1
|
Li Y, Wang W, Xu D, Liang H, Yu H, Zhou Y, Liang J, Sun H, Liu X, Xue M, Ling B, Feng D. PIWIL2/PDK1 Axis Promotes the Progression of Cervical Epithelial Lesions via Metabolic Reprogramming to Maintain Tumor-Initiating Cell Stemness. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2410756. [PMID: 39499767 DOI: 10.1002/advs.202410756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/26/2024] [Indexed: 11/07/2024]
Abstract
When PIWIL2 expression is restored via heterogeneous integration of human papillomavirus, cellular reprogramming is initiated to form tumor-initiating cells (TICs), which triggers cervical squamous intraepithelial lesions (SIL). TIC stemness is critical for the prognosis of SIL. However, the mechanisms underlying TIC stemness maintenance and tumorigenicity remain unclear. Here, it is revealed that aberrant pyruvate dehydrogenase kinase 1 (PDK1) expression is closely related to aerobic glycolysis in SIL and poor survival in patients with cervical cancer. Mechanistically, that PIWIL2, which induced by stable transfection of either PIWIL2 or HPV16 oncogene E6 in human primary cervical basal epithelial cells and keratinocyte cell line HaCaT, upregulates PDK1 expression via the LIN28/let-7 axis, hence reprogramming metabolism to activate glycolysis and synchronize with TIC formation. It is further demonstrate that PDK1 is critical for TIC stemness maintenance and tumorigenicity via the PI3K/AKT/mTOR pathway both in vitro and in vivo, revealing a previously unclear mechanism for SIL progression, regression or relapse. Therefore, this findings suggest a potential rationale for prognostic predictions and selecting targeted therapy for cervical lesions.
Collapse
Affiliation(s)
- Yuebo Li
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, 100029, China
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Wenhui Wang
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Dongkui Xu
- VIP Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Haiyan Liang
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Huan Yu
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Ying Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China, Hefei, 230001, China
| | - Jing Liang
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Heming Sun
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Xiaodie Liu
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, 100029, China
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Ming Xue
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, 100029, China
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Bin Ling
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Dingqing Feng
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, 100029, China
| |
Collapse
|
2
|
Limanówka P, Ochman B, Świętochowska E. Mechanisms Behind the Impact of PIWI Proteins on Cancer Cells: Literature Review. Int J Mol Sci 2024; 25:12217. [PMID: 39596284 PMCID: PMC11594409 DOI: 10.3390/ijms252212217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
The P-Element-induced wimpy testis (PIWI) group of proteins plays a key role in RNA interference, particularly in the regulation of small non-coding RNAs. However, in recent years, PIWIs have gained attention in several diseases, mainly cancer. Therefore, the aim of this review was to evaluate current knowledge about the impact of PIWI proteins on cancer cells. PIWIs alter a number of pathways within cells, resulting in significant changes in cell behavior. Basic processes of cancer cells have been shown to be altered by either overexpression or inhibition of PIWIs. Regulation of apoptosis, metastasis, invasion, or proliferation of cancerous cells by these proteins proves their involvement in the progression of the malignancy. It has been revealed that PIWIs are also connected with cancer stem cells (CSCs), which proves their ability to become a therapeutic target. However, research on this topic is still fairly limited, and with significant differences between cancer types, it is necessary to refrain from making any decisive conclusions.
Collapse
Affiliation(s)
| | | | - Elżbieta Świętochowska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-800 Zabrze, Poland; (P.L.); (B.O.)
| |
Collapse
|
3
|
Huang X, Li Q, Zheng X, Jiang C. TTYH3 Promotes Cervical Cancer Progression by Activating the Wnt/ β-Catenin Signaling Pathway. Cancer Invest 2024; 42:726-739. [PMID: 39189652 DOI: 10.1080/07357907.2024.2395014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 07/18/2024] [Accepted: 08/18/2024] [Indexed: 08/28/2024]
Abstract
The role of tweety homolog 3 (TTYH3) has been studied in several cancers, including hepatocellular carcinoma, cholangiocarcinoma, and gastric cancer. The results showed that TTYH3 is highly expression in cervical cancer tissues and cells and high TTYH3 expression correlates with poor prognosis in patients with cervical cancer. TTYH3 markedly reduced the apoptosis rate and promoted proliferation, migration, and invasion. Silencing of TTYH3 has been shown to have an inhibitory effect on cervical cancer progression. Moreover, TTYH3 enhanced EMT and activated Wnt/β-catenin signaling. Furthermore, TTYH3 knockdown inhibited the tumor growth in vivo. In conclusion, TTYH3 promoted cervical cancer progression by activating the Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Xiuyan Huang
- Department of Gynaecology, Jinan Maternity and Child Care Hospital, Jinan, Shandong, P.R. China
| | - Qing Li
- Department of Gynaecology, Jinan Maternity and Child Care Hospital, Jinan, Shandong, P.R. China
| | - Xiaoxia Zheng
- Department of Gynaecology, Jinan Maternity and Child Care Hospital, Jinan, Shandong, P.R. China
| | - Chen Jiang
- Department of Gynaecology, Jinan Maternity and Child Care Hospital, Jinan, Shandong, P.R. China
| |
Collapse
|
4
|
Chu X, Tian W, Ning J, Xiao G, Zhou Y, Wang Z, Zhai Z, Tanzhu G, Yang J, Zhou R. Cancer stem cells: advances in knowledge and implications for cancer therapy. Signal Transduct Target Ther 2024; 9:170. [PMID: 38965243 PMCID: PMC11224386 DOI: 10.1038/s41392-024-01851-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/27/2024] [Accepted: 04/28/2024] [Indexed: 07/06/2024] Open
Abstract
Cancer stem cells (CSCs), a small subset of cells in tumors that are characterized by self-renewal and continuous proliferation, lead to tumorigenesis, metastasis, and maintain tumor heterogeneity. Cancer continues to be a significant global disease burden. In the past, surgery, radiotherapy, and chemotherapy were the main cancer treatments. The technology of cancer treatments continues to develop and advance, and the emergence of targeted therapy, and immunotherapy provides more options for patients to a certain extent. However, the limitations of efficacy and treatment resistance are still inevitable. Our review begins with a brief introduction of the historical discoveries, original hypotheses, and pathways that regulate CSCs, such as WNT/β-Catenin, hedgehog, Notch, NF-κB, JAK/STAT, TGF-β, PI3K/AKT, PPAR pathway, and their crosstalk. We focus on the role of CSCs in various therapeutic outcomes and resistance, including how the treatments affect the content of CSCs and the alteration of related molecules, CSCs-mediated therapeutic resistance, and the clinical value of targeting CSCs in patients with refractory, progressed or advanced tumors. In summary, CSCs affect therapeutic efficacy, and the treatment method of targeting CSCs is still difficult to determine. Clarifying regulatory mechanisms and targeting biomarkers of CSCs is currently the mainstream idea.
Collapse
Affiliation(s)
- Xianjing Chu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Wentao Tian
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jiaoyang Ning
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Gang Xiao
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yunqi Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ziqi Wang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhuofan Zhai
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Guilong Tanzhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jie Yang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Rongrong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China.
| |
Collapse
|
5
|
Wu Z, Yu X, Zhang S, He Y, Guo W. Novel roles of PIWI proteins and PIWI-interacting RNAs in human health and diseases. Cell Commun Signal 2023; 21:343. [PMID: 38031146 PMCID: PMC10685540 DOI: 10.1186/s12964-023-01368-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Non-coding RNA has aroused great research interest recently, they play a wide range of biological functions, such as regulating cell cycle, cell proliferation, and intracellular substance metabolism. Piwi-interacting RNAs (piRNAs) are emerging small non-coding RNAs that are 24-31 nucleotides in length. Previous studies on piRNAs were mainly limited to evaluating the binding to the PIWI protein family to play the biological role. However, recent studies have shed more lights on piRNA functions; aberrant piRNAs play unique roles in many human diseases, including diverse lethal cancers. Therefore, understanding the mechanism of piRNAs expression and the specific functional roles of piRNAs in human diseases is crucial for developing its clinical applications. Presently, research on piRNAs mainly focuses on their cancer-specific functions but lacks investigation of their expressions and epigenetic modifications. This review discusses piRNA's biogenesis and functional roles and the recent progress of functions of piRNA/PIWI protein complexes in human diseases. Video Abstract.
Collapse
Affiliation(s)
- Zeyu Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China.
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China.
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China.
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China.
| |
Collapse
|
6
|
Mi T, Tan X, Wang Z, Zhang Z, Jin L, Wang J, Li M, Wu X, He D. Activation of the p53 signaling pathway by piRNA-MW557525 overexpression induces a G0/G1 phase arrest thus inhibiting neuroblastoma growth. Eur J Med Res 2023; 28:503. [PMID: 37941038 PMCID: PMC10631185 DOI: 10.1186/s40001-023-01493-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Neuroblastoma (NB) is the most common extracranial malignant solid tumor in children. Due to drug resistance to radiotherapy and chemotherapy, mainly due to the existence of cancer stem cells (CSCs), some children still have a poor prognosis. Therefore, researchers have focused their attention on CSCs. Our research group successfully constructed cancer stem cell-like cells named Piwil2-iCSCs by reprogramming human preputial fibroblasts (FBs) with the PIWIL2 gene in the early stage, and Piwil2-iCSCs were confirmed to induce the formation of embryonic tumors. PiRNAs, noncoding small RNAs that interact with PIWI proteins, play important roles in a variety of tumors. Therefore, our study aimed to explore the role of differentially expressed (DE) piRNAs derived from sequencing of Piwil2-iCSCs in NB. METHODS The DE piRNAs in Piwil2-iCSCs were screened using high-throughput sequencing and further verified in NB tissues and cells. An unknown piRNA, named piRNA-MW557525, showed obvious downregulation in NB. Thus we studied the effect of piRNA-MW557525 on the biological behavior of NB through in vitro and in vivo experiments. On this basis, we successfully constructed a stably transfected NB cell line overexpressing piRNA-MW557525 and performed transcriptome sequencing to further explore the mechanism of piRNA-MW557525 in NB. RESULTS In vitro, piRNA-MW557525 inhibited NB cell proliferation, migration and invasion and induced apoptosis; in vivo, piRNA-MW557525 significantly reduced the volume and weight of tumors and inhibited their proliferation, migration and invasion. piRNA-MW557525 overexpression induced G0/G1 phase arrest in NB cells via activation of the P53-P21-CDK2-Cyclin E signaling pathway thus inhibiting NB growth. CONCLUSIONS Our findings show that piRNA-MW557525 functions as a tumor suppressor gene in NB and may serve as an innovative biomarker and possible therapeutic target for NB.
Collapse
Affiliation(s)
- Tao Mi
- Department of Urology; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation Base of Child Development and Critical Disorders; Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Yuzhong District, Chongqing, 400014, People's Republic of China
| | - Xiaojun Tan
- Department of Urology; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation Base of Child Development and Critical Disorders; Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Yuzhong District, Chongqing, 400014, People's Republic of China
- Department of Urology, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Zhang Wang
- Department of Urology; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation Base of Child Development and Critical Disorders; Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Yuzhong District, Chongqing, 400014, People's Republic of China
| | - Zhaoxia Zhang
- Department of Urology; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation Base of Child Development and Critical Disorders; Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Yuzhong District, Chongqing, 400014, People's Republic of China
| | | | - Jinkui Wang
- Department of Urology; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation Base of Child Development and Critical Disorders; Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Yuzhong District, Chongqing, 400014, People's Republic of China
| | - Mujie Li
- Department of Urology; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation Base of Child Development and Critical Disorders; Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Yuzhong District, Chongqing, 400014, People's Republic of China
| | - Xin Wu
- Department of Urology; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation Base of Child Development and Critical Disorders; Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Yuzhong District, Chongqing, 400014, People's Republic of China
| | - Dawei He
- Department of Urology; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation Base of Child Development and Critical Disorders; Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Yuzhong District, Chongqing, 400014, People's Republic of China.
| |
Collapse
|
7
|
Scholl S, Roufai DB, Chérif LL, Kamal M. RAIDS atlas of significant genetic and protein biomarkers in cervical cancer. J Gynecol Oncol 2023; 34:e74. [PMID: 37668079 PMCID: PMC10482580 DOI: 10.3802/jgo.2023.34.e74] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/07/2023] [Accepted: 06/20/2023] [Indexed: 09/06/2023] Open
Abstract
Loss of function in epigenetic acting genes together with driver alterations in the PIK3CA pathway have been shown significantly associated with poor outcome in cervical squamous cell cancer. More recently, a CoxBoost analysis identified 16 gene alterations and 30 high level activated proteins to be of high interest, due to their association with either good or bad outcome, in the context of treatment received by chemoradiation. The objectives here were to review and confirm the significance of these molecular alterations as suggested by literature reports and to pinpoint alternate treatments options for poor-responders to chemoradiation.
Collapse
Affiliation(s)
- Suzy Scholl
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris, France
- Department of Drug Development and Innovation (D3i), Institut Curie, Saint-Cloud, France.
| | | | - Linda Larbi Chérif
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris, France
- Department of Drug Development and Innovation (D3i), Institut Curie, Saint-Cloud, France
| | - Maud Kamal
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris, France
- Department of Drug Development and Innovation (D3i), Institut Curie, Saint-Cloud, France
| |
Collapse
|
8
|
Lu X, Zhu Q, Du H, Gu M, Li X. PIWIL2 restrains the progression of thyroid cancer via interaction with miR-146a-3p. BMC Endocr Disord 2023; 23:184. [PMID: 37641092 PMCID: PMC10464277 DOI: 10.1186/s12902-023-01416-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 07/14/2023] [Indexed: 08/31/2023] Open
Abstract
OBJECTIVE The classical role of PIWIL2 is to regulate reproduction by binding to piRNA, but its tumor-related function has received increasing attention in recent years. This study aims to explore its role in the progression of thyroid cancer (TC). METHODS First, we measured and analyzed the levels of PIWIL2 and miR-146a-3p in TC tissue and adjacent tissues as well as several TC cell lines. We demonstrated the clinical significance of PIWIL2 and miR-146a-3p through the survival rate. Based on these results, we selected TPC-1 and KTC-3 cell lines for our cell experiments. We treated these cell lines with PIWIL2 lentivirus, PIWIL2 siRNA, miR-146a-3p mimic, or miR-146a-3p inhibitor and measured cell proliferation, cell cycle, apoptosis, migration, and invasion. We used PCR and Western blot to quantify the mRNA and protein levels of PIWIL2, while we used luciferase reporter assay and RNA binding protein immunoprecipitation to explore the relationship between miR-146a-3p and PIWIL2. Finally, we developed a xenograft tumor model to confirm the effects of the miR-146a-3p/PIWIL2 axis on TC progression in vivo. RESULTS We identified that PIWIL2 and miR-146a-3p exhibit opposite expression alterations in TC tissues and that PIWIL2 serves as a 'sponge' by adsorbing miR-146a-3p. Up-regulating PIWIL2 decelerated the proliferation, metastasis, and cell cycle progression of TPC-1 and KTC-3 cells, but accelerated the apoptosis of TC cells, while miR-146a-3p exhibited opposite effects. Finally, overexpressing PIWIL2 restrained the progression of TC in nude mice, which can be reversed by increasing miR-146a-3p expression. Inhibiting PIWIL2, on the other hand, promoted the progression of TC in vivo, which can be reversed by inhibiting miR-146a-3p. CONCLUSION PIWIL2 may inhibit the progression of TC by sponging miR-146a-3p, providing new insights into the early treatment, recrudescence treatment, and metastasis treatment of TC.
Collapse
Affiliation(s)
- Xiaoxiao Lu
- Department of Endocrinology and Metabolism, Punan Hospital, Pudong New Area, Shanghai, 200125, China
| | - Qingyun Zhu
- Department of Intervention, Gongli Hospital, Naval Medical University, Shanghai, 200135, China
| | - Hong Du
- Department of General Practice, Hudong Community Health Service Centre, Pudong New Area, Shanghai, 200129, China
| | - Mingjun Gu
- Department of Endocrinology and Metabolism, Gongli Hospital, Naval Medical University, Shanghai, 200135, China.
| | - Xiangqi Li
- Department of Endocrinology and Metabolism, Gongli Hospital, Naval Medical University, Shanghai, 200135, China.
| |
Collapse
|
9
|
Expression and biochemical significance of Piwil2 in stem cell lines. POSTEP HIG MED DOSW 2022. [DOI: 10.2478/ahem-2022-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Introduction
P-element induced wimpy testis-like 2 (Piwil2) is in the Piwi gene family. Piwil2 has important roles in the self-renewal mechanism of stem cell induction and progression of numerous types of human malignancies such as lung, breast, colon, prostate, and cervical cancers. Glutathione S-transferase (GST) acts as detoxification in cancer metabolism. This study aimed to investigate the effects of the stem cell protein Piwil2 on MCF10A and MCF-7 at the GST activity levels.
Materials/Methods
MCF-7/Piwil2 and MCF10A/Piwil2, transfected with a plasmid carrying the Piwil2 gene, and non-transfected MCF-7 and MCF10A were cultured in a complete DMEM/F12 medium. GST A1 and P1 activity was determined in these cell lines using as substrates CDNB, EA respectively.
Results
According to experimental results, GST P1 activity decreased in the MCF-7/Piwil2 cells as compared with the non-transfected MCF-7 cells, however, MCF-7/Piwil2 cells demonstrated increases in GST A1 (total GST) activity. The statistically significant differences were found for the comparison of non-transfected MCF-7 and MCF-7/Piwil2 (p<0,0001), for GST enzyme activities by using CDNB and EA as substrates. These results were the same for the MCF10A cell line.
Discussion
It is shown for the first time that transfection studies may affect GST activity at the cellular mechanism level. The study contributes to determining the effect of transfection on GST isoenzymes and also how the Piwil2 gene may affect GST activity in the stem cell line.
Collapse
|
10
|
Tan X, Mi T, Zhang Z, Jin L, Wang Z, Wu X, Wang J, Li M, Zhanghuang C, He D. Multiple transcriptome analysis of Piwil2-induced cancer stem cells, including piRNAs, mRNAs and miRNAs reveals the mechanism of tumorigenesis and development. Mol Biol Rep 2022; 49:6885-6898. [PMID: 35182325 DOI: 10.1007/s11033-022-07237-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/08/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Cancer stem cells play important roles in the process of tumorigenesis. Our research group obtained cancer stem cell-like cells named Piwil2-iCSCs by reprogramming human preputial fibroblasts (FBs) with the PIWIL2 gene, but the mechanism of Piwil2-iCSCs is still unclear. METHODS We sequenced the piRNAs, miRNAs and mRNAs of Piwil2-iCSCs and FBs, and analyzed the differences. Gene Ontology (GO) and, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses and gene set enrichment analysis (GSEA) were performed on the differentially expressed (DE) mRNAs. In addition, we analyzed the variable shear events and fusion genes in the Piwil2-iCSCs. Target gene prediction and functional enrichment analysis were performed for the DE miRNAs. RESULTS A total of 1119 DE mRNAs, 220 DE piRNAs, and 440 DE miRNAs were obtained between the Piwil2-iCSCs and FBs. Functional enrichment analysis showed that the genes with upregulated expression were mainly involved in DNA repair, mismatch repair, base excision repair, and nucleotide excision repair. Genes with downregulated expression were mainly involved in the TGF-β receptor signaling pathway, senescence and autophagy in cancer. More frequent shear events occurred in Piwil2-iCSCs and FBs, especially in intron retention (IR) events. We also identified three fusion genes MCM3AP-C21orf58, LRRFIP2-CAV3 and TMEM184B-DMC1. Enrichment analysis of DE miRNAs showed that they were associated with apoptosis, the TGF-β signaling pathway, and the stem cell regulatory signaling pathway. In particular, target gene prediction of the top three miRNAs with upregulated expression showed that they targeted SMAD, GREM1 and other genes to participate in the regulation of TGF-β and other pathways. CONCLUSION PIWIL2-induced cancer stem cells have significantly altered levels of miRNAs, piRNAs and mRNAs.TGF-β, autophagy, apoptosis and other pathways may play an important role in stem cell development. The occurrence of alternative splicing and fusion genes may be related to the occurrence of cancer stem cells.
Collapse
Affiliation(s)
- Xiaojun Tan
- Department of Urology, Children's Hospital of Chongqing Medical University, Yuzhong District, Chongqing, 400014, People's Republic of China.,Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, People's Republic of China.,China International Science and Technology Cooperation Base of Child Development and Critical; National Clinical Research Center for Child Health and Disorders, Chongqing, Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, People's Republic of China
| | - Tao Mi
- Department of Urology, Children's Hospital of Chongqing Medical University, Yuzhong District, Chongqing, 400014, People's Republic of China.,Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, People's Republic of China.,China International Science and Technology Cooperation Base of Child Development and Critical; National Clinical Research Center for Child Health and Disorders, Chongqing, Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, People's Republic of China
| | - Zhaoxia Zhang
- Department of Urology, Children's Hospital of Chongqing Medical University, Yuzhong District, Chongqing, 400014, People's Republic of China.,Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, People's Republic of China.,China International Science and Technology Cooperation Base of Child Development and Critical; National Clinical Research Center for Child Health and Disorders, Chongqing, Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, People's Republic of China
| | - Liming Jin
- Department of Urology, Children's Hospital of Chongqing Medical University, Yuzhong District, Chongqing, 400014, People's Republic of China.,Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, People's Republic of China.,China International Science and Technology Cooperation Base of Child Development and Critical; National Clinical Research Center for Child Health and Disorders, Chongqing, Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, People's Republic of China
| | - Zhang Wang
- Department of Urology, Children's Hospital of Chongqing Medical University, Yuzhong District, Chongqing, 400014, People's Republic of China.,Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, People's Republic of China.,China International Science and Technology Cooperation Base of Child Development and Critical; National Clinical Research Center for Child Health and Disorders, Chongqing, Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, People's Republic of China
| | - Xin Wu
- Department of Urology, Children's Hospital of Chongqing Medical University, Yuzhong District, Chongqing, 400014, People's Republic of China.,Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, People's Republic of China.,China International Science and Technology Cooperation Base of Child Development and Critical; National Clinical Research Center for Child Health and Disorders, Chongqing, Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, People's Republic of China
| | - Jinkui Wang
- Department of Urology, Children's Hospital of Chongqing Medical University, Yuzhong District, Chongqing, 400014, People's Republic of China.,Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, People's Republic of China.,China International Science and Technology Cooperation Base of Child Development and Critical; National Clinical Research Center for Child Health and Disorders, Chongqing, Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, People's Republic of China
| | - Mujie Li
- Department of Urology, Children's Hospital of Chongqing Medical University, Yuzhong District, Chongqing, 400014, People's Republic of China.,Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, People's Republic of China.,China International Science and Technology Cooperation Base of Child Development and Critical; National Clinical Research Center for Child Health and Disorders, Chongqing, Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, People's Republic of China
| | - Chenghao Zhanghuang
- Department of Urology, Children's Hospital of Chongqing Medical University, Yuzhong District, Chongqing, 400014, People's Republic of China.,Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, People's Republic of China.,China International Science and Technology Cooperation Base of Child Development and Critical; National Clinical Research Center for Child Health and Disorders, Chongqing, Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, People's Republic of China
| | - Dawei He
- Department of Urology, Children's Hospital of Chongqing Medical University, Yuzhong District, Chongqing, 400014, People's Republic of China. .,Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, People's Republic of China. .,China International Science and Technology Cooperation Base of Child Development and Critical; National Clinical Research Center for Child Health and Disorders, Chongqing, Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, People's Republic of China.
| |
Collapse
|
11
|
Luo H, Li Y, Zhao Y, Chang J, Zhang X, Zou B, Gao L, Wang W. Comprehensive Analysis of circRNA Expression Profiles During Cervical Carcinogenesis. Front Oncol 2021; 11:676609. [PMID: 34532284 PMCID: PMC8438239 DOI: 10.3389/fonc.2021.676609] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/03/2021] [Indexed: 01/17/2023] Open
Abstract
Circular RNAs (circRNAs) are regulatory molecules that participate in the occurrence, development and progression of tumors. To obtain a complete blueprint of cervical carcinogenesis, we analyzed the temporal transcriptomic landscapes of mRNAs and circRNAs. Microarrays were performed to identify the circRNA and mRNA expression profiles of cervical squamous cell carcinoma (CSCC) and high-grade squamous intraepithelial lesion (HSIL) patients compared with normal controls (NC). Short time-series expression miner (STEM) was utilized to characterize the time-course expression patterns of circRNAs and mRNAs from NC to HSIL and CSCC. A total of 3 circRNA profiles and 3 mRNA profiles with continuous upregulated patterns were identified and selected for further analysis. Furthermore, functional annotation showed that the mRNAs were associated with DNA repair and cell division. The protein-protein interaction (PPI) network analysis revealed that the ten highest-degree genes were considered to be hub genes. Subsequently, a competing endogenous RNA (ceRNA) network analysis and real-time PCR validation indicated that hsa_circ_0001955/hsa-miR-6719-3p/CDK1, hsa_circ_0001955/hsa-miR-1277-5p/NEDD4L and hsa_circ_0003954/hsa-miR-15a-3p/SYCP2 were highly correlated with cervical carcinogenesis. Silencing of hsa_circ_0003954 inhibited SiHa cell proliferation and perturb the cell cycle in vitro. This study provides insight into the molecular events regulating cervical carcinogenesis, identifies functional circRNAs in CSCC, and improves the understanding of the pathogenesis and molecular biomarkers of CSCC and HSIL.
Collapse
Affiliation(s)
- Haixia Luo
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yuanxing Li
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yueyang Zhao
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jingjing Chang
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiu Zhang
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Binbin Zou
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research on Esophageal Cancer, Shanxi Medical University, Taiyuan, China
| | - Lifang Gao
- Department of Pathology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Wei Wang
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|