1
|
Zhang Y, Dali R, Blanchette M. RobusTAD: reference panel based annotation of nested topologically associating domains. Genome Biol 2025; 26:129. [PMID: 40390127 DOI: 10.1186/s13059-025-03568-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 04/04/2025] [Indexed: 05/21/2025] Open
Abstract
Topologically associating domains (TADs) are fundamental units of 3D genomes and play essential roles in gene regulation. Hi-C data suggests a hierarchical organization of TADs. Accurately annotating nested TADs from Hi-C data remains challenging, both in terms of the precise identification of boundaries and the correct inference of hierarchies. While domain boundary is relatively well conserved across cells, few approaches have taken advantage of this fact. Here, we present RobusTAD to annotate TAD hierarchies. It incorporates additional Hi-C data to refine boundaries annotated from the study sample. RobusTAD outperforms existing tools at boundary and domain annotation across several benchmarking tasks.
Collapse
Affiliation(s)
- Yanlin Zhang
- School of Computer Science, Mcgill University, Montréal, Canada
| | - Rola Dali
- School of Computer Science, Mcgill University, Montréal, Canada
| | | |
Collapse
|
2
|
Yu K, Meng G, He H, Li W, Wang L, Li Y, Wang X, Huang Y, He J, Zhao M, Xie T, Zhen Z, Li D. Does H3K27me3 expression play a role in patients with Blastic plasmacytoid dendritic cell neoplasm? A clinicopathologic analysis of 14 patients. Ann Diagn Pathol 2025; 74:152413. [PMID: 39608294 DOI: 10.1016/j.anndiagpath.2024.152413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024]
Abstract
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare and aggressive lymphohematopoietic malignancy associated with poor prognosis. We aimed to improve the understanding of BPDCN, explore its prognostic significance, and identify potential therapeutic targets. Data from 14 BPDCN patients were retrospectively collected and analyzed, focusing on their clinicopathological characteristics, diagnostic features, immunophenotype, treatment regimens, and prognostic factors. Additionally, immunohistochemistry was used to detect the expression of multiple oncogenes in BPDCN. The cohort comprised 14 patients (10 males, 4 females) with a median age of 63.5 years at the time of diagnosis. Of these specimens, H3K27me3, ASXL1, BAP1, RAC1, TCF4 and AURKA were highly expressed in BPDCN, with expression rates of 71.4 % (10/14), 92.9 % (13/14), 85.7 % (12/14), 100 % (13/13), 12/14 (85.7 %) and 46.2 % (6/13), respectively. The survival of patients in this cohort ranged from 1 to 84 months, with a median overall survival (OS) of 18.5 months. The survival rates for 1, 2, 3, 4 and 5 years were 71.43 %, 53.57 %, 44.64 %, 44.64 %, and 44.64 %, respectively. In the overall BPDCN cohort, patients with positive expression of H3K27me3 exhibited significantly better overall survival compared to those with negative expression H3K27me3 (P = 0.0056). Our analysis showed that the absence of H3K27me3 expression may indicate a poor prognosis in patients with BPDCN, and H3K27me3 may be a potential prognostic indicator for BPDCN.
Collapse
Affiliation(s)
- Kuai Yu
- Department of Pathology, Faculty of Basic Medicine, Chongqing Medical University, Chongqing, China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China; Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Pathology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Gang Meng
- Department of Pathology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hong He
- Department of Internal Medicine, the First Branch, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenwen Li
- Department of Pathology, Faculty of Basic Medicine, Chongqing Medical University, Chongqing, China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China; Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lixin Wang
- Department of Pathology, Faculty of Basic Medicine, Chongqing Medical University, Chongqing, China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China; Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuanxin Li
- Department of Pathology, Faculty of Basic Medicine, Chongqing Medical University, Chongqing, China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China; Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xingyu Wang
- Department of Pathology, Faculty of Basic Medicine, Chongqing Medical University, Chongqing, China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China; Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Huang
- Clinical Molecular Medical Detection Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Juan He
- Department of Pathology, Faculty of Basic Medicine, Chongqing Medical University, Chongqing, China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China; Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Min Zhao
- Department of Pathology, Faculty of Basic Medicine, Chongqing Medical University, Chongqing, China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China; Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tao Xie
- Department of Pathology, Faculty of Basic Medicine, Chongqing Medical University, Chongqing, China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China; Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Ultrasound, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Zeng Zhen
- Laboratory of Neuropsycholinguistics, Chongqing Medical University, Chongqing, China
| | - Dan Li
- Department of Pathology, Faculty of Basic Medicine, Chongqing Medical University, Chongqing, China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China; Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
3
|
Liu Z, Wong HM, Chen X, Lin J, Zhang S, Yan S, Wang F, Li X, Wong KC. MotifHub: Detection of trans-acting DNA motif group with probabilistic modeling algorithm. Comput Biol Med 2024; 168:107753. [PMID: 38039889 DOI: 10.1016/j.compbiomed.2023.107753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/30/2023] [Accepted: 11/20/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND Trans-acting factors are of special importance in transcription regulation, which is a group of proteins that can directly or indirectly recognize or bind to the 8-12 bp core sequence of cis-acting elements and regulate the transcription efficiency of target genes. The progressive development in high-throughput chromatin capture technology (e.g., Hi-C) enables the identification of chromatin-interacting sequence groups where trans-acting DNA motif groups can be discovered. The problem difficulty lies in the combinatorial nature of DNA sequence pattern matching and its underlying sequence pattern search space. METHOD Here, we propose to develop MotifHub for trans-acting DNA motif group discovery on grouped sequences. Specifically, the main approach is to develop probabilistic modeling for accommodating the stochastic nature of DNA motif patterns. RESULTS Based on the modeling, we develop global sampling techniques based on EM and Gibbs sampling to address the global optimization challenge for model fitting with latent variables. The results reflect that our proposed approaches demonstrate promising performance with linear time complexities. CONCLUSION MotifHub is a novel algorithm considering the identification of both DNA co-binding motif groups and trans-acting TFs. Our study paves the way for identifying hub TFs of stem cell development (OCT4 and SOX2) and determining potential therapeutic targets of prostate cancer (FOXA1 and MYC). To ensure scientific reproducibility and long-term impact, its matrix-algebra-optimized source code is released at http://bioinfo.cs.cityu.edu.hk/MotifHub.
Collapse
Affiliation(s)
- Zhe Liu
- Department of Computer Science, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong, China
| | - Hiu-Man Wong
- Department of Computer Science, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong, China
| | - Xingjian Chen
- Department of Computer Science, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong, China
| | - Jiecong Lin
- Department of Computer Science, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong, China
| | - Shixiong Zhang
- Department of Computer Science, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong, China
| | - Shankai Yan
- Department of Computer Science, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong, China
| | - Fuzhou Wang
- Department of Computer Science, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong, China
| | - Xiangtao Li
- School of Artificial Intelligence, Jilin University, Jilin, China
| | - Ka-Chun Wong
- Department of Computer Science, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong, China.
| |
Collapse
|
4
|
Pavlaki I, Shapiro M, Pisignano G, Jones SME, Telenius J, Muñoz-Descalzo S, Williams RJ, Hughes JR, Vance KW. Chromatin interaction maps identify Wnt responsive cis-regulatory elements coordinating Paupar-Pax6 expression in neuronal cells. PLoS Genet 2022; 18:e1010230. [PMID: 35709096 PMCID: PMC9202886 DOI: 10.1371/journal.pgen.1010230] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/02/2022] [Indexed: 11/19/2022] Open
Abstract
Central nervous system-expressed long non-coding RNAs (lncRNAs) are often located in the genome close to protein coding genes involved in transcriptional control. Such lncRNA-protein coding gene pairs are frequently temporally and spatially co-expressed in the nervous system and are predicted to act together to regulate neuronal development and function. Although some of these lncRNAs also bind and modulate the activity of the encoded transcription factors, the regulatory mechanisms controlling co-expression of neighbouring lncRNA-protein coding genes remain unclear. Here, we used high resolution NG Capture-C to map the cis-regulatory interaction landscape of the key neuro-developmental Paupar-Pax6 lncRNA-mRNA locus. The results define chromatin architecture changes associated with high Paupar-Pax6 expression in neurons and identify both promoter selective as well as shared cis-regulatory-promoter interactions involved in regulating Paupar-Pax6 co-expression. We discovered that the TCF7L2 transcription factor, a regulator of chromatin architecture and major effector of the Wnt signalling pathway, binds to a subset of these candidate cis-regulatory elements to coordinate Paupar and Pax6 co-expression. We describe distinct roles for Paupar in Pax6 expression control and show that the Paupar DNA locus contains a TCF7L2 bound transcriptional silencer whilst the Paupar transcript can act as an activator of Pax6. Our work provides important insights into the chromatin interactions, signalling pathways and transcription factors controlling co-expression of adjacent lncRNAs and protein coding genes in the brain.
Collapse
Affiliation(s)
- Ioanna Pavlaki
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Michael Shapiro
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | - Giuseppina Pisignano
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | | | - Jelena Telenius
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Silvia Muñoz-Descalzo
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Robert J. Williams
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Jim R. Hughes
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Keith W. Vance
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
- * E-mail:
| |
Collapse
|