1
|
Ma Y, Chen X, Chen K, Zeng X, Yang S, Chang W, Tang Y, Chen X, Wang S, Chen JL. Identification and Characterization of a Distinct Strain of Beak and Feather Disease Virus in Southeast China. Virol Sin 2019; 35:43-51. [PMID: 31552609 DOI: 10.1007/s12250-019-00159-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 08/05/2019] [Indexed: 12/28/2022] Open
Abstract
Beak and feather disease virus (BFDV) is an infectious agent responsible for feather degeneration and beak deformation in birds. In March 2017, an epidemic of psittacine beak and feather disease (PBFD) struck a farm in Fuzhou in the Fujian Province of southeast China, resulting in the death of 51 parrots. In this study, the disease was diagnosed and the pathogen was identified by PCR and whole genome sequencing. A distinct BFDV strain was identified and named as the FZ strain. This BFDV strain caused severe disease symptoms and pathological changes characteristic of typical PBFD in parrots, for example, loss of feathers and deformities of the beak and claws, and severe pathological changes in multiple organs of the infected birds. Phylogenetic analysis showed that the FZ strain was more closely related to the strain circulating in New Caledonia than the strains previously reported in China. Nucleotide homology between the FZ strain and other 43 strains of BFDV ranged from 80.0% to 92.0%. Blind passage experiment showed that this strain had limited replication capability in SPF Chicken Embryos and DF-1 Cells. Furthermore, the capsid (Cap) gene of this FZ strain was cloned into the pGEX-4T-1 expression vector to prepare the polyclonal anti-Cap antibody. Western blotting analysis using the anti-Cap antibody further confirmed that the diseased parrots were infected with BFDV. In this study, a PBFD and its pathogen was identified for the first time in Fujian Province of China, suggesting that future surveillance of BFDV should be performed.
Collapse
Affiliation(s)
- Yanmei Ma
- Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaoyong Chen
- Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Keyuan Chen
- Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiancheng Zeng
- Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shili Yang
- Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wei Chang
- Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yao Tang
- Fuzhou Zoo, Fuzhou, 350012, China
| | | | - Song Wang
- Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ji-Long Chen
- Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China.
| |
Collapse
|
2
|
Wang X, Yang J, Guo G, Feng R, Chen K, Liao Y, Zhang L, Sun L, Huang S, Chen JL. Novel lncRNA-IUR suppresses Bcr-Abl-induced tumorigenesis through regulation of STAT5-CD71 pathway. Mol Cancer 2019; 18:84. [PMID: 30961617 PMCID: PMC6454664 DOI: 10.1186/s12943-019-1013-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 03/25/2019] [Indexed: 02/06/2023] Open
Abstract
Background Long noncoding RNAs (lncRNAs), defined as the transcripts longer than 200 nt without protein-coding capacity, have been found to be aberrantly expressed in diverse human diseases including cancer. A reciprocal translocation between chromosome 9 and 22 generates the chimeric Bcr-Abl oncogene, which is associated with several hematological malignancies. However, the functional relevance between aberrantly expressed lncRNAs and Bcr-Abl-mediated leukemia remains obscure. Methods LncRNA cDNA microarray was used to identify novel lncRNAs involved in Bcr-Abl-mediated cellular transformation. To study the functional relevance of novel imatinib-upregulated lncRNA (IUR) family in Abl-induced tumorigenesis, Abl-transformed cell survival and xenografted tumor growth in mice was evaluated. Primary bone marrow transformation and in vivo leukemia transplant using lncRNA-IUR knockdown (KD) transgenic mice were further conducted to corroborate the role of lncRNA-IUR in Abl-induced tumorigenesis. Transcriptome RNA-seq, Western blot, RNA pull down and RNA Immunoprecipitation (RIP) were employed to determine the mechanisms by which lncRNA-IUR-5 regulates Bcr-Abl-mediated tumorigenesis. Results We identified a conserved lncRNA-IUR family as a key negative regulator of Bcr-Abl-induced tumorigenesis. Increased expression of lncRNA-IUR was detected in both human and mouse Abl-transformed cells upon imatinib treatment. In contrast, reduced expression of lncRNA-IUR was observed in the peripheral blood lymphocytes derived from Bcr-Abl-positive acute lymphoblastic leukemia (ALL) patients compared to normal subjects. Knockdown of lncRNA-IUR remarkably promoted Abl-transformed leukemic cell survival and xenografted tumor growth in mice, whereas overexpression of lncRNA-IUR had opposite effects. Also, silencing murine lncRNA-IUR promoted Bcr-Abl-mediated primary bone marrow transformation and Abl-transformed leukemia cell survival in vivo. Besides, knockdown of murine lncRNA-IUR in transgenic mice provided a favorable microenvironment for development of Abl-mediated leukemia. Finally, we demonstrated that lncRNA-IUR-5 suppressed Bcr-Abl-mediated tumorigenesis by negatively regulating STAT5-mediated expression of CD71. Conclusions The results suggest that lncRNA-IUR may act as a critical tumor suppressor in Bcr-Abl-mediated tumorigenesis by suppressing the STAT5-CD71 pathway. This study provides new insights into functional involvement of lncRNAs in leukemogenesis. Electronic supplementary material The online version of this article (10.1186/s12943-019-1013-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xuefei Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jianling Yang
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Guijie Guo
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
| | - Riyue Feng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Ke Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
| | - Yuan Liao
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lianfeng Zhang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Comparative Medical Center, Peking Union Medical College, Beijing, China
| | - Liping Sun
- Department of Blood Transfusion, Chinese PLA General Hospital, Beijing, China
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Ji-Long Chen
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|