1
|
Kokotos AC, Antoniazzi AM, Unda SR, Ko MS, Park D, Eliezer D, Kaplitt MG, De Camilli P, Ryan TA. Phosphoglycerate kinase is a central leverage point in Parkinson's disease-driven neuronal metabolic deficits. SCIENCE ADVANCES 2024; 10:eadn6016. [PMID: 39167658 PMCID: PMC11338267 DOI: 10.1126/sciadv.adn6016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/16/2024] [Indexed: 08/23/2024]
Abstract
Although certain drivers of familial Parkinson's disease (PD) compromise mitochondrial integrity, whether metabolic deficits underly other idiopathic or genetic origins of PD is unclear. Here, we demonstrate that phosphoglycerate kinase 1 (PGK1), a gene in the PARK12 susceptibility locus, is rate limiting in neuronal glycolysis and that modestly increasing PGK1 expression boosts neuronal adenosine 5'-triphosphate production kinetics that is sufficient to suppress PARK20-driven synaptic dysfunction. We found that this activity enhancement depends on the molecular chaperone PARK7/DJ-1, whose loss of function significantly disrupts axonal bioenergetics. In vivo, viral expression of PGK1 confers protection of striatal dopamine axons against metabolic lesions. These data support the notion that bioenergetic deficits may underpin PD-associated pathologies and point to improving neuronal adenosine 5'-triphosphate production kinetics as a promising path forward in PD therapeutics.
Collapse
Affiliation(s)
- Alexandros C. Kokotos
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Aldana M. Antoniazzi
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Neurosurgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Santiago R. Unda
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Neurosurgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Myung Soo Ko
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Daehun Park
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Departments of Neuroscience and Cell Biology, Howard Hughes Medical Institute, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06520, USA
| | - David Eliezer
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Michael G. Kaplitt
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Neurosurgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Pietro De Camilli
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Departments of Neuroscience and Cell Biology, Howard Hughes Medical Institute, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Timothy A. Ryan
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| |
Collapse
|
2
|
Kokotos AC, Antoniazzi AM, Unda SR, Ko MS, Park D, Eliezer D, Kaplitt MG, Camilli PD, Ryan TA. Phosphoglycerate kinase is a central leverage point in Parkinson's Disease driven neuronal metabolic deficits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.10.561760. [PMID: 37873141 PMCID: PMC10592794 DOI: 10.1101/2023.10.10.561760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Phosphoglycerate kinase 1 (PGK1), the first ATP producing glycolytic enzyme, has emerged as a therapeutic target for Parkinson's Disease (PD), since a potential enhancer of its activity was reported to significantly lower PD risk. We carried out a suppressor screen of hypometabolic synaptic deficits and demonstrated that PGK1 is a rate limiting enzyme in nerve terminal ATP production. Increasing PGK1 expression in mid-brain dopamine neurons protected against hydroxy-dopamine driven striatal dopamine nerve terminal dysfunction in-vivo and modest changes in PGK1 activity dramatically suppressed hypometabolic synapse dysfunction in vitro. Furthermore, PGK1 is cross-regulated by PARK7 (DJ-1), a PD associated molecular chaperone, and synaptic deficits driven by PARK20 (Synaptojanin-1) can be reversed by increasing local synaptic PGK1 activity. These data indicate that nerve terminal bioenergetic deficits may underly a spectrum of PD susceptibilities and the identification of PGK1 as the limiting enzyme in axonal glycolysis provides a mechanistic underpinning for therapeutic protection.
Collapse
Affiliation(s)
- Alexandros C Kokotos
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland 20815, USA
| | - Aldana M Antoniazzi
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland 20815, USA
- Department of Neurosurgery, Weill Cornell Medicine, New York, NY 10065
| | - Santiago R Unda
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland 20815, USA
- Department of Neurosurgery, Weill Cornell Medicine, New York, NY 10065
| | - Myung Soo Ko
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065
| | - Daehun Park
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland 20815, USA
- Departments of Neuroscience and Cell Biology, Howard Hughes Medical Institute, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - David Eliezer
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065
| | - Michael G Kaplitt
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland 20815, USA
- Department of Neurosurgery, Weill Cornell Medicine, New York, NY 10065
| | - Pietro De Camilli
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland 20815, USA
- Departments of Neuroscience and Cell Biology, Howard Hughes Medical Institute, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Timothy A Ryan
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland 20815, USA
| |
Collapse
|
3
|
Moving beyond the Tip of the Iceberg: DJ-1 Implications in Cancer Metabolism. Cells 2022; 11:cells11091432. [PMID: 35563738 PMCID: PMC9103122 DOI: 10.3390/cells11091432] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/10/2022] [Accepted: 04/20/2022] [Indexed: 12/13/2022] Open
Abstract
DJ-1, also called Parkinson’s protein 7 (PARK7), is ubiquitously expressed and plays multiple actions in different physiological and, especially, pathophysiological processes, as evidenced by its identification in neurodegenerative diseases and its high expression in different types of cancer. To date, the exact activity of DJ-1 in carcinogenesis has not been fully elucidated, however several recent studies disclosed its involvement in regulating fundamental pathways involved in cancer onset, development, and metastatization. At this purpose, we have dissected the role of DJ-1 in maintaining the transformed phenotype, survival, drug resistance, metastasis formation, and differentiation in cancer cells. Moreover, we have discussed the role of DJ-1 in controlling the redox status in cancer cells, along with the ability to attenuate reactive oxygen species (ROS)-dependent cell death, as well as to mediate ferropotosis. Finally, a mention to the development of therapeutic strategies targeting DJ-1 has been done. We have reported the most recent studies, aiming to shed light on the role played by DJ-1 in different cancer aspects and create the foundation for moving beyond the tip of the iceberg.
Collapse
|
4
|
Altman RA, Brai A, Golden J, La Regina G, Li Z, Moore TW, Pomerantz WCK, Rajapaksa NS, Adams AM. An Innovation 10 Years in the Making: The Stories in the Pages of ACS Medicinal Chemistry Letters. ACS Med Chem Lett 2022; 13:540-545. [PMID: 35450346 PMCID: PMC9014514 DOI: 10.1021/acsmedchemlett.1c00623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 12/01/2021] [Indexed: 11/29/2022] Open
Abstract
Innovation in medicinal chemistry has been at the heart of ACS Medicinal Chemistry Letters since the journal's founding 10 years ago. In his inaugural editorial, Editor-in-Chief Dennis Liotta laid out a vision for the journal to become the "premier international journal for rapid communication of cutting-edge studies," and, after 10 years, it has become exactly that. The great hope of drug discovery scientists is that their innovations will lead to new therapeutics to treat unmet medical needs. In the spirit of innovation and in celebration of the recent 10th anniversary of ACS Med. Chem. Lett., we highlight five therapeutics that were first reported or first comprehensively characterized within ACS Med. Chem. Lett.. This overview also serves to introduce the expansion of the scope of the Innovations article type to include Topical Innovations. With this extension, the journal hopes to provide a forum to showcase concise (rather than comprehensive) reviews of topics that are both timely and of great interest to the medicinal chemistry community. Moreover, these articles will emphasize the next steps to move the field toward new areas of interest in medicinal chemistry. Appropriate topics might include case studies of clinical candidates or approved drugs, new assay technologies in drug discovery, novel target classes, and innovative new approaches towards modulation of human physiology. Since its founding 10 years ago, ACS Med. Chem. Lett. has established itself as a venue for the rapid communication of studies in medicinal chemistry and drug discovery. There have been several drugs and clinical candidates that were first reported or first comprehensively characterized in ACS Med. Chem. Lett. In celebration of the 10th anniversary of ACS Med. Chem. Lett. this Topical Innovations article highlights five of these compounds: Ivosidenib, Siponimod, Glasdegib, Parsaclisib, and Dabrafenib.
Collapse
Affiliation(s)
- Ryan A. Altman
- Department of Medicinal Chemistry and Molecular Pharmacology and Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
| | - Annalaura Brai
- Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Jennifer Golden
- School of Pharmacy, Pharmaceutical Sciences Division, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States
| | - Giuseppe La Regina
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University of Rome, Rome 00185, Italy
| | - Zhengqiu Li
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Terry W. Moore
- Pharmaceutical Sciences, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612, United States
| | - William C. K. Pomerantz
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Naomi S. Rajapaksa
- Medicinal Chemistry, Interline Therapeutics, 620 Utah Ave, South San Francisco, California 94080, United States
| | - Ashley M. Adams
- Medicine Science and Technology, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| |
Collapse
|
5
|
Korovesis D, Beard HA, Mérillat C, Verhelst SHL. Probes for Photoaffinity Labelling of Kinases. Chembiochem 2021; 22:2206-2218. [PMID: 33544409 DOI: 10.1002/cbic.202000874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/05/2021] [Indexed: 11/06/2022]
Abstract
Protein kinases, one of the largest enzyme superfamilies, regulate many physiological and pathological processes. They are drug targets for multiple human diseases, including various cancer types. Probes for the photoaffinity labelling of kinases are important research tools for the study of members of this enzyme superfamily. In this review, we discuss the design principles of these probes, which are mainly derived from inhibitors targeting the ATP pocket. Overall, insights from crystal structures guide the placement of photoreactive groups and detection tags. This has resulted in a wide variety of probes, of which we provide a comprehensive overview. We also discuss several areas of application of these probes, including the identification of targets and off-targets of kinase inhibitors, mapping of their binding sites, the development of inhibitor screening assays, the imaging of kinases, and identification of protein binding partners.
Collapse
Affiliation(s)
- Dimitris Korovesis
- Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology KU Leuven, Herestraat 49 box 802, 3000, Leuven, Belgium
| | - Hester A Beard
- Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology KU Leuven, Herestraat 49 box 802, 3000, Leuven, Belgium
| | - Christel Mérillat
- Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology KU Leuven, Herestraat 49 box 802, 3000, Leuven, Belgium
| | - Steven H L Verhelst
- Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology KU Leuven, Herestraat 49 box 802, 3000, Leuven, Belgium.,AG Chemical Proteomics, Leibniz Institute for Analytical Sciences ISAS, Otto-Hahn-Strasse 6b, 44227, Dortmund, Germany
| |
Collapse
|