uddin Shekhar
- Clinical Biochemistry and Translational Medicine Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
34
|
Huang L, Xie Q, Deng J, Wei WF. The role of cancer-associated fibroblasts in bladder cancer progression. Heliyon 2023; 9:e19802. [PMID: 37809511 PMCID: PMC10559166 DOI: 10.1016/j.heliyon.2023.e19802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 08/26/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) are key stromal cells in the tumor microenvironment (TME) that critically contribute to cancer initiation and progression. In bladder cancer (BCa), there is emerging evidence that BCa CAFs are actively involved in cancer cell proliferation, invasion, metastasis, and chemotherapy resistance. This review outlines the present knowledge of BCa CAFs, with a particular emphasis on their origin and function in BCa progression, and provides further insights into their clinical application.
Collapse
Affiliation(s)
- Long Huang
- Department of Urology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, China
| | - Qun Xie
- Department of Urology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, China
| | - Jian Deng
- Department of Urology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, China
| | - Wen-Fei Wei
- Department of Gynecology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, China
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
35
|
Patwardhan MV, Mahendran R. The Bladder Tumor Microenvironment Components That Modulate the Tumor and Impact Therapy. Int J Mol Sci 2023; 24:12311. [PMID: 37569686 PMCID: PMC10419109 DOI: 10.3390/ijms241512311] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
The tumor microenvironment (TME) is complex and involves many different cell types that seemingly work together in helping cancer cells evade immune monitoring and survive therapy. The advent of single-cell sequencing has greatly increased our knowledge of the cell types present in the tumor microenvironment and their role in the developing cancer. This, coupled with clinical data showing that cancer development and the response to therapy may be influenced by drugs that indirectly influence the tumor environment, highlights the need to better understand how the cells present in the TME work together. This review looks at the different cell types (cancer cells, cancer stem cells, endothelial cells, pericytes, adipose cells, cancer-associated fibroblasts, and neuronal cells) in the bladder tumor microenvironment. Their impact on immune activation and on shaping the microenvironment are discussed as well as the effects of hypertensive drugs and anesthetics on bladder cancer.
Collapse
Affiliation(s)
| | - Ratha Mahendran
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| |
Collapse
|
36
|
Łukaszewicz-Zając M, Zajkowska M, Pączek S, Kulczyńska-Przybik A, Safiejko K, Juchimiuk M, Kozłowski L, Mroczko B. The Significance of CXCL1 and CXCR1 as Potential Biomarkers of Colorectal Cancer. Biomedicines 2023; 11:1933. [PMID: 37509572 PMCID: PMC10377230 DOI: 10.3390/biomedicines11071933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
The CXCL1/CXCR2 and CXCL8-CXCR1/CXCR2 axes are under intensive investigation as they appear to regulate the progression and invasion of colorectal cancer (CRC). Growing evidence demonstrates the elevated expression of these proteins in CRC. However, a majority of relevant studies have been performed on CRC tissues using immunohistochemical techniques. Our study is the first to evaluate the diagnostic significance of serum CXCL1 and CXCR1 levels in CRC patients in comparison to well-established tumor markers, such as the carcinoembryonic antigen (CEA), and markers of inflammation, such as C-reactive protein (CRP). Thus, the aim of our study was to assess whether circulating serum levels of CXCL1 and CXCR1 might be candidates for novel biomarkers in the diagnosis and progression of CRC. The study was performed on 76 subjects, including patients with CRC and healthy volunteers as a control group. Serum concentrations of CXCL1, CXCR1, and the classical tumor marker (CEA) were measured using immunoenzyme assays, while CRP levels were assessed with the immunoturbidimetric method. Serum CXCL1 levels were statistically significantly increased in CRC patients when compared to healthy subjects, and similar results were found for CEA and CRP levels. The percentage of elevated concentrations of CXCL1 and CXCR1 was higher than that of the classical tumor biomarker and increased in the combined measurement of these proteins with CEA. In addition, among all proteins tested, serum CXCL1 seems to be the best indicator in the differentiation between CRC patients with nodal involvement and patients without the presence of lymph node metastasis. Our preliminary results indicate the role of serum CXCL1 and CXCR1 in the diagnosis of CRC, particularly in the combined measurement with CEA.
Collapse
Affiliation(s)
- Marta Łukaszewicz-Zając
- Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
- Department of Biochemical Diagnostics, University Hospital of Bialystok, 15-269 Bialystok, Poland
| | - Monika Zajkowska
- Department of Biochemical Diagnostics, University Hospital of Bialystok, 15-269 Bialystok, Poland
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Sara Pączek
- Department of Biochemical Diagnostics, University Hospital of Bialystok, 15-269 Bialystok, Poland
| | - Agnieszka Kulczyńska-Przybik
- Department of Biochemical Diagnostics, University Hospital of Bialystok, 15-269 Bialystok, Poland
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| | | | | | | | - Barbara Mroczko
- Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
- Department of Biochemical Diagnostics, University Hospital of Bialystok, 15-269 Bialystok, Poland
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| |
Collapse
|
37
|
Korbecki J, Bosiacki M, Barczak K, Łagocka R, Chlubek D, Baranowska-Bosiacka I. The Clinical Significance and Role of CXCL1 Chemokine in Gastrointestinal Cancers. Cells 2023; 12:1406. [PMID: 37408240 DOI: 10.3390/cells12101406] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 07/07/2023] Open
Abstract
One area of cancer research is the interaction between cancer cells and immune cells, in which chemokines play a vital role. Despite this, a comprehensive summary of the involvement of C-X-C motif ligand 1 (CXCL1) chemokine (also known as growth-regulated gene-α (GRO-α), melanoma growth-stimulatory activity (MGSA)) in cancer processes is lacking. To address this gap, this review provides a detailed analysis of CXCL1's role in gastrointestinal cancers, including head and neck cancer, esophageal cancer, gastric cancer, liver cancer (hepatocellular carcinoma (HCC)), cholangiocarcinoma, pancreatic cancer (pancreatic ductal adenocarcinoma), and colorectal cancer (colon cancer and rectal cancer). This paper presents the impact of CXCL1 on various molecular cancer processes, such as cancer cell proliferation, migration, and invasion, lymph node metastasis, angiogenesis, recruitment to the tumor microenvironment, and its effect on immune system cells, such as tumor-associated neutrophils (TAN), regulatory T (Treg) cells, myeloid-derived suppressor cells (MDSCs), and macrophages. Furthermore, this review discusses the association of CXCL1 with clinical aspects of gastrointestinal cancers, including its correlation with tumor size, cancer grade, tumor-node-metastasis (TNM) stage, and patient prognosis. This paper concludes by exploring CXCL1's potential as a therapeutic target in anticancer therapy.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zyty 28 St., 65-046 Zielona Góra, Poland
| | - Mateusz Bosiacki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Department of Functional Diagnostics and Physical Medicine, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Żołnierska 54 Str., 71-210 Szczecin, Poland
| | - Katarzyna Barczak
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Ryta Łagocka
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| |
Collapse
|
38
|
Deng Y, Fu Y, Chua SL, Khoo BL. Biofilm Potentiates Cancer-Promoting Effects of Tumor-Associated Macrophages in a 3D Multi-Faceted Tumor Model. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205904. [PMID: 36748304 DOI: 10.1002/smll.202205904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/01/2023] [Indexed: 05/11/2023]
Abstract
Components of the tumor microenvironment (TME), such as tumor-associated macrophages (TAMs), influence tumor progression. The specific polarization and phenotypic transition of TAMs in the tumor microenvironment lead to two-pronged impacts that can promote or hinder cancer development and treatment. Here, a novel microfluidic multi-faceted bladder tumor model (TAMPIEB ) is developed incorporating TAMs and cancer cells to evaluate the impact of bacterial distribution on immunomodulation within the tumor microenvironment in vivo. It is demonstrated for the first time that biofilm-induced inflammatory conditions within tumors promote the transition of macrophages from a pro-inflammatory M1-like to an anti-inflammatory/pro-tumor M2-like state. Consequently, multiple roles and mechanisms by which biofilms promote cancer by inducing pro-tumor phenotypic switch of TAMs are identified, including cancer hallmarks such as reducing susceptibility to apoptosis, enhancing cell viability, and promoting epithelial-mesenchymal transition and metastasis. Furthermore, biofilms formed by extratumoral bacteria can shield tumors from immune attack by TAMs, which can be visualized through various imaging assays in situ. The study sheds light on the underlying mechanism of biofilm-mediated inflammation on tumor progression and provides new insights into combined anti-biofilm therapy and immunotherapy strategies in clinical trials.
Collapse
Affiliation(s)
- Yanlin Deng
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Yatian Fu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Kowloon, 999077, Hong Kong
| | - Song Lin Chua
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, Kowloon, 999077, China
- State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong SAR, Kowloon, 999077, China
- Shenzhen Key Laboratory of Food Biological Safety Control, Kowloon, 999077, Hong Kong
- Research Centre for Deep Space Explorations (RCDSE), The Hong Kong Polytechnic University, Hong Kong SAR, Kowloon, 999077, China
| | - Bee Luan Khoo
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Kowloon, 999077, Hong Kong
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen-Futian Research Institute, Shenzhen, 518057, China
| |
Collapse
|
39
|
Qin F, Wen H, Zhong X, Pan Y, Lai X, Yang T, Huang J, Yu J, Li J. Diagnostic accuracy of using multiple cytokines to predict aldosterone-producing adenoma. Sci Rep 2023; 13:5745. [PMID: 37029172 PMCID: PMC10082192 DOI: 10.1038/s41598-023-32558-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/29/2023] [Indexed: 04/09/2023] Open
Abstract
Here, we aimed to study the important cytokines in plasma to identify the aldosterone-producing adenoma (APA). 19 unilateral primary aldosteronism (UPA) patients and 19 healthy people were divided into UPA group and Control group, and the serum of bilateral adrenal veins and inferior vena cava collected by adrenal blood sampling (AVS) in UPA patients and the serum from the healthy subjects were all used to detect multiple cytokines by Luminex immunoassays. Additionally, The UPA patients subjected to laparoscopic adrenalectomy were divided into different groups by pathological results for further study. According our results, IP-10, CXCL9 and RANTES were significantly higher in UPA group compared with control group, and the combination of the three cytokines have significant predictive power for predicting UPA, while the correlational analyses demonstrated that IP-10 and CXCL9 were positively correlated with BP and HR, while EGF was positively correlated with HDL. Additionally, IL-1b was suggested to be the most potential diagnostic biomarker to discriminate the APA and unilateral adrenal hyperplasia (UAH). The present findings might suggest a possibility of IP-10, CXCL9 and RANTES served as a sign to help UPA diagnosis and finally used to assist the diagnosis of APA, while IL-1b was suggested to be the most potential diagnostic biomarker to identify the APA from the UAH patients.
Collapse
Affiliation(s)
- Fei Qin
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Hong Wen
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiaoge Zhong
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yajin Pan
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiaomei Lai
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Tingting Yang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jing Huang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jie Yu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jianling Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Mobile Post-Doctoral Stations of Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
40
|
Wright K, Ly T, Kriet M, Czirok A, Thomas SM. Cancer-Associated Fibroblasts: Master Tumor Microenvironment Modifiers. Cancers (Basel) 2023; 15:cancers15061899. [PMID: 36980785 PMCID: PMC10047485 DOI: 10.3390/cancers15061899] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Cancer cells rely on the tumor microenvironment (TME), a composite of non-malignant cells, and extracellular matrix (ECM), for survival, growth, and metastasis. The ECM contributes to the biomechanical properties of the surrounding tissue, in addition to providing signals for tissue development. Cancer-associated fibroblasts (CAFs) are stromal cells in the TME that are integral to cancer progression. Subtypes of CAFs across a variety of cancers have been revealed, and each play a different role in cancer progression or suppression. CAFs secrete signaling molecules and remodel the surrounding ECM by depositing its constituents as well as degrading enzymes. In cancer, a remodeled ECM can lead to tumor-promoting effects. Not only does the remodeled ECM promote growth and allow for easier metastasis, but it can also modulate the immune system. A better understanding of how CAFs remodel the ECM will likely yield novel therapeutic targets. In this review, we summarize the key factors secreted by CAFs that facilitate tumor progression, ECM remodeling, and immune suppression.
Collapse
Affiliation(s)
- Kellen Wright
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Thuc Ly
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Matthew Kriet
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Andras Czirok
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Sufi Mary Thomas
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
41
|
Chen Y, Zhu S, Liu T, Zhang S, Lu J, Fan W, Lin L, Xiang T, Yang J, Zhao X, Xi Y, Ma Y, Cheng G, Lin D, Wu C. Epithelial cells activate fibroblasts to promote esophageal cancer development. Cancer Cell 2023; 41:903-918.e8. [PMID: 36963399 DOI: 10.1016/j.ccell.2023.03.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/09/2022] [Accepted: 02/28/2023] [Indexed: 03/26/2023]
Abstract
Esophageal squamous-cell carcinoma (ESCC) develops through multistage epithelial cancer formation, i.e., from normal epithelium, low- and high-grade intraepithelial neoplasia to invasive carcinoma. However, how the precancerous lesions progress to carcinoma remains elusive. Here, we report a comprehensive single-cell RNA sequencing and spatial transcriptomic study of 79 multistage esophageal lesions from 29 patients with ESCC. We reveal a gradual and significant loss of ANXA1 expression in epithelial cells due to its transcription factor KLF4 suppression along the lesion progression. We demonstrate that ANXA1 is a ligand to formyl peptide receptor type 2 (FPR2) on fibroblasts that maintain fibroblast homeostasis. Loss of ANXA1 leads to uncontrolled transformation of normal fibroblasts into cancer-associated fibroblasts (CAFs), which can be enhanced by secreted TGF-β from malignant epithelial cells. Given the role of CAFs in cancer, our study underscores ANXA1/FPR2 signaling as an important crosstalk mechanism between epithelial cells and fibroblasts in promoting ESCC.
Collapse
Affiliation(s)
- Yamei Chen
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shihao Zhu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Tianyuan Liu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shaosen Zhang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Junting Lu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Wenyi Fan
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Lin Lin
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Tao Xiang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jie Yang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xuan Zhao
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yiyi Xi
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yuling Ma
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Guoyu Cheng
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Dongxin Lin
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China; Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou 510060, China.
| | - Chen Wu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China; CAMS Oxford Institute, Chinese Academy of Medical Sciences, Beijing 100006, China.
| |
Collapse
|
42
|
Chen S, Tang J, Liu F, Li W, Yan T, Shangguan D, Yang N, Liao D. Changes of tumor microenvironment in non-small cell lung cancer after TKI treatments. Front Immunol 2023; 14:1094764. [PMID: 36949948 PMCID: PMC10025329 DOI: 10.3389/fimmu.2023.1094764] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/16/2023] [Indexed: 03/08/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most common lung cancer diagnosis, among which epidermal growth factor receptor (EGFR), Kirsten rat sarcoma (KRAS), and anaplastic lymphoma kinase (ALK) mutations are the common genetic drivers. Their relative tyrosine kinase inhibitors (TKIs) have shown a better response for oncogene-driven NSCLC than chemotherapy. However, the development of resistance is inevitable following the treatments, which need a new strategy urgently. Although immunotherapy, a hot topic for cancer therapy, has shown an excellent response for other cancers, few responses for oncogene-driven NSCLC have been presented from the existing evidence, including clinical studies. Recently, the tumor microenvironment (TME) is increasingly thought to be a key parameter for the efficacy of cancer treatment such as targeted therapy or immunotherapy, while evidence has also shown that the TME could be affected by multi-factors, such as TKIs. Here, we discuss changes in the TME in NSCLC after TKI treatments, especially for EGFR-TKIs, to offer information for a new therapy of oncogene-driven NSCLC.
Collapse
Affiliation(s)
- Shanshan Chen
- Department of Pharmacy, Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Jingyi Tang
- Department of Pharmacy, Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Fen Liu
- Department of Pharmacy, Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Wei Li
- Department of Pharmacy, Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Ting Yan
- Department of Pharmacy, Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Dangang Shangguan
- Department of Pharmacy, Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Nong Yang
- Lung Cancer and Gastrointestinal Unit, Department of Medical Oncology, Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Dehua Liao
- Department of Pharmacy, Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
43
|
Caramelo B, Zagorac S, Corral S, Marqués M, Real FX. Cancer-associated Fibroblasts in Bladder Cancer: Origin, Biology, and Therapeutic Opportunities. Eur Urol Oncol 2023:S2588-9311(23)00043-3. [PMID: 36890105 DOI: 10.1016/j.euo.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/28/2022] [Accepted: 02/08/2023] [Indexed: 03/08/2023]
Abstract
CONTEXT Bladder cancer (BLCA) is a highly prevalent tumour and a health problem worldwide, especially among men. Recent work has highlighted the relevance of the tumour microenvironment (TME) in cancer biology with translational implications. Cancer-associated fibroblasts (CAFs) are a prominent, heterogeneous population of cells in the TME. CAFs have been associated with tumour development, progression, and poor prognosis in several neoplasms. However, their role in BLCA has not yet been exploited deeply. OBJECTIVE To review the role of CAFs in BLCA biology and provide an understanding of CAF origin, subtypes, markers, and phenotypic and functional characteristics to improve patient management. EVIDENCE ACQUISITION A PubMed search was performed to review manuscripts published using the terms "cancer associated fibroblast" and "bladder cancer" or "urothelial cancer". All abstracts were reviewed, and the full content of all relevant manuscripts was analysed. In addition, selected manuscripts on CAFs in other tumours were considered. EVIDENCE SYNTHESIS CAFs have been studied less extensively in BLCA than in other tumours. Thanks to new techniques, such as single-cell RNA-seq and spatial transcriptomics, it is now possible to accurately map and molecularly define the phenotype of fibroblasts in normal bladder and BLCA. Bulk transcriptomic analyses have revealed the existence of subtypes among both non-muscle-invasive and muscle-invasive BLCA; these subtypes display distinct features regarding their CAF content. We provide a higher-resolution map of the phenotypic diversity of CAFs in these tumour subtypes. Preclinical studies and recent promising clinical trials leverage on this knowledge through the combined targeting of CAFs or their effectors and the immune microenvironment. CONCLUSIONS Current knowledge of BLCA CAFs and the TME is being increasingly applied to improve BLCA therapy. There is a need to acquire a deeper understanding of CAF biology in BLCA. PATIENT SUMMARY Tumour cells are surrounded by nontumoural cells that contribute to the determination of the behaviour of cancers. Among them are cancer-associated fibroblasts. The "neighbourhoods" established through these cellular interactions can now be studied with much greater resolution. Understanding these features of tumours will contribute to the designing of more effective therapies, especially in relationship to bladder cancer immunotherapy.
Collapse
Affiliation(s)
- Belén Caramelo
- Instituto de Investigación Marqués de Valdecilla, IDIVAL, Santander, Spain; Hospital Sierrallana, Torrelavega, Spain
| | - Sladjana Zagorac
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
| | - Sonia Corral
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
| | - Miriam Marqués
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, Madrid, Spain; CIBERONC, Madrid, Spain.
| | - Francisco X Real
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, Madrid, Spain; CIBERONC, Madrid, Spain; Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
44
|
Miyake M, Oda Y, Owari T, Iida K, Ohnishi S, Fujii T, Nishimura N, Miyamoto T, Shimizu T, Ohnishi K, Hori S, Morizawa Y, Gotoh D, Nakai Y, Torimoto K, Tanaka N, Fujimoto K. Probiotics enhances anti-tumor immune response induced by gemcitabine plus cisplatin chemotherapy for urothelial cancer. Cancer Sci 2023; 114:1118-1130. [PMID: 36398663 PMCID: PMC9986082 DOI: 10.1111/cas.15666] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/04/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Chemotherapy drugs, such as gemcitabine and cisplatin (GC), are frequently administered to patients with advanced urothelial carcinoma, however the influence of the gut microbiota on their action is unclear. Thus, we investigated the effects of GC on the gut microbiome and determined whether oral supplementation with a probiotics mixture of Lactobacillus casei Shirota and Bifidobacterium breve enhanced the anti-tumor immune response. After subcutaneous inoculation with MBT2 murine bladder cancer cells, syngenic C3H mice were randomly allocated into eight groups. The gut microbiome cluster pattern was altered in both the GC and oral probiotics groups (p = 0.025). Both tumor-bearing conditions (no treatment) and GC chemotherapy influenced Pseudoclostridium, Robinsoniella, Merdimonas, and Phocea in the gut. Furthermore, comparison of the GC-treated and GC + probiotics groups revealed an association of four methyltransferase family enzymes and two short-change fatty acid-related enzymes with oral probiotics use. A significant difference in tumor volume was observed between the GC and GC + probiotics groups at week 2 of treatment. Additionally, decreased recruitment of cancer-associated fibroblasts and regulatory T cells, and activation of CD8+ T cells and dendritic cells were observed in the tumor microenvironment. Our findings reveal the positive effects of a probiotics mixture of Lactobacillus and Bifidobacterium in enhancing anti-tumor effects through the gut-tumor immune response axis. Future clinical trials are needed to evaluate the full benefits of this novel supplement with oral probiotics in patients with advanced urothelial carcinoma.
Collapse
Affiliation(s)
- Makito Miyake
- Department of Urology, Nara Medical University, Kashihara, Nara, Japan
| | - Yuki Oda
- Department of Urology, Nara Medical University, Kashihara, Nara, Japan
| | - Takuya Owari
- Department of Urology, Nara Medical University, Kashihara, Nara, Japan
| | - Kota Iida
- Department of Urology, Nara Medical University, Kashihara, Nara, Japan
| | - Sayuri Ohnishi
- Department of Urology, Nara Medical University, Kashihara, Nara, Japan
| | - Tomomi Fujii
- Diagnostic Pathology, Nara Medical University, Kashihara, Nara, Japan
| | | | - Tatsuki Miyamoto
- Department of Urology, Nara Medical University, Kashihara, Nara, Japan
| | - Takuto Shimizu
- Department of Urology, Nara Medical University, Kashihara, Nara, Japan
| | - Kenta Ohnishi
- Department of Urology, Nara Medical University, Kashihara, Nara, Japan
| | - Shunta Hori
- Department of Urology, Nara Medical University, Kashihara, Nara, Japan
| | - Yosuke Morizawa
- Department of Urology, Nara Medical University, Kashihara, Nara, Japan
| | - Daisuke Gotoh
- Department of Urology, Nara Medical University, Kashihara, Nara, Japan
| | - Yasushi Nakai
- Department of Urology, Nara Medical University, Kashihara, Nara, Japan
| | - Kazumasa Torimoto
- Department of Urology, Nara Medical University, Kashihara, Nara, Japan
| | - Nobumichi Tanaka
- Department of Urology, Nara Medical University, Kashihara, Nara, Japan.,Prostate Brachytherapy, Nara Medical University, Kashihara, Nara, Japan
| | - Kiyohide Fujimoto
- Department of Urology, Nara Medical University, Kashihara, Nara, Japan
| |
Collapse
|
45
|
Exosomal miR-93-5p from cancer-associated fibroblasts confers malignant phenotypes on bladder cancer cells by targeting PAFAH1B1. Anticancer Drugs 2023; 34:439-450. [PMID: 36441004 DOI: 10.1097/cad.0000000000001453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Dysregulation of cancer-associated fibroblasts (CAFs) still greatly challenges the treatments for bladder cancer (BC), where exosomal miRNAs derived from CAFs are one of the essential effectors for tumor progression. miR-93-5p is reported to be upregulated in BC, however, it is barely investigated in BC-derived CAFs. METHOD The CAF markers were immunofluorescent-labeled and examined by western blotting assay in CAFs and normal fibroblasts (NFs). CAFs- and NFs-derived exosomes (CAFs-exo/NFs-exo) were authenticated by transmission electron microscope and nanoparticle tracking analysis. Cell viability was determined by cell counting kit-8 assay, and cell mobility was evaluated by wound healing and transwell assays. Real-time quantitative PCR was used to quantify the RNA expressions, and a western blotting assay was used for protein expression. Interaction between miR-93-5p and Platelet-Activating Factor Acetylhydrolase IB Subunit Beta (PAFAH1B1) was verified by luciferase reporter assay. HE staining assay was applied to assess the histological changes of xenografts. RESULTS CAFs-exo notably enhanced cell mobility and the expression levels of miR-93-5p of BC cells compared to NFs-exo. However, inhibition of miR-93-5p in CAFs-exo exhibited attenuated pro-metastatic ability on BC cells. PAFAH1B1 was one of the predicted targets of miR-93-5p, whose mRNA level was most significantly downregulated after miR-93-5p transfection. The interaction between PAFAH1B1 and miR-93-5p was verified, and miR-93-5p negatively regulated the protein level of PAFAH1B1. Overexpression of PAFAH1B1 could efficiently reverse the effects of miR-93-5p mimic on BC cell mobility. Finally, inhibition of miR-93-5p was proved to impair the carcinogenic function of CAFs-exo in vivo . CONCLUSION Exosomal miR-93-5p derived from CAFs confers oncogenicity on BC cells via sponging PAFAH1B1, suggesting a novel therapeutic strategy for BC.
Collapse
|
46
|
Zhang S, Dong Y, Zhao S, Bi F, Xuan M, Zhu G, Guo W, Zhang Z. CXCL1 promoted the migration and invasion abilities of oral cancer cells and might serve as a promising marker of prognosis in tongue cancer. J Oral Pathol Med 2023. [PMID: 36829264 DOI: 10.1111/jop.13418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/04/2022] [Accepted: 12/22/2022] [Indexed: 02/26/2023]
Abstract
BACKGROUND Oral tongue squamous cell carcinoma tends to metastasize to cervical lymphatic nodes early which leads to a 50% drop of survival rate. CXCL1 could be secreted by LNMTca8113 cell induced lymphatic endothelial cells and promoted LNMTca8113 cell migration. The current study aimed to further explore the effect of CXCL1 on the proliferation and migration abilities of tongue cancer cells and the prognostic value of serum CXCL1 in oral tongue squamous cell carcinoma. METHODS Cell proliferation and migration ability were analysed by CCK8 assays and transwell migration assays. Immunofluorescence technique was used to show cytoskeleton. GST pull-down assay was applied to quantify the activation of GTPases. Blood samples of patients were collected and clinicopathological characteristics were analysed. RESULTS CXCL1 could promote cancer cell proliferation in appropriate concentration by PI3K/AKT pathway. It also regulated the activation of Rho GTPases to mediate the rearrangements of cytoskeleton to promote tumour cell migration. Level of plasma CXCL1 could predict the possibility of early lymphatic metastasis and had a predictive value in progression-free survival and overall survival. CONCLUSIONS CXCL1 could promote oral cancer cell proliferation, migration and invasion in vitro and contributed theoretical knowledge for the target selection in molecular targeted therapy. Level of plasma CXCL1 might serve as a biomarker for prognosis in oral tongue squamous cell carcinoma patients.
Collapse
Affiliation(s)
- Shuning Zhang
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuqing Dong
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shuangyuan Zhao
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fei Bi
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ming Xuan
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Guiquan Zhu
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weihua Guo
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhuang Zhang
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
47
|
Selective inhibition of HDAC6 promotes bladder cancer radiosensitization and mitigates the radiation-induced CXCL1 signalling. Br J Cancer 2023; 128:1753-1764. [PMID: 36810912 PMCID: PMC10133394 DOI: 10.1038/s41416-023-02195-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Although trimodality therapy resecting tumours followed by chemoradiotherapy is emerged for muscle-invasive bladder cancer (MIBC), chemotherapy produces toxicities. Histone deacetylase inhibitors have been identified as an effective strategy to enhance cancer radiotherapy (RT). METHODS We examined the role of HDAC6 and specific inhibition of HDAC6 on BC radiosensitivity by performing transcriptomic analysis and mechanism study. RESULTS HDAC6 knockdown or HDAC6 inhibitor (HDAC6i) tubacin exerted a radiosensitizing effect, including decreased clonogenic survival, increased H3K9ac and α-tubulin acetylation, and accumulated γH2AX, which are similar to the effect of panobinostat, a pan-HDACi, on irradiated BC cells. Transcriptomics of shHDAC6-transduced T24 under irradiation showed that shHDAC6 counteracted RT-induced mRNA expression of CXCL1, SERPINE1, SDC1 and SDC2, which are linked to cell migration, angiogenesis and metastasis. Moreover, tubacin significantly suppressed RT-induced CXCL1 and radiation-enhanced invasion/migration, whereas panobinostat elevated RT-induced CXCL1 expression and invasion/migration abilities. This phenotype was significantly abrogated by anti-CXCL1 antibody, indicating the key regulator of CXCL1 contributing to BC malignancy. Immunohistochemical evaluation of tumours from urothelial carcinoma patients supported the correlation between high CXCL1 expression and reduced survival. CONCLUSION Unlike pan-HDACi, the selective HDAC6i can enhance BC radiosensitization and effectively inhibit RT-induced oncogenic CXCL1-Snail-signalling, thus further advancing its therapeutic potential with RT.
Collapse
|
48
|
Kontogianni G, Voutetakis K, Piroti G, Kypreou K, Stefanaki I, Vlachavas EI, Pilalis E, Stratigos A, Chatziioannou A, Papadodima O. A Comprehensive Analysis of Cutaneous Melanoma Patients in Greece Based on Multi-Omic Data. Cancers (Basel) 2023; 15:cancers15030815. [PMID: 36765773 PMCID: PMC9913631 DOI: 10.3390/cancers15030815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 02/01/2023] Open
Abstract
Cutaneous melanoma (CM) is the most aggressive type of skin cancer, and it is characterised by high mutational load and heterogeneity. In this study, we aimed to analyse the genomic and transcriptomic profile of primary melanomas from forty-six Formalin-Fixed, Paraffin-Embedded (FFPE) tissues from Greek patients. Molecular analysis for both germline and somatic variations was performed in genomic DNA from peripheral blood and melanoma samples, respectively, exploiting whole exome and targeted sequencing, and transcriptomic analysis. Detailed clinicopathological data were also included in our analyses and previously reported associations with specific mutations were recognised. Most analysed samples (43/46) were found to harbour at least one clinically actionable somatic variant. A subset of samples was profiled at the transcriptomic level, and it was shown that specific melanoma phenotypic states could be inferred from bulk RNA isolated from FFPE primary melanoma tissue. Integrative bioinformatics analyses, including variant prioritisation, differential gene expression analysis, and functional and gene set enrichment analysis by group and per sample, were conducted and molecular circuits that are implicated in melanoma cell programmes were highlighted. Integration of mutational and transcriptomic data in CM characterisation could shed light on genes and pathways that support the maintenance of phenotypic states encrypted into heterogeneous primary tumours.
Collapse
Affiliation(s)
- Georgia Kontogianni
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
- Centre of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | | | - Georgia Piroti
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Katerina Kypreou
- 1st Department of Dermatology, Andreas Syggros Hospital, Medical School, National and Kapodistrian University of Athens, 16121 Athens, Greece
| | - Irene Stefanaki
- 1st Department of Dermatology, Andreas Syggros Hospital, Medical School, National and Kapodistrian University of Athens, 16121 Athens, Greece
| | | | | | - Alexander Stratigos
- 1st Department of Dermatology, Andreas Syggros Hospital, Medical School, National and Kapodistrian University of Athens, 16121 Athens, Greece
| | - Aristotelis Chatziioannou
- Centre of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- e-NIOS Applications Private Company, 17671 Kallithea, Greece
- Correspondence: (A.C.); (O.P.); Tel.: +30-210-727-3721 (A.C. & O.P.)
| | - Olga Papadodima
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
- Correspondence: (A.C.); (O.P.); Tel.: +30-210-727-3721 (A.C. & O.P.)
| |
Collapse
|
49
|
Response of Patients with Taxane-Refractory Advanced Urothelial Cancer to Enfortumab Vedotin, a Microtubule-Disrupting Agent. Case Rep Urol 2023; 2023:1024239. [PMID: 36691441 PMCID: PMC9867573 DOI: 10.1155/2023/1024239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Enfortumab vedotin (EV), a nectin-4-directed antibody conjugated to monomethyl auristatin E (MMAE), has been approved for patients with advanced urothelial carcinoma (aUC) previously treated with platinum-based chemotherapy and immune inhibitors. Taxane agents and MMAE share antitumor mechanisms through microtubule disruption, thus raising a notable concern regarding cross-resistance between these drugs. This case report describes two patients with taxane-based chemotherapy-refractory aUC who responded well to EV. A 71-year-old man (case 1) with pT3N0M0 renal pelvic UC showed a partial response to EV in metastatic lesions of the bilateral lungs and right pelvic lymph nodes after three cycles of paclitaxel plus gemcitabine chemotherapy. A 53-year-old man (case 2) with cT3bN2M0 bladder UC underwent platinum-based neoadjuvant chemotherapy and the following radial cystectomy (ypTis ypN0). He developed bilateral lung metastases and showed a complete response to EV in the metastatic lesions after 20 cycles of paclitaxel plus nedaplatin chemotherapy. Our experience of two cases demonstrated that tumor response to EV can be expected in patients with taxane-refractory aUC.
Collapse
|
50
|
Martins-Lima C, Chianese U, Benedetti R, Altucci L, Jerónimo C, Correia MP. Tumor microenvironment and epithelial-mesenchymal transition in bladder cancer: Cytokines in the game? Front Mol Biosci 2023; 9:1070383. [PMID: 36699696 PMCID: PMC9868260 DOI: 10.3389/fmolb.2022.1070383] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/22/2022] [Indexed: 01/11/2023] Open
Abstract
Bladder cancer (BlCa) is a highly immunogenic cancer. Bacillus Calmette-Guérin (BCG) is the standard treatment for non-muscle invasive bladder cancer (NMIBC) patients and, recently, second-line immunotherapies have arisen to treat metastatic BlCa patients. Understanding the interactions between tumor cells, immune cells and soluble factors in bladder tumor microenvironment (TME) is crucial. Cytokines and chemokines released in the TME have a dual role, since they can exhibit both a pro-inflammatory and anti-inflammatory potential, driving infiltration and inflammation, and also promoting evasion of immune system and pro-tumoral effects. In BlCa disease, 70-80% are non-muscle invasive bladder cancer, while 20-30% are muscle-invasive bladder cancer (MIBC) at the time of diagnosis. However, during the follow up, about half of treated NMIBC patients recur once or more, with 5-25% progressing to muscle-invasive bladder cancer, which represents a significant concern to the clinic. Epithelial-mesenchymal transition (EMT) is one biological process associated with tumor progression. Specific cytokines present in bladder TME have been related with signaling pathways activation and EMT-related molecules regulation. In this review, we summarized the immune landscape in BlCa TME, along with the most relevant cytokines and their putative role in driving EMT processes, tumor progression, invasion, migration and metastasis formation.
Collapse
Affiliation(s)
- Cláudia Martins-Lima
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) and Porto Comprehensive Cancer Center (Porto.CCC) Raquel Seruca, Porto, Portugal,Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Ugo Chianese
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Rosaria Benedetti
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy,BIOGEM, Molecular Biology and Genetics Research Institute, Avellino, Italy,IEOS, Institute of Endocrinology and Oncology, Naples, Italy
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) and Porto Comprehensive Cancer Center (Porto.CCC) Raquel Seruca, Porto, Portugal,Department of Pathology and Molecular Immunology at School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal,*Correspondence: Carmen Jerónimo, , ; Margareta P. Correia,
| | - Margareta P. Correia
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) and Porto Comprehensive Cancer Center (Porto.CCC) Raquel Seruca, Porto, Portugal,Department of Pathology and Molecular Immunology at School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal,*Correspondence: Carmen Jerónimo, , ; Margareta P. Correia,
| |
Collapse
|