1
|
Miri ZS, Bagheri H, Amani A, Karami H. Anti-tumor Effects of Curcumin and ABT-737 in Combination Therapy for Glioblastoma in Vivo. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2025; 14:552-566. [PMID: 40123591 PMCID: PMC11927151 DOI: 10.22088/ijmcm.bums.14.1.552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 12/04/2024] [Indexed: 03/25/2025]
Abstract
The resistance of tumor cells to ABT-737 can be attributed to alterations in the equilibrium of Bcl-2 family proteins. In this study, the effect of curcumin on the Mcl-1expression and the sensitivity of glioblastoma cells to ABT-737 were examined. Trypan blue assay and colony formation assay were performed to explore the effects of treatments on cell proliferation. MTT assay was performed to measure cytotoxicity. Cell migration was determined using a wound healing assay. Cell apoptosis was measured by Hoechst 33342 staining, ELISA cell death, and caspase-3 activity assay. The expression levels of Mcl-1 mRNA were also tested by qRT-PCR. Our results revealed that combination therapy significantly lowered the IC50 value and synergistically decreased the colony formation and migration, cell survival and growth of glioblastoma cells compared with curcumin or ABT-737 alone. Treatment with curcumin clearly inhibited the expression of Mcl-1 mRNA. Moreover, suppression of Mcl-1 mRNA by curcumin was associated with enhancement of apoptosis induced by ABT-737. In conclusion, curcumin has the ability to inhibit the cell proliferation and migration, and activate the intrinsic pathway of apoptosis. Moreover, it can enhance the sensitivity of glioblastoma cells to ABT-737 by suppressing the expression of Mcl-1.
Collapse
Affiliation(s)
- Zahra Sadat Miri
- Traditional and Complementary Medicine Research Center, Arak University of Medical Sciences, Arak, Iran.
| | - Hossein Bagheri
- Department of Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Alireza Amani
- Department of Orthopedic, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran.
| | - Hadi Karami
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran.
- Department of Molecular Medicine and Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran.
| |
Collapse
|
2
|
Bodac A, Mayet A, Rana S, Pascual J, Bowler AD, Roh V, Fournier N, Craciun L, Demetter P, Radtke F, Meylan E. Bcl-xL targeting eliminates ageing tumor-promoting neutrophils and inhibits lung tumor growth. EMBO Mol Med 2024; 16:158-184. [PMID: 38177532 PMCID: PMC10897164 DOI: 10.1038/s44321-023-00013-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 01/06/2024] Open
Abstract
Elevated peripheral blood and tumor-infiltrating neutrophils are often associated with a poor patient prognosis. However, therapeutic strategies to target these cells are difficult to implement due to the life-threatening risk of neutropenia. In a genetically engineered mouse model of lung adenocarcinoma, tumor-associated neutrophils (TAN) demonstrate tumor-supportive capacities and have a prolonged lifespan compared to circulating neutrophils. Here, we show that tumor cell-derived GM-CSF triggers the expression of the anti-apoptotic Bcl-xL protein and enhances neutrophil survival through JAK/STAT signaling. Targeting Bcl-xL activity with a specific BH3 mimetic, A-1331852, blocked the induced neutrophil survival without impacting their normal lifespan. Specifically, oral administration with A-1331852 decreased TAN survival and abundance, and reduced tumor growth without causing neutropenia. We also show that G-CSF, a drug used to combat neutropenia in patients receiving chemotherapy, increased the proportion of young TANs and augmented the anti-tumor effect resulting from Bcl-xL blockade. Finally, our human tumor data indicate the same role for Bcl-xL on pro-tumoral neutrophil survival. These results altogether provide preclinical evidence for safe neutrophil targeting based on their aberrant intra-tumor longevity.
Collapse
Affiliation(s)
- Anita Bodac
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Abdullah Mayet
- Laboratory of Immunobiology, Department of Molecular Biology, Université libre de Bruxelles, 6041, Gosselies, Belgium
- Lung Cancer and Immuno-Oncology laboratory, Bordet Cancer Research Laboratories, Institut Jules Bordet, Hôpital Universitaire de Bruxelles, Université libre de Bruxelles, 1070, Bruxelles, Belgium
- ULB Cancer Research Center (U-CRC) and ULB Center for Research in Immunology (U-CRI), 1070, Bruxelles, Belgium
| | - Sarika Rana
- Laboratory of Immunobiology, Department of Molecular Biology, Université libre de Bruxelles, 6041, Gosselies, Belgium
- Lung Cancer and Immuno-Oncology laboratory, Bordet Cancer Research Laboratories, Institut Jules Bordet, Hôpital Universitaire de Bruxelles, Université libre de Bruxelles, 1070, Bruxelles, Belgium
- ULB Cancer Research Center (U-CRC) and ULB Center for Research in Immunology (U-CRI), 1070, Bruxelles, Belgium
| | - Justine Pascual
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015, Lausanne, Switzerland
| | - Amber D Bowler
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Vincent Roh
- Translational Data Science - Facility, SIB Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
- Agora Cancer Research Center, 1005, Lausanne, Switzerland
| | - Nadine Fournier
- Translational Data Science - Facility, SIB Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
- Agora Cancer Research Center, 1005, Lausanne, Switzerland
| | - Ligia Craciun
- Department of Pathology, Institut Jules Bordet, Hôpital Universitaire de Bruxelles, Université libre de Bruxelles, 1070, Bruxelles, Belgium
| | - Pieter Demetter
- Department of Pathology, Institut Jules Bordet, Hôpital Universitaire de Bruxelles, Université libre de Bruxelles, 1070, Bruxelles, Belgium
| | - Freddy Radtke
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Etienne Meylan
- Laboratory of Immunobiology, Department of Molecular Biology, Université libre de Bruxelles, 6041, Gosselies, Belgium.
- Lung Cancer and Immuno-Oncology laboratory, Bordet Cancer Research Laboratories, Institut Jules Bordet, Hôpital Universitaire de Bruxelles, Université libre de Bruxelles, 1070, Bruxelles, Belgium.
- ULB Cancer Research Center (U-CRC) and ULB Center for Research in Immunology (U-CRI), 1070, Bruxelles, Belgium.
| |
Collapse
|
3
|
Cha YJ, Kim EY, Choi YJ, Kim CY, Park MK, Chang YS. Accumulation of plasmacytoid dendritic cell is associated with a treatment response to DNA-damaging treatment and favorable prognosis in lung adenocarcinoma. Front Immunol 2023; 14:1154881. [PMID: 37435086 PMCID: PMC10330699 DOI: 10.3389/fimmu.2023.1154881] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/08/2023] [Indexed: 07/13/2023] Open
Abstract
Introduction Favorable responses to the treatment including immune checkpoint inhibitors (ICIs) have been consistently reported in lung cancer with smoking history. As the tumor microenvironment (TME) may be involved in the treatment response to ICIs, we aimed to investigate the TME of lung cancer with different smoking status. Methods Lung adenocarcinoma (LUAD) tissue (Tu) and adjacent normal-appearing lung tissue (NL) from current and never smokers were investigated by single-cell RNA sequencing and immunofluorescence and immunohistochemical staining. The clinical implications of identified biomarkers were validated using open-source datasets. Results The lungs of smokers had an increased proportion of innate immune cells in NL tissues, whereas Tu tissues had a lower proportion of these cells than those of non-smokers. Monocyte-derived macrophages (mono-Mc), CD163-LGMN macrophages, monocyte-derived dendritic cells (DCs), and plasmacytoid DCs (pDCs) were significantly enriched in smokers' Tu. Among these clusters, pDCs, specifically enriched in the Tu of smokers. The expression of representative pDC markers, leukocyte immunoglobulin-like receptor A4 (LILRA4) and Toll-like receptor 9 (TLR9), was increased in the stromal cells of LUAD in patients with a smoking history. In an animal model of lung cancer, ionizing radiation induced robust TLR9 expressing immune cells in peritumoral area. Survival analysis using a TCGA-LUAD dataset indicated that patients overexpressing pDC markers exhibited superior clinical outcomes to age-, sex-, and smoking-matched control groups. Top 25% patients with high TLR9 expression exhibited significantly higher tumor mutational burden than that of low TLR9 expression group (bottom 25% patients) (5.81 mutations/Mb vs 4.36 mutations/Mb; P = 0.0059, Welch's two-sample t-test). Conclusion There is an increased pDC in the TME of smokers' lung cancer, and the response of pDC to DNA damaging treatment would lead a conducive environment to ICIs containing regimens. These findings suggest that R&D that induces an increase in the activated pDC population is continuously required to enhance therapeutic effectiveness of ICIs-containing therapies in lung cancer.
Collapse
Affiliation(s)
- Yoon Jin Cha
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eun Young Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong Jun Choi
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chi Young Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min Kyung Park
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yoon Soo Chang
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
4
|
Waseem M, Wang BD. Promising Strategy of mPTP Modulation in Cancer Therapy: An Emerging Progress and Future Insight. Int J Mol Sci 2023; 24:5564. [PMID: 36982637 PMCID: PMC10051994 DOI: 10.3390/ijms24065564] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023] Open
Abstract
Cancer has been progressively a major global health concern. With this developing global concern, cancer determent is one of the most significant public health challenges of this era. To date, the scientific community undoubtedly highlights mitochondrial dysfunction as a hallmark of cancer cells. Permeabilization of the mitochondrial membranes has been implicated as the most considerable footprint in apoptosis-mediated cancer cell death. Under the condition of mitochondrial calcium overload, exclusively mediated by oxidative stress, an opening of a nonspecific channel with a well-defined diameter in mitochondrial membrane allows free exchange between the mitochondrial matrix and the extra mitochondrial cytosol of solutes and proteins up to 1.5 kDa. Such a channel/nonspecific pore is recognized as the mitochondrial permeability transition pore (mPTP). mPTP has been established for regulating apoptosis-mediated cancer cell death. It has been evident that mPTP is critically linked with the glycolytic enzyme hexokinase II to defend cellular death and reduce cytochrome c release. However, elevated mitochondrial Ca2+ loading, oxidative stress, and mitochondrial depolarization are critical factors leading to mPTP opening/activation. Although the exact mechanism underlying mPTP-mediated cell death remains elusive, mPTP-mediated apoptosis machinery has been considered as an important clamp and plays a critical role in the pathogenesis of several types of cancers. In this review, we focus on structure and regulation of the mPTP complex-mediated apoptosis mechanisms and follow with a comprehensive discussion addressing the development of novel mPTP-targeting drugs/molecules in cancer treatment.
Collapse
Affiliation(s)
- Mohammad Waseem
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA;
| | - Bi-Dar Wang
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA;
- Hormone Related Cancers Program, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| |
Collapse
|
5
|
Combined time-restricted feeding and cisplatin enhance the anti-tumor effects in cisplatin-resistant and -sensitive lung cancer cells. Med Oncol 2023; 40:63. [PMID: 36576605 PMCID: PMC9797463 DOI: 10.1007/s12032-022-01923-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/04/2022] [Indexed: 12/29/2022]
Abstract
Combination therapy as an important treatment option for lung cancer has been attracting attention due to the primary and acquired resistance of chemotherapeutic drugs in the clinical application. In the present study, as a new therapy strategy, concomitant treatment with time-restricted feeding (TRF) plus cisplatin (DDP) on lung cancer growth was investigated in DDP-resistant and DDP-sensitive lung cancer cells. We first found that TRF significantly enhanced the drug susceptibility of DDP in DDP-resistant A549 (A549/DDP) cell line, illustrated by reversing the inhibitory concentration 50 (IC50) values of A549/DDP cells to normal level of parental A549 cells. We also found that TRF markedly enhanced DDP inhibition on cell proliferation, migration, as well as promoted apoptosis compared to the DDP alone group in A549, H460 and A549/DDP cells lines. We further revealed that the synergistic anti-tumor effect of combined DDP and TRF was greater than that of combined DDP and simulated fasting condition (STS), a known anti-tumor cellular medium. Moreover, mRNA sequence analysis from A549/DDP cell line demonstrated the synergistic anti-tumor effect involved in upregulated pathways in p53 signaling pathway and apoptosis. Notably, compared with the DDP alone group, combination of TRF and DDP robustly upregulated the P53 protein expression without mRNA level change by regulating its stability via promoting protein synthesis and inhibiting degradation, revealed by cycloheximide and MG132 experiments. Collectively, our results suggested that TRF in combination with cisplatin might be an additional novel therapeutic strategy for patients with lung cancer.
Collapse
|
6
|
Bain NT, Wang Y, Arulananda S. Minimal residual disease in EGFR-mutant non-small-cell lung cancer. Front Oncol 2022; 12:1002714. [PMID: 36212398 PMCID: PMC9533094 DOI: 10.3389/fonc.2022.1002714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/31/2022] [Indexed: 11/14/2022] Open
Abstract
Targeted therapy with epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) is an effective treatment for EGFR-mutant non-small-cell lung cancer (NSCLC), however most patients invariably relapse after a period of minimal residual disease (MRD). This mini-review explores the mechanistic pathways leading to tumour dormancy, cellular senescence and epigenetic changes involving YAP/TEAD activation. We describe the various approaches of utilising TKIs in combination with agents to intensify initial depth of response, enhance apoptosis and target senescence-like dormancy. This mini-review will also highlight the potential novel therapies under development targeting MRD to improve outcomes for patients with EGFR-mutant NSCLC.
Collapse
Affiliation(s)
- Nathan T. Bain
- Department of Medical Oncology, Monash Health, Clayton, VIC, Australia
| | - Yang Wang
- Department of Medical Oncology, Monash Health, Clayton, VIC, Australia
| | - Surein Arulananda
- Department of Medical Oncology, Monash Health, Clayton, VIC, Australia
- School of Clinical Sciences, Faculty of Medicine, Monash University, Clayton, VIC, Australia
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- *Correspondence: Surein Arulananda,
| |
Collapse
|
7
|
Montero J, Haq R. Adapted to Survive: Targeting Cancer Cells with BH3 Mimetics. Cancer Discov 2022; 12:1217-1232. [PMID: 35491624 PMCID: PMC9306285 DOI: 10.1158/2159-8290.cd-21-1334] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/11/2022] [Accepted: 02/10/2022] [Indexed: 01/07/2023]
Abstract
A hallmark of cancer is cell death evasion, underlying suboptimal responses to chemotherapy, targeted agents, and immunotherapies. The approval of the antiapoptotic BCL2 antagonist venetoclax has finally validated the potential of targeting apoptotic pathways in patients with cancer. Nevertheless, pharmacologic modulators of cell death have shown markedly varied responses in preclinical and clinical studies. Here, we review emerging concepts in the use of this class of therapies. Building on these observations, we propose that treatment-induced changes in apoptotic dependency, rather than pretreatment dependencies, will need to be recognized and targeted to realize the precise deployment of these new pharmacologic agents. SIGNIFICANCE Targeting antiapoptotic family members has proven efficacious and tolerable in some cancers, but responses are infrequent, particularly for patients with solid tumors. Biomarkers to aid patient selection have been lacking. Precision functional approaches that overcome adaptive resistance to these compounds could drive durable responses to chemotherapy, targeted therapy, and immunotherapies.
Collapse
Affiliation(s)
- Joan Montero
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Corresponding Authors: Rizwan Haq, Department of Medical Oncology M423A, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215. Phone: 617-632-6168; E-mail: ; and Joan Montero, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), c/Baldiri Reixac 15-21, Barcelona 08028, Spain. Phone: 34-93-403-9956; E-mail:
| | - Rizwan Haq
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Division of Molecular and Cellular Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Corresponding Authors: Rizwan Haq, Department of Medical Oncology M423A, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215. Phone: 617-632-6168; E-mail: ; and Joan Montero, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), c/Baldiri Reixac 15-21, Barcelona 08028, Spain. Phone: 34-93-403-9956; E-mail:
| |
Collapse
|
8
|
Vianello C, Cocetta V, Catanzaro D, Dorn GW, De Milito A, Rizzolio F, Canzonieri V, Cecchin E, Roncato R, Toffoli G, Quagliariello V, Di Mauro A, Losito S, Maurea N, Scaffa C, Sales G, Scorrano L, Giacomello M, Montopoli M. Cisplatin resistance can be curtailed by blunting Bnip3-mediated mitochondrial autophagy. Cell Death Dis 2022; 13:398. [PMID: 35459212 PMCID: PMC9033831 DOI: 10.1038/s41419-022-04741-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 02/06/2023]
Abstract
Cisplatin (CDDP) is commonly used to treat a multitude of tumors including sarcomas, ovarian and cervical cancers. Despite recent investigations allowed to improve chemotherapy effectiveness, the molecular mechanisms underlying the development of CDDP resistance remain a major goal in cancer research. Here, we show that mitochondrial morphology and autophagy are altered in different CDDP resistant cancer cell lines. In CDDP resistant osteosarcoma and ovarian carcinoma, mitochondria are fragmented and closely juxtaposed to the endoplasmic reticulum; rates of mitophagy are also increased. Specifically, levels of the mitophagy receptor BNIP3 are higher both in resistant cells and in ovarian cancer patient samples resistant to platinum-based treatments. Genetic BNIP3 silencing or pharmacological inhibition of autophagosome formation re-sensitizes these cells to CDDP. Our study identifies inhibition of BNIP3-driven mitophagy as a potential therapeutic strategy to counteract CDDP resistance in ovarian carcinoma and osteosarcoma.
Collapse
Affiliation(s)
- Caterina Vianello
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Largo E. Meneghetti 2, 35131, Padova, Italy
- Department of Biology, University of Padova, Via Ugo Bassi 58B, 35131, Padova, Italy
| | - Veronica Cocetta
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Largo E. Meneghetti 2, 35131, Padova, Italy
| | - Daniela Catanzaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Largo E. Meneghetti 2, 35131, Padova, Italy
| | - Gerald W Dorn
- Center for Pharmacogenomics, Department of Internal Medicine, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO, 63110, USA
| | - Angelo De Milito
- Sprint Bioscience, Huddinge, Sweden
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Flavio Rizzolio
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, 30172, Venice, Italy
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, 33081, Aviano, Italy
| | - Vincenzo Canzonieri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, 33081, Aviano, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149, Trieste, Italy
| | - Erika Cecchin
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO), IRCCS, 33081, Aviano, Italy
| | - Rossana Roncato
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO), IRCCS, 33081, Aviano, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO), IRCCS, 33081, Aviano, Italy
| | - Vincenzo Quagliariello
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - Annabella Di Mauro
- Pathology Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - Simona Losito
- Pathology Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - Nicola Maurea
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - Cono Scaffa
- Gynecologic Oncology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - Gabriele Sales
- Department of Biology, University of Padova, Via Ugo Bassi 58B, 35131, Padova, Italy
| | - Luca Scorrano
- Department of Biology, University of Padova, Via Ugo Bassi 58B, 35131, Padova, Italy
- Veneto Institute of Molecular Medicine, Via Orus 2, 35129, Padova, Italy
| | - Marta Giacomello
- Department of Biology, University of Padova, Via Ugo Bassi 58B, 35131, Padova, Italy.
- Department of Biomedical Sciences, Via Ugo Bassi 58B, 35131, Padova, Italy.
| | - Monica Montopoli
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Largo E. Meneghetti 2, 35131, Padova, Italy.
- Veneto Institute of Molecular Medicine, Via Orus 2, 35129, Padova, Italy.
| |
Collapse
|
9
|
Liang TL, Li RZ, Mai CT, Guan XX, Li JX, Wang XR, Ma LR, Zhang FY, Wang J, He F, Pan HD, Zhou H, Yan PY, Fan XX, Wu QB, Neher E, Liu L, Xie Y, Leung ELH, Yao XJ. A method establishment and comparison of in vivo lung cancer model development platforms for evaluation of tumour metabolism and pharmaceutical efficacy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 96:153831. [PMID: 34794861 DOI: 10.1016/j.phymed.2021.153831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/15/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Currently, the identification of accurate biomarkers for the diagnosis of patients with early-stage lung cancer remains difficult. Fortunately, metabolomics technology can be used to improve the detection of plasma metabolic biomarkers for lung cancer. In a previous study, we successfully utilised machine learning methods to identify significant metabolic markers for early-stage lung cancer diagnosis. However, a related research platform for the investigation of tumour metabolism and drug efficacy is still lacking. HYPOTHESIS/PURPOSE A novel methodology for the comprehensive evaluation of the internal tumour-metabolic profile and drug evaluation needs to be established. METHODS The optimal location for tumour cell inoculation was identified in mouse chest for the non-traumatic orthotopic lung cancer mouse model. Microcomputed tomography (micro-CT) was applied to monitor lung tumour growth. Proscillaridin A (P.A) and cisplatin (CDDP) were utilised to verify the anti-lung cancer efficacy of the platform. The top five clinically valid biomarkers, including proline, L-kynurenine, spermidine, taurine and palmitoyl-L-carnitine, were selected as the evaluation indices to obtain a suitable lung cancer mouse model for clinical metabolomics research by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). RESULTS The platform was successfully established, achieving 100% tumour development rate and 0% surgery mortality. P.A and CDDP had significant anti-lung cancer efficacy in the platform. Compared with the control group, four biomarkers in the orthotopic model and two biomarkers in the metastatic model had significantly higher abundance. Principal component analysis (PCA) showed a significant separation between the orthotopic/metastatic model and the control/subcutaneous/KRAS transgenic model. The platform was mainly involved in arginine and proline metabolism, tryptophan metabolism, and taurine and hypotaurine metabolism. CONCLUSION This study is the first to simulate clinical metabolomics by comparing the metabolic phenotype of plasma in different lung cancer mouse models. We found that the orthotopic model was the most suitable for tumour metabolism. Furthermore, the anti-tumour drug efficacy was verified in the platform. The platform can very well match the clinical reality, providing better lung cancer diagnosis and securing more precise evidence for drug evaluation in the future.
Collapse
Affiliation(s)
- Tu-Liang Liang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau (S.A.R.), China
| | - Run-Ze Li
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau (S.A.R.), China
| | - Chu-Tian Mai
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau (S.A.R.), China
| | - Xiao-Xiang Guan
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau (S.A.R.), China
| | - Jia-Xin Li
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau (S.A.R.), China
| | - Xuan-Run Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau (S.A.R.), China
| | - Lin-Rui Ma
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau (S.A.R.), China
| | - Fang-Yuan Zhang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau (S.A.R.), China
| | - Jian Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau (S.A.R.), China
| | - Fan He
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau (S.A.R.), China
| | - Hu-Dan Pan
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau (S.A.R.), China
| | - Hua Zhou
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau (S.A.R.), China
| | - Pei-Yu Yan
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau (S.A.R.), China
| | - Xing-Xing Fan
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau (S.A.R.), China
| | - Qi-Biao Wu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau (S.A.R.), China
| | - Erwin Neher
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau (S.A.R.), China
| | - Liang Liu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau (S.A.R.), China
| | - Ying Xie
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau (S.A.R.), China.
| | - Elaine Lai-Han Leung
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau (S.A.R.), China; Zhuhai Hospital of Traditional Chinese and Western Medicine, Zhuhai City, Guangdong, PR China.
| | - Xiao-Jun Yao
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau (S.A.R.), China; State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, China.
| |
Collapse
|
10
|
Townsend PA, Kozhevnikova MV, Cexus ONF, Zamyatnin AA, Soond SM. BH3-mimetics: recent developments in cancer therapy. J Exp Clin Cancer Res 2021; 40:355. [PMID: 34753495 PMCID: PMC8576916 DOI: 10.1186/s13046-021-02157-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/26/2021] [Indexed: 01/11/2023] Open
Abstract
The hopeful outcomes from 30 years of research in BH3-mimetics have indeed served a number of solid paradigms for targeting intermediates from the apoptosis pathway in a variety of diseased states. Not only have such rational approaches in drug design yielded several key therapeutics, such outputs have also offered insights into the integrated mechanistic aspects of basic and clinical research at the genetics level for the future. In no other area of medical research have the effects of such work been felt, than in cancer research, through targeting the BAX-Bcl-2 protein-protein interactions. With these promising outputs in mind, several mimetics, and their potential therapeutic applications, have also been developed for several other pathological conditions, such as cardiovascular disease and tissue fibrosis, thus highlighting the universal importance of the intrinsic arm of the apoptosis pathway and its input to general tissue homeostasis. Considering such recent developments, and in a field that has generated so much scientific interest, we take stock of how the broadening area of BH3-mimetics has developed and diversified, with a focus on their uses in single and combined cancer treatment regimens and recently explored therapeutic delivery methods that may aid the development of future therapeutics of this nature.
Collapse
Affiliation(s)
- Paul A Townsend
- University of Surrey, Guildford, UK.
- Sechenov First Moscow State Medical University, Moscow, Russian Federation.
- University of Manchester, Manchester, UK.
| | - Maria V Kozhevnikova
- University of Surrey, Guildford, UK
- Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | | | - Andrey A Zamyatnin
- University of Surrey, Guildford, UK
- Sechenov First Moscow State Medical University, Moscow, Russian Federation
- Lomonosov Moscow State University, Moscow, Russian Federation
- Sirius University of Science and Technology, Sochi, Russian Federation
| | - Surinder M Soond
- University of Surrey, Guildford, UK.
- Sechenov First Moscow State Medical University, Moscow, Russian Federation.
| |
Collapse
|
11
|
Arulananda S, Lee EF, Fairlie WD, John T. The role of BCL-2 family proteins and therapeutic potential of BH3-mimetics in malignant pleural mesothelioma. Expert Rev Anticancer Ther 2020; 21:413-424. [PMID: 33238762 DOI: 10.1080/14737140.2021.1856660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: With limited recent therapeutic changes, malignant pleural mesothelioma (MPM) is associated with poor survival and death within 12 months, making it one of the most lethal malignancies. Due to unregulated asbestos use in developing countries and home renovation exposures, cases of MPM are likely to present for decades. As MPM is largely driven by dysregulation of tumor suppressor genes, researchers have examined other mechanisms of subverting tumor proliferation and spread. Over-expression of pro-survival BCL-2 family proteins impairs cells from undergoing apoptosis, and BH3-mimetics targeting them are a novel treatment option across various cancers, though have not been widely investigated in MPM.Areas covered: This review provides an overview of MPM and its current treatment landscape. It summarizes the role of BCL-2 family proteins in tumorigenesis and the therapeutic potential of BH3-mimetics . Finally, it discusses the role of BCL-2 proteins in MPM and the pre-clinical rationale for investigating BH3-mimetics as a therapeutic strategy.Expert opinion: As a disease without readily actionable oncogene driver mutations and with modest benefit from immune checkpoint inhibition, novel therapeutic options are urgently needed for MPM. Hence, BH3-mimetics provide a promising treatment option, with evidence supporting dependence on pro-survival BCL-2 proteins for MPM cell survival.
Collapse
Affiliation(s)
- Surein Arulananda
- Department of Medical Oncology, Austin Health, Heidelberg, Australia.,Olivia Newton-John Cancer Research Institute, Heidelberg, Australia.,School of Cancer Medicine, La Trobe University, Heidelberg, Australia
| | - Erinna F Lee
- Olivia Newton-John Cancer Research Institute, Heidelberg, Australia.,School of Cancer Medicine, La Trobe University, Heidelberg, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Victoria, Australia
| | - W Douglas Fairlie
- Olivia Newton-John Cancer Research Institute, Heidelberg, Australia.,School of Cancer Medicine, La Trobe University, Heidelberg, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Victoria, Australia
| | - Thomas John
- Olivia Newton-John Cancer Research Institute, Heidelberg, Australia.,School of Cancer Medicine, La Trobe University, Heidelberg, Australia.,Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| |
Collapse
|
12
|
Yu C, Wang Z, Sun Z, Zhang L, Zhang W, Xu Y, Zhang JJ. Platinum-Based Combination Therapy: Molecular Rationale, Current Clinical Uses, and Future Perspectives. J Med Chem 2020; 63:13397-13412. [PMID: 32813515 DOI: 10.1021/acs.jmedchem.0c00950] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Platinum drugs are common in chemotherapy, but their clinical applications have been limited due to drug resistance and severe toxic effects. The combination of platinum drugs with other drugs with different mechanisms of anticancer action, especially checkpoint inhibitors, is increasingly popular. This combination is the leading strategy to improve the therapeutic efficiency and minimize the side effects of platinum drugs. In this review, we focus on the mechanistic basis of the combinations of platinum-based drugs with other drugs to inspire the development of more promising platinum-based combination regimens in clinical trials as well as novel multitargeting platinum drugs overcoming drug resistance and toxicities resulting from current platinum drugs.
Collapse
Affiliation(s)
- Chunqiu Yu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Zhibin Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Zeren Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Wanwan Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yungen Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.,Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Jing-Jing Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.,Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
13
|
The BCL-2 selective inhibitor ABT-199 sensitizes soft tissue sarcomas to proteasome inhibition by a concerted mechanism requiring BAX and NOXA. Cell Death Dis 2020; 11:701. [PMID: 32839432 PMCID: PMC7445285 DOI: 10.1038/s41419-020-02910-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 02/06/2023]
Abstract
Soft tissue sarcomas (STS) are a heterogeneous group of malignancies predominantly affecting children and young adults. Despite improvements in multimodal therapies, 5-year survival rates are only 50% and new treatment options in STS are urgently needed. To develop a rational combination therapy for the treatment of STS we focused on ABT-199 (Venetoclax), a BCL-2 specific BH3-mimetic, in combination with the proteasome inhibitor bortezomib (BZB). Simultaneous inhibition of BCL-2 and the proteasome resulted in strongly synergistic apoptosis induction. Mechanistically, ABT-199 mainly affected the multidomain effector BAX by liberating it from BCL-2 inhibition. The combination with BZB additionally resulted in the accumulation of BOK, a BAX/BAK homologue, and of the BH3-only protein NOXA, which inhibits the anti-apoptotic protein MCL-1. Thus, the combination of ABT-199 and BZB sensitizes STS cells to apoptosis by simultaneously releasing several defined apoptotic restraints. This synergistic mechanism of action was verified by CRISPR/Cas9 knock-out, showing that both BAX and NOXA are crucial for ABT-199/BZB-induced apoptosis. Noteworthy, efficient induction of apoptosis by ABT-199/BZB was not affected by the p53 status and invariably detected in cell lines and patient-derived tumor cells of several sarcoma types, including rhabdomyo-, leiomyo-, lipo-, chondro-, osteo-, or synovial sarcomas. Hence, we propose the combination of ABT-199 and BZB as a promising strategy for the treatment of STS, which should warrant further clinical investigation.
Collapse
|
14
|
Li H, Wang H, Deng K, Han W, Hong B, Lin W. The ratio of Bcl-2/Bim as a predictor of cisplatin response provides a rational combination of ABT-263 with cisplatin or radiation in small cell lung cancer. Cancer Biomark 2019; 24:51-59. [PMID: 30614795 DOI: 10.3233/cbm-181692] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Cisplatin-based chemotherapy and radiotherapy are the most commonly used treatments for small cell lung cancer (SCLC). However, despise initially dramatic response, the response duration of SCLC patients is variable and resistance to chemo- and radio-therapy inevitably develops. OBJECTIVE The aim of the study is to investigate the role of Bcl-2 family proteins in predicting SCLC sensitivity to cisplatin treatment, and to identify the potential sensitizer of cisplatin or ratiation treatment in SCLC. METHODS We collected cisplatin sensitivity data from public available database, and evaluated its possible association with mRNA or protein expression of Bcl-2 family members in SCLC cell lines. RESULTS The IC50 value of cisplatin was significantly correlated with the ratio of Bcl-2/Bim mRNA expression in 33 SCLC cell lines (P= 0.041) as well as the ratio of Bcl-2/Bim protein expression in 7 SCLC cell lines (P= 0.0252). Furthermore, a BH3-mimetic ABT-263 was found to be able to sensitize SCLC cells to cisplatin or radiation. The synergistic and additive antitumor activity of ABT-263 combined with cisplatin or radiation was associated with the enhanced apoptosis, which may be caused by the disruption of Bcl-2 binding to Bim by ABT-263. CONCLUSIONS Our study indicates that the ratio of Bcl-2/Bim could be a SCLC response predictor to cisplatin, and ABT-263 addition could be an effective strategy to improve the activity of chemo- or radio-therapy in SCLC.
Collapse
Affiliation(s)
- Hong Li
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui, China.,Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Huogang Wang
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui, China.,Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Ke Deng
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui, China.,Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Wei Han
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Bo Hong
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui, China.,Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China.,Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Wenchu Lin
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui, China.,Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| |
Collapse
|
15
|
Guilbaud E, Gautier EL, Yvan-Charvet L. Macrophage Origin, Metabolic Reprogramming and IL-1 Signaling: Promises and Pitfalls in Lung Cancer. Cancers (Basel) 2019; 11:E298. [PMID: 30832375 PMCID: PMC6468621 DOI: 10.3390/cancers11030298] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/21/2019] [Accepted: 02/26/2019] [Indexed: 12/14/2022] Open
Abstract
Macrophages are tissue-resident cells that act as immune sentinels to maintain tissue integrity, preserve self-tolerance and protect against invading pathogens. Lung macrophages within the distal airways face around 8000⁻9000 L of air every day and for that reason are continuously exposed to a variety of inhaled particles, allergens or airborne microbes. Chronic exposure to irritant particles can prime macrophages to mediate a smoldering inflammatory response creating a mutagenic environment and favoring cancer initiation. Tumor-associated macrophages (TAMs) represent the majority of the tumor stroma and maintain intricate interactions with malignant cells within the tumor microenvironment (TME) largely influencing the outcome of cancer growth and metastasis. A number of macrophage-centered approaches have been investigated as potential cancer therapy and include strategies to limit their infiltration or exploit their antitumor effector functions. Recently, strategies aimed at targeting IL-1 signaling pathway using a blocking antibody have unexpectedly shown great promise on incident lung cancer. Here, we review the current understanding of the bridge between TAM metabolism, IL-1 signaling, and effector functions in lung adenocarcinoma and address the challenges to successfully incorporating these pathways into current anticancer regimens.
Collapse
Affiliation(s)
- Emma Guilbaud
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, 06204 Nice, France.
| | - Emmanuel L Gautier
- Institut National de la Santé et de la Recherche Médicale (Inserm) UMR_S 1166, Sorbonnes Universités, Hôpital de la Pitié Salpêtrière, 75013 Paris, France.
| | - Laurent Yvan-Charvet
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, 06204 Nice, France.
| |
Collapse
|
16
|
Merino D, Kelly GL, Lessene G, Wei AH, Roberts AW, Strasser A. BH3-Mimetic Drugs: Blazing the Trail for New Cancer Medicines. Cancer Cell 2018; 34:879-891. [PMID: 30537511 DOI: 10.1016/j.ccell.2018.11.004] [Citation(s) in RCA: 228] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/28/2018] [Accepted: 11/06/2018] [Indexed: 12/26/2022]
Abstract
Defects in apoptotic cell death can promote cancer and impair responses of malignant cells to anti-cancer therapy. Pro-survival BCL-2 proteins prevent apoptosis by keeping the cell death effectors, BAX and BAK, in check. The BH3-only proteins initiate apoptosis by neutralizing the pro-survival BCL-2 proteins. Structural analysis and medicinal chemistry led to the development of small-molecule drugs that mimic the function of the BH3-only proteins to kill cancer cells. The BCL-2 inhibitor venetoclax has been approved for treatment of refractory chronic lymphocytic leukemia and this drug and inhibitors of pro-survival MCL-1 and BCL-XL are being tested in diverse malignancies.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Biomimetic Materials/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors
- Myeloid Cell Leukemia Sequence 1 Protein/metabolism
- Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Sulfonamides/pharmacology
- bcl-X Protein/antagonists & inhibitors
- bcl-X Protein/metabolism
Collapse
Affiliation(s)
- Delphine Merino
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Melbourne, VIC 3086, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Gemma L Kelly
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Guillaume Lessene
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Andrew H Wei
- Department of Haematology, Alfred Hospital and Monash University Melbourne, Melbourne, VIC 3004, Australia
| | - Andrew W Roberts
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia; Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC 3000, Australia; Victorian Comprehensive Cancer Centre, Melbourne, VIC 3000, Australia
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
17
|
Sensitizing non-small cell lung cancer to BCL-xL-targeted apoptosis. Cell Death Dis 2018; 9:986. [PMID: 30250075 PMCID: PMC6155218 DOI: 10.1038/s41419-018-1040-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 08/19/2018] [Accepted: 09/06/2018] [Indexed: 12/15/2022]
Abstract
Lung cancer is the leading cause of death in the United States, with non-small cell lung cancers (NSCLC) accounting for 85% of all cases. By analyzing the expression profile of the pro-apoptotic and anti-apoptotic proteins, we have assigned NSCLCs into two distinct groups. While single agent treatment with the BCL-2/BCL-xL/BCL-w inhibitor ABT-263 (navitoclax) did not trigger apoptosis in either group, cells with a moderate to high level of MCL-1 expression were sensitive to ABT-263 treatment when MCL-1 expression was suppressed with a gene-specific siRNA. In contrast, those with a low MCL-1 expression did not undergo apoptosis upon combination treatment with ABT-263 and MCL-1 siRNA. Further studies revealed that cells with a low MCL-1 expression had low mitochondrial priming, and treatment with the chemotherapy drug docetaxel raised the mitochondrial priming level and consequently sensitized cells to ABT-263. These results establish a rationale for molecular profiling and a therapeutic strategy to treat NSCLC patients with pro-apoptotic anti-cancer drugs based on their MCL-1 expression level.
Collapse
|
18
|
Bi C, Jiang B. Downregulation of RPN2 induces apoptosis and inhibits migration and invasion in colon carcinoma. Oncol Rep 2018; 40:283-293. [PMID: 29749494 PMCID: PMC6059750 DOI: 10.3892/or.2018.6434] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 04/27/2018] [Indexed: 12/12/2022] Open
Abstract
The morbidity of colorectal cancer (CRC) increases annualy, which accounts to higher mortality worldwide. Therefore, it is important to study the pathogenesis of colon cancer. Ribophorin II (RPN2), part of the N-oligosaccharyltransferase complex, is highly expressed in CRC. In the present study, we investigated whether RPN2 can regulate apoptosis, migration and invasion by RNA interference in CRC and sought to clarify the molecular mechanism involved. Based on previous research, an abnormal high expression of RPN2 was observed in CRC tissues and cell lines by real-time (RT)-PCR, immunohistochemistry (IHC) and western blot analysis. RPN2 knockdown via small RNA interference (siRNA) strategy attenuated the expression of RPN2 at the mRNA and protein levels in vivo, leading to decreased cell viability and increased cell apoptosis. In addition, RNAi-RPN2 effectively arrested the cell cycle at the G0/G1-phase in SW1116 and SW480 cells. Furthermore, the Transwell assay demonstrated that cell migration and invasion abilities were significantly inhibited after cell transfection with RPN2 interference plasmid. The apoptosis-related protein (caspase-3) expression was increased and the cell cycle-related protein (cyclin D1) expression was decreased in the siRNA-RPN2 group. RT-PCR and western blot analysis results indicated that migration- and invasion-related proteins including E-cadherin, matrix metalloproteinases (MMP)-2 and TIMP-2 were markedly regulated by RPN2 siRNA. Phosphorylation levels of signal transducer and activator of transcription (STAT)3 and Janus kinase (JAK)2 were inhibited by RPN2 siRNA. These findings indicated a novel pathway of tumor-promoting activity by RPN2 in CRC, with significant implications for unraveling the tumorigenesis of CRC.
Collapse
Affiliation(s)
- Chongyao Bi
- Department of General Surgery, Jiaozhou Central Hospital of Qingdao, Qingdao, Shandong 266300, P.R. China
| | - Baofei Jiang
- Department of General Surgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| |
Collapse
|
19
|
A novel tetrahydroisoquinoline (THIQ) analogue induces mitochondria-dependent apoptosis. Eur J Med Chem 2018; 150:719-728. [PMID: 29573707 DOI: 10.1016/j.ejmech.2018.03.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/04/2018] [Accepted: 03/05/2018] [Indexed: 12/31/2022]
Abstract
Lung cancer continues to be a leading cause of cancer-related death worldwide, with non-small cell lung cancer (NSCLC) accounting for more than 80% of lung cancer cases. Current therapies for NSCLC have only limited effect and treatment resistance develops rapidly. In a previous study, we have shown that C1-phenylethynyl tetrahydroisoquinoline (THIQ) analogue 4 has anti-proliferative activity against PC3 human prostate cancer cells. However, this anticancer effect was achieved with relatively high IC50 in A549 lung cancer cells. To improve the potency of the drug, in the present study, a series of novel THIQ analogues (analogues 5a-d) were prepared by using an oxidative C-H functionalization strategy, and their potential anticancer activities on A549 lung cancer cells were investigated. Among these analogues, analogue 5c can markedly inhibit A549 cell proliferation in a dose-dependent manner with a reasonable IC50 of 14.61 ± 1.03 μM. This effect was mediated by analogue 5c-induced G0/G1 phase arrest and cell apoptosis. Treatment with analogue 5c was shown to induce reactive oxygen species (ROS) accumulation, disruption of mitochondrial membrane potential, reduction of glutathione, elevation of intracellular calcium ion (Ca2+), and activation of Caspase-3. Furthermore, analogue 5c can lead to DNA double-strand break and the activation of p53 pathway in A549 cells. In conclusion, the oxidative C-H functionalization strategy to generate analogue 5c could improve the drug anticancer efficacy by inducing mitochondria-dependent apoptosis in A549 cells.
Collapse
|
20
|
Sun CY, Zhu Y, Li XF, Wang XQ, Tang LP, Su ZQ, Li CY, Zheng GJ, Feng B. Scutellarin Increases Cisplatin-Induced Apoptosis and Autophagy to Overcome Cisplatin Resistance in Non-small Cell Lung Cancer via ERK/p53 and c-met/AKT Signaling Pathways. Front Pharmacol 2018; 9:92. [PMID: 29487530 PMCID: PMC5816782 DOI: 10.3389/fphar.2018.00092] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/26/2018] [Indexed: 01/16/2023] Open
Abstract
Cisplatin, as the first-line anti-tumor agent, is widely used for treatment of a variety of malignancies including non-small cell lung cancer (NSCLC). However, the acquired resistance has been a major obstacle for the clinical application. Scutellarin is a active flavone extracted from Erigeron breviscapus Hand-Mazz that has been shown to exhibit anticancer activities on various types of tumors. Here, we reported that scutellarin was capable of sensitizing A549/DDP cells to cisplatin by enhancing apoptosis and autophagy. Mechanistic analyses indicated that cisplatin-induced caspase-3-dependent apoptosis was elevated in the presence of scutellarin through activating extracellular signal-regulated kinases (ERK)-mediated p53 pathway. Furthermore, scutellarin also promoted cisplatin-induced cytotoxic autophagy, downregulated expression of p-AKT and c-met. Deficiency of c-met reduced p-AKT level, and inhibition of p-AKT or c-met improved autophagy in A549/DDP cells. Interestingly, loss of autophagy attenuated the synergism of this combination. In vivo, the co-treatment of cisplatin and scutellarin notably reduced the tumor size when compared with cisplatin treatment alone. Notably, scutellarin significantly reduced the toxicity generated by cisplatin in tumor-bearing mice. This study identifies the unique role of scutellarin in reversing cisplatin resistance through apoptosis and autophagy, and suggests that combined cisplatin and scutellarin might be a novel therapeutic strategy for patients with NSCLC.
Collapse
Affiliation(s)
- Chao-Yue Sun
- Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying Zhu
- Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiao-Feng Li
- Guangzhou Higher Education Mega Center, Clinical Medical College of Acupuncture and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xie-Qi Wang
- Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li-Peng Tang
- Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zu-Qing Su
- Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Cai-Yun Li
- Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guang-Juan Zheng
- Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bing Feng
- Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
21
|
Why do BCL-2 inhibitors work and where should we use them in the clinic? Cell Death Differ 2017; 25:56-64. [PMID: 29077093 PMCID: PMC5729538 DOI: 10.1038/cdd.2017.183] [Citation(s) in RCA: 224] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 08/14/2017] [Accepted: 08/31/2017] [Indexed: 01/22/2023] Open
Abstract
Intrinsic apoptosis is controlled by the BCL-2 family of proteins but the complexity of intra-family interactions makes it challenging to predict cell fate via standard molecular biology techniques. We discuss BCL-2 family regulation and how to determine cells’ readiness for apoptosis and anti-apoptotic dependence. Cancer cells often adopt anti-apoptotic defense mechanisms in response to oncogenic stress or anti-cancer therapy. However, by determining their anti-apoptotic addiction, we can use novel BH3 mimetics to overwhelm this apoptotic blockade. We outline the development and uses of these unique anti-apoptotic inhibitors and how to possibly combine them with other anti-cancer agents using dynamic BH3 profiling (DBP) to improve personalized cancer treatment.
Collapse
|
22
|
Liu P, Zhang R, Yu W, Ye Y, Cheng Y, Han L, Dong L, Chen Y, Wei X, Yu J. FGF1 and IGF1-conditioned 3D culture system promoted the amplification and cancer stemness of lung cancer cells. Biomaterials 2017; 149:63-76. [PMID: 29017078 DOI: 10.1016/j.biomaterials.2017.09.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/20/2017] [Accepted: 09/25/2017] [Indexed: 12/21/2022]
Abstract
Lung cancer stem cells (LCSCs) are considered as the cellular origins of metastasis and relapse of lung cancer. However, routine two-dimensional culture system (2D-culture) hardly mimics the growth and functions of LCSCs in vivo and therefore significantly decreases the stemness activity of LCSCs. In this study, we constructed a special BME-based three-dimensional culture system (3D-culture) to amplify LCSCs in human lung adenocarcinoma cell line A549 cells and found 3D-culture promoted the enrichment and amplification of LCSCs in A549 cells displaying higher proliferation potential and invasion activity, but lower apoptosis. The expression and secretion levels of FGF1 and IGF1 were dramatically elevated in 3D-culture compared to 2D-culture. After growing in FGF1 and IGF1-conditioned 3D-culture, the proportion of LCSCs with specific stemness phenotypes in A549 cells significantly increased compared to that in conventional 3D suspension culture system. Further results indicated that FGF1 and IGF1 promoted the amplification and cancer stemness of LCSCs dependent on MAPK signaling pathway. Our data firstly established a growth factors-conditioned 3D-culture for LCSCs and demonstrated the effects of FGF1 and IGF1 in promoting the enrichment and amplification of LCSCs which might provide a feasible cell model in vitro for both mechanism study and translational research on lung cancer.
Collapse
Affiliation(s)
- Pengpeng Liu
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Rui Zhang
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Wenwen Yu
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin 300060, China
| | - Yingnan Ye
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yanan Cheng
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Lei Han
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Li Dong
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yongzi Chen
- Laboratory of Cancer Cell Biology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Xiyin Wei
- Public Laboratory of Cancer Cell Biology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Jinpu Yu
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin 300060, China.
| |
Collapse
|