1
|
Sato S, Teramura Y, Ogawa Y, Shimizu E, Otake M, Hori K, Kamata T, Shu Y, Seta Y, Kuramochi A, Asai K, Shimizu S, Negishi K, Hirayama M. Conditioned media of stem cells from human exfoliated deciduous teeth contain factors related to extracellular matrix organization and promotes corneal epithelial wound healing. Regen Ther 2025; 29:148-161. [PMID: 40170802 PMCID: PMC11960544 DOI: 10.1016/j.reth.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/27/2025] [Accepted: 03/09/2025] [Indexed: 04/03/2025] Open
Abstract
This study aimed to investigate the therapeutic potential of cell-free conditioned media (CM) from human mesenchymal stem cells (hMSCs), specifically stem cells from human exfoliated deciduous teeth (SHED), for treating ocular surface diseases. The proteomes of various hMSC-CMs were compared using cytokine array and liquid chromatography-mass spectrometry (LC-MS). Bioinformatic analysis identified key biological pathways associated with SHED-CM, immortalized SHED-CM (IM-SHED-CM), and a fractionated component of IM-SHED-CM in which low weight molecules (less than 3.5kD) were depleted. Corneal epithelial wound healing models were constructed by epithelial scraping and treated with eye drops derived from SHED-CM. For the migration assay, the human corneal epithelial cells were wounded and then incubated with SHED-CM. SHED-CM, IM-SHED-CM, and >3.5 kD fractionated component eyedrops were administered to a chronic graft-versus-host disease (cGVHD) mouse model with sever corneal epithelial damages. SHED-CM, IM-SHED-CM, and >3.5 kD fractionated component of IM-SHED-CM were enriched in factors involved in epithelial wound healing, particularly extracellular matrix (ECM) organization. Both in vitro and in vivo assays demonstrated that SHED-CM significantly enhanced corneal epithelial wound healing. Furthermore, SHED-CM-derived eye drops reduced corneal epithelial damage, inflammatory cell infiltration, and oxidative stress in the corneal epithelium and maintained the expression of limbal stem cell markers in the cGVHD mouse model. These findings suggest that SHED-CM eye drops could be a novel treatment for corneal epithelial damage, highlighting the role of bioactive factors in promoting wound healing and offering an alternative to cell-based MSC therapies for corneal wound healing.
Collapse
Affiliation(s)
- Shinri Sato
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yuji Teramura
- Cellular and Molecular Biotechnology Research Institute (CMB), National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
- Department of Immunology, Genetics and Pathology (IGP), Uppsala University, Dag Hammarskjölds väg 20, SE-751 85, Uppsala, Sweden
- Master's/Doctoral Program in Life Science Innovation (T-LSI), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Yoko Ogawa
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Eisuke Shimizu
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masato Otake
- U-Factor Co., Ltd., 1F ESCALIER Rokubancho, 7-11 Rokubancho, Chiyoda-ku, Tokyo 102-0085, Japan
| | - Keigo Hori
- U-Factor Co., Ltd., 1F ESCALIER Rokubancho, 7-11 Rokubancho, Chiyoda-ku, Tokyo 102-0085, Japan
| | - Takamitsu Kamata
- U-Factor Co., Ltd., 1F ESCALIER Rokubancho, 7-11 Rokubancho, Chiyoda-ku, Tokyo 102-0085, Japan
| | - Yujing Shu
- U-Factor Co., Ltd., 1F ESCALIER Rokubancho, 7-11 Rokubancho, Chiyoda-ku, Tokyo 102-0085, Japan
| | - Yasuhiro Seta
- Hitonowa Medical, K. PLAZA 2F, 1-7 Rokubancho, Chiyoda-ku, Tokyo 102-0085, Japan
| | - Akiko Kuramochi
- Cellular and Molecular Biotechnology Research Institute (CMB), National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Kazuki Asai
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shota Shimizu
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kazuno Negishi
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masatoshi Hirayama
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
2
|
Contini C, Manconi B, Olianas A, Guadalupi G, Schirru A, Zorcolo L, Castagnola M, Messana I, Faa G, Diaz G, Cabras T. Combined High-Throughput Proteomics and Random Forest Machine-Learning Approach Differentiates and Classifies Metabolic, Immune, Signaling and ECM Intra-Tumor Heterogeneity of Colorectal Cancer. Cells 2024; 13:1311. [PMID: 39195201 PMCID: PMC11352245 DOI: 10.3390/cells13161311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 08/29/2024] Open
Abstract
Colorectal cancer (CRC) is a frequent, worldwide tumor described for its huge complexity, including inter-/intra-heterogeneity and tumor microenvironment (TME) variability. Intra-tumor heterogeneity and its connections with metabolic reprogramming and epithelial-mesenchymal transition (EMT) were investigated with explorative shotgun proteomics complemented by a Random Forest (RF) machine-learning approach. Deep and superficial tumor regions and distant-site non-tumor samples from the same patients (n = 16) were analyzed. Among the 2009 proteins analyzed, 91 proteins, including 23 novel potential CRC hallmarks, showed significant quantitative changes. In addition, a 98.4% accurate classification of the three analyzed tissues was obtained by RF using a set of 21 proteins. Subunit E1 of 2-oxoglutarate dehydrogenase (OGDH-E1) was the best classifying factor for the superficial tumor region, while sorting nexin-18 and coatomer-beta protein (beta-COP), implicated in protein trafficking, classified the deep region. Down- and up-regulations of metabolic checkpoints involved different proteins in superficial and deep tumors. Analogously to immune checkpoints affecting the TME, cytoskeleton and extracellular matrix (ECM) dynamics were crucial for EMT. Galectin-3, basigin, S100A9, and fibronectin involved in TME-CRC-ECM crosstalk were found to be differently variated in both tumor regions. Different metabolic strategies appeared to be adopted by the two CRC regions to uncouple the Krebs cycle and cytosolic glucose metabolism, promote lipogenesis, promote amino acid synthesis, down-regulate bioenergetics in mitochondria, and up-regulate oxidative stress. Finally, correlations with the Dukes stage and budding supported the finding of novel potential CRC hallmarks and therapeutic targets.
Collapse
Affiliation(s)
- Cristina Contini
- Department of Medical Sciences and Public Health, Statal University of Cagliari, 09042 Monserrato (CA), Italy; (C.C.); (G.F.)
| | - Barbara Manconi
- Department of Life and Environmental Sciences, Statal University of Cagliari, 09042 Monserrato (CA), Italy; (A.O.); (A.S.)
| | - Alessandra Olianas
- Department of Life and Environmental Sciences, Statal University of Cagliari, 09042 Monserrato (CA), Italy; (A.O.); (A.S.)
| | - Giulia Guadalupi
- Department of Surgical Sciences, Statal University of Cagliari, 09042 Monserrato (CA), Italy; (G.G.); (L.Z.)
| | - Alessandra Schirru
- Department of Life and Environmental Sciences, Statal University of Cagliari, 09042 Monserrato (CA), Italy; (A.O.); (A.S.)
| | - Luigi Zorcolo
- Department of Surgical Sciences, Statal University of Cagliari, 09042 Monserrato (CA), Italy; (G.G.); (L.Z.)
| | - Massimo Castagnola
- Laboratorio di Proteomica, Centro Europeo di Ricerca sul Cervello, IRCCS Fondazione Santa Lucia, 00143 Roma, Italy;
| | - Irene Messana
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Consiglio Nazionale delle Ricerche, 00168 Roma, Italy;
| | - Gavino Faa
- Department of Medical Sciences and Public Health, Statal University of Cagliari, 09042 Monserrato (CA), Italy; (C.C.); (G.F.)
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Giacomo Diaz
- Department of Biomedical Sciences, Statal University of Cagliari, 09042 Monserrato (CA), Italy;
| | - Tiziana Cabras
- Department of Life and Environmental Sciences, Statal University of Cagliari, 09042 Monserrato (CA), Italy; (A.O.); (A.S.)
| |
Collapse
|
3
|
Thiery J, Fahrner M. Integration of proteomics in the molecular tumor board. Proteomics 2024; 24:e2300002. [PMID: 38143279 DOI: 10.1002/pmic.202300002] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/26/2023]
Abstract
Cancer remains one of the most complex and challenging diseases in mankind. To address the need for a personalized treatment approach for particularly complex tumor cases, molecular tumor boards (MTBs) have been initiated. MTBs are interdisciplinary teams that perform in-depth molecular diagnostics to cooperatively and interdisciplinarily advise on the best therapeutic strategy. Current molecular diagnostics are routinely performed on the transcriptomic and genomic levels, aiming to identify tumor-driving mutations. However, these approaches can only partially capture the actual phenotype and the molecular key players of tumor growth and progression. Thus, direct investigation of the expressed proteins and activated signaling pathways provide valuable complementary information on the tumor-driving molecular characteristics of the tissue. Technological advancements in mass spectrometry-based proteomics enable the robust, rapid, and sensitive detection of thousands of proteins in minimal sample amounts, paving the way for clinical proteomics and the probing of oncogenic signaling activity. Therefore, proteomics is currently being integrated into molecular diagnostics within MTBs and holds promising potential in aiding tumor classification and identifying personalized treatment strategies. This review introduces MTBs and describes current clinical proteomics, its potential in precision oncology, and highlights the benefits of multi-omic data integration.
Collapse
Affiliation(s)
- Johanna Thiery
- Institute for Surgical Pathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Matthias Fahrner
- Institute for Surgical Pathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) and Cancer Research Center (DKFZ), Freiburg, Germany
| |
Collapse
|
4
|
Zou Y, Wang S, Zhang H, Gu Y, Chen H, Huang Z, Yang F, Li W, Chen C, Men L, Tian Q, Xie T. The triangular relationship between traditional Chinese medicines, intestinal flora, and colorectal cancer. Med Res Rev 2024; 44:539-567. [PMID: 37661373 DOI: 10.1002/med.21989] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/05/2023] [Accepted: 08/05/2023] [Indexed: 09/05/2023]
Abstract
Over the past decade, colorectal cancer has reported a higher incidence in younger adults and a lower mortality rate. Recently, the influence of the intestinal flora in the initiation, progression, and treatment of colorectal cancer has been extensively studied, as well as their positive therapeutic impact on inflammation and the cancer microenvironment. Historically, traditional Chinese medicine (TCM) has been widely used in the treatment of colorectal cancer via promoted cancer cell apoptosis, inhibited cancer metastasis, and reduced drug resistance and side effects. The present research is more on the effect of either herbal medicine or intestinal flora on colorectal cancer. The interactions between TCM and intestinal flora are bidirectional and the combined impacts of TCM and gut microbiota in the treatment of colon cancer should not be neglected. Therefore, this review discusses the role of intestinal bacteria in the progression and treatment of colorectal cancer by inhibiting carcinogenesis, participating in therapy, and assisting in healing. Then the complex anticolon cancer effects of different kinds of TCM monomers, TCM drug pairs, and traditional Chinese prescriptions embodied in apoptosis, metastasis, immune suppression, and drug resistance are summarized separately. In addition, the interaction between TCM and intestinal flora and the combined effect on cancer treatment were analyzed. This review provides a mechanistic reference for the application of TCM and intestinal flora in the clinical treatment of colorectal cancer and paves the way for the combined development and application of microbiome and TCM.
Collapse
Affiliation(s)
- Yuqing Zou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Shuling Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Honghua Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yuxin Gu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Huijuan Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Zhihua Huang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Feifei Yang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Wenqi Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Cheng Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Lianhui Men
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Qingchang Tian
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Chen H, Zhai C, Xu X, Wang H, Han W, Shen J. Multilevel Heterogeneity of Colorectal Cancer Liver Metastasis. Cancers (Basel) 2023; 16:59. [PMID: 38201487 PMCID: PMC10778489 DOI: 10.3390/cancers16010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Colorectal cancer liver metastasis (CRLM) is a highly heterogeneous disease. Therapies that target both primary foci and liver metastasis are severely lacking. Therefore, understanding the features of metastatic tumor cells in the liver is valuable for the overall control of CRLM patients. In this review, we summarize the heterogeneity exhibited in CRLM from five aspects (gene, transcriptome, protein, metabolism, and immunity). In addition to genetic heterogeneity, the other four aspects exhibit significant heterogeneity. Compared to primary CRC, the dysregulation of epithelial-mesenchymal transition (EMT)-related proteins, the enhanced metabolic activity, and the increased infiltration of immunosuppressive cells are detected in CRLM. Preclinical evidence shows that targeting the EMT process or enhancing cellular metabolism may represent a novel approach to increasing the therapeutic efficacy of CRLM.
Collapse
Affiliation(s)
| | | | | | | | - Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; (H.C.); (C.Z.); (X.X.); (H.W.)
| | - Jiaying Shen
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; (H.C.); (C.Z.); (X.X.); (H.W.)
| |
Collapse
|
6
|
Godesi S, Nada H, Lee J, Kang JH, Kim SY, Choi Y, Lee K. Integration of Hybridization Strategies in Pyridine-Urea Scaffolds for Novel Anticancer Agents: Design, Synthesis, and Mechanistic Insights. Molecules 2023; 28:4952. [PMID: 37446614 DOI: 10.3390/molecules28134952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Annually, millions of new cancer cases are reported, leading to millions of deaths worldwide. Among the newly reported cases, breast and colon cancers prevail as the most frequently detected variations. To effectively counteract this rapid increase, the development of innovative therapies is crucial. Small molecules possessing pyridine and urea moieties have been reported in many of the currently available anticancer agents, especially VEGFR2 inhibitors. With this in mind, a rational design approach was employed to create hybrid small molecules combining urea and pyridine. These synthesized compounds underwent in vitro testing against breast and colon cancer cell lines, revealing potent submicromolar anticancer activity. Compound 8a, specifically, exhibited an impressive GI50 value of 0.06 μM against the MCF7 cancer cell line, while compound 8h displayed the highest cytotoxic activity against the HCT116 cell line, with a GI50 of 0.33 ± 0.042 μM. Notably, compounds 8a, 8h, and 8i demonstrated excellent safety profiles when tested on normal cells. Molecular docking, dynamic studies, and free energy calculations were employed to validate the affinity of these compounds as VEGFR2 inhibitors.
Collapse
Affiliation(s)
- Sreenivasulu Godesi
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Hossam Nada
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Badr University in Cairo, Cairo 11829, Egypt
| | - Joohan Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Joon-Hee Kang
- Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Republic of Korea
| | - Soo-Youl Kim
- Division of Cancer Biology, Research Institute, National Cancer Center, Goyang 10408, Republic of Korea
| | - Yongseok Choi
- College of Biosciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Kyeong Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| |
Collapse
|
7
|
Kocsmár É, Schmid M, Cosenza-Contreras M, Kocsmár I, Föll M, Krey L, Barta BA, Rácz G, Kiss A, Werner M, Schilling O, Lotz G, Bronsert P. Proteome alterations in human autopsy tissues in relation to time after death. Cell Mol Life Sci 2023; 80:117. [PMID: 37020120 PMCID: PMC10075177 DOI: 10.1007/s00018-023-04754-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 02/17/2023] [Accepted: 03/07/2023] [Indexed: 04/07/2023]
Abstract
Protein expression is a primary area of interest for routine histological diagnostics and tissue-based research projects, but the limitations of its post-mortem applicability remain largely unclear. On the other hand, tissue specimens obtained during autopsies can provide unique insight into advanced disease states, especially in cancer research. Therefore, we aimed to identify the maximum post-mortem interval (PMI) which is still suitable for characterizing protein expression patterns, to explore organ-specific differences in protein degradation, and to investigate whether certain proteins follow specific degradation kinetics. Therefore, the proteome of human tissue samples obtained during routine autopsies of deceased patients with accurate PMI (6, 12, 18, 24, 48, 72, 96 h) and without specific diseases that significantly affect tissue preservation, from lungs, kidneys and livers, was analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). For the kidney and liver, significant protein degradation became apparent at 48 h. For the lung, the proteome composition was rather static for up to 48 h and substantial protein degradation was detected only at 72 h suggesting that degradation kinetics appear to be organ specific. More detailed analyses suggested that proteins with similar post-mortem kinetics are not primarily shared in their biological functions. The overrepresentation of protein families with analogous structural motifs in the kidney indicates that structural features may be a common factor in determining similar postmortem stability. Our study demonstrates that a longer post-mortem period may have a significant impact on proteome composition, but sampling within 24 h may be appropriate, as degradation is within acceptable limits even in organs with faster autolysis.
Collapse
Affiliation(s)
- Éva Kocsmár
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Marlene Schmid
- Institute of Surgical Pathology, University Medical Center Freiburg, Breisacher Straße 115A, 79106, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Miguel Cosenza-Contreras
- Institute of Surgical Pathology, University Medical Center Freiburg, Breisacher Straße 115A, 79106, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Ildikó Kocsmár
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
- Department of Urology, Semmelweis University, Budapest, Hungary
| | - Melanie Föll
- Institute of Surgical Pathology, University Medical Center Freiburg, Breisacher Straße 115A, 79106, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Khoury College of Computer Sciences, Northeastern University, Boston, USA
| | - Leah Krey
- Institute of Surgical Pathology, University Medical Center Freiburg, Breisacher Straße 115A, 79106, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bálint András Barta
- Institute of Surgical Pathology, University Medical Center Freiburg, Breisacher Straße 115A, 79106, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Gergely Rácz
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - András Kiss
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Martin Werner
- Institute of Surgical Pathology, University Medical Center Freiburg, Breisacher Straße 115A, 79106, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Oliver Schilling
- Institute of Surgical Pathology, University Medical Center Freiburg, Breisacher Straße 115A, 79106, Freiburg, Germany.
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Gábor Lotz
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Peter Bronsert
- Institute of Surgical Pathology, University Medical Center Freiburg, Breisacher Straße 115A, 79106, Freiburg, Germany.
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Biobank Comprehensive Cancer Center Freiburg, University Medical Center, Freiburg, Germany.
| |
Collapse
|
8
|
Punetha A, Kotiya D. Advancements in Oncoproteomics Technologies: Treading toward Translation into Clinical Practice. Proteomes 2023; 11:2. [PMID: 36648960 PMCID: PMC9844371 DOI: 10.3390/proteomes11010002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
Proteomics continues to forge significant strides in the discovery of essential biological processes, uncovering valuable information on the identity, global protein abundance, protein modifications, proteoform levels, and signal transduction pathways. Cancer is a complicated and heterogeneous disease, and the onset and progression involve multiple dysregulated proteoforms and their downstream signaling pathways. These are modulated by various factors such as molecular, genetic, tissue, cellular, ethnic/racial, socioeconomic status, environmental, and demographic differences that vary with time. The knowledge of cancer has improved the treatment and clinical management; however, the survival rates have not increased significantly, and cancer remains a major cause of mortality. Oncoproteomics studies help to develop and validate proteomics technologies for routine application in clinical laboratories for (1) diagnostic and prognostic categorization of cancer, (2) real-time monitoring of treatment, (3) assessing drug efficacy and toxicity, (4) therapeutic modulations based on the changes with prognosis and drug resistance, and (5) personalized medication. Investigation of tumor-specific proteomic profiles in conjunction with healthy controls provides crucial information in mechanistic studies on tumorigenesis, metastasis, and drug resistance. This review provides an overview of proteomics technologies that assist the discovery of novel drug targets, biomarkers for early detection, surveillance, prognosis, drug monitoring, and tailoring therapy to the cancer patient. The information gained from such technologies has drastically improved cancer research. We further provide exemplars from recent oncoproteomics applications in the discovery of biomarkers in various cancers, drug discovery, and clinical treatment. Overall, the future of oncoproteomics holds enormous potential for translating technologies from the bench to the bedside.
Collapse
Affiliation(s)
- Ankita Punetha
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers University, 225 Warren St., Newark, NJ 07103, USA
| | - Deepak Kotiya
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, 900 South Limestone St., Lexington, KY 40536, USA
| |
Collapse
|
9
|
Liao Y, Chuang Y, Lin H, Lin N, Hsu T, Hsieh S, Chen S, Hung J, Yang H, Liang J, Huang M, Huang J. GALNT2 promotes invasiveness of colorectal cancer cells partly through AXL. Mol Oncol 2022; 17:119-133. [PMID: 36409270 PMCID: PMC9812829 DOI: 10.1002/1878-0261.13347] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/29/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
GalNAc-type O-glycosylation and its initiating GalNAc transferases (GALNTs) play crucial roles in a wide range of cellular behaviors. Among 20 GALNT members, GALNT2 is consistently associated with poor survival of patients with colorectal cancer in public databases. However, its clinicopathological significance in colorectal cancer remains unclear. In this study, immunohistochemistry showed that GALNT2 was overexpressed in colorectal tumors compared with the adjacent nontumor tissues. GALNT2 overexpression was associated with poor survival of colorectal cancer patients. Forced expression of GALNT2 promoted migration and invasion as well as peritoneal metastasis of colorectal cancer cells. In contrast, GALNT2 knockdown with siRNAs or knockout with CRISPR/Cas9 system suppressed these malignant properties. Interestingly, we found that GALNT2 modified O-glycans on AXL and determined AXL levels via the proteasome-dependent pathway. In addition, the GALNT2-promoted invasiveness was significantly reversed by AXL siRNAs. These findings suggest that GALNT2 promotes colorectal cancer invasion at least partly through AXL.
Collapse
Affiliation(s)
- Ying‐Yu Liao
- Graduate Institute of Anatomy and Cell Biology, College of MedicineNational Taiwan UniversityTaipeiTaiwan
| | - Ya‐Ting Chuang
- Department of Medical ResearchNational Taiwan University HospitalTaipeiTaiwan
| | - Hsuan‐Yu Lin
- Graduate Institute of Anatomy and Cell Biology, College of MedicineNational Taiwan UniversityTaipeiTaiwan
| | - Neng‐Yu Lin
- Graduate Institute of Anatomy and Cell Biology, College of MedicineNational Taiwan UniversityTaipeiTaiwan
| | - Tzu‐Wen Hsu
- Graduate Institute of Anatomy and Cell Biology, College of MedicineNational Taiwan UniversityTaipeiTaiwan
| | - Szu‐Chia Hsieh
- Graduate Institute of Anatomy and Cell Biology, College of MedicineNational Taiwan UniversityTaipeiTaiwan
| | - Syue‐Ting Chen
- Department of Anatomy, College of MedicineChang Gung UniversityTaoyuanTaiwan
| | - Ji‐Shiang Hung
- Department of SurgeryNational Taiwan University HospitalTaipeiTaiwan
| | | | - Jin‐Tung Liang
- Department of SurgeryNational Taiwan University HospitalTaipeiTaiwan
| | - Min‐Chuan Huang
- Graduate Institute of Anatomy and Cell Biology, College of MedicineNational Taiwan UniversityTaipeiTaiwan
| | - John Huang
- Department of SurgeryNational Taiwan University HospitalTaipeiTaiwan
| |
Collapse
|
10
|
Hewitt DB, Brown ZJ, Pawlik TM. The Role of Biomarkers in the Management of Colorectal Liver Metastases. Cancers (Basel) 2022; 14:cancers14194602. [PMID: 36230522 PMCID: PMC9559307 DOI: 10.3390/cancers14194602] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Colorectal cancer remains one of the most significant sources of cancer-related morbidity and mortality worldwide. The liver is the most common site of metastatic spread. Multiple modalities exist to manage and potentially cure patients with metastatic colorectal cancer. However, reliable biomarkers to assist with clinical decision-making are limited. Recent advances in genomic sequencing technology have greatly expanded our knowledge of colorectal cancer carcinogenesis and significantly reduced the cost and timing of the investigation. In this article, we discuss the current utility of biomarkers in the management of colorectal cancer liver metastases. Abstract Surgical management combined with improved systemic therapies have extended 5-year overall survival beyond 50% among patients with colorectal liver metastases (CRLM). Furthermore, a multitude of liver-directed therapies has improved local disease control for patients with unresectable CRLM. Unfortunately, a significant portion of patients treated with curative-intent hepatectomy develops disease recurrence. Traditional markers fail to risk-stratify and prognosticate patients with CRLM appropriately. Over the last few decades, advances in molecular sequencing technology have greatly expanded our knowledge of the pathophysiology and tumor microenvironment characteristics of CRLM. These investigations have revealed biomarkers with the potential to better inform management decisions in patients with CRLM. Actionable biomarkers such as RAS and BRAF mutations, microsatellite instability/mismatch repair status, and tumor mutational burden have been incorporated into national and societal guidelines. Other biomarkers, including circulating tumor DNA and radiomic features, are under active investigation to evaluate their clinical utility. Given the plethora of therapeutic modalities and lack of evidence on timing and sequence, reliable biomarkers are needed to assist clinicians with the development of patient-tailored management plans. In this review, we discuss the current evidence regarding biomarkers for patients with CRLM.
Collapse
|
11
|
Wong GYM, Diakos C, Hugh TJ, Molloy MP. Proteomic Profiling and Biomarker Discovery in Colorectal Liver Metastases. Int J Mol Sci 2022; 23:ijms23116091. [PMID: 35682769 PMCID: PMC9181741 DOI: 10.3390/ijms23116091] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 12/14/2022] Open
Abstract
Colorectal liver metastases (CRLM) are the leading cause of death among patients with metastatic colorectal cancer (CRC). As part of multimodal therapy, liver resection is the mainstay of curative-intent treatment for select patients with CRLM. However, effective treatment of CRLM remains challenging as recurrence occurs in most patients after liver resection. Proposed clinicopathologic factors for predicting recurrence are inconsistent and lose prognostic significance over time. The rapid development of next-generation sequencing technologies and decreasing DNA sequencing costs have accelerated the genomic profiling of various cancers. The characterisation of genomic alterations in CRC has significantly improved our understanding of its carcinogenesis. However, the functional context at the protein level has not been established for most of this genomic information. Furthermore, genomic alterations do not always result in predicted changes in the corresponding proteins and cancer phenotype, while post-transcriptional and post-translational regulation may alter synthesised protein levels, affecting phenotypes. More recent advancements in mass spectrometry-based technology enable accurate protein quantitation and comprehensive proteomic profiling of cancers. Several studies have explored proteomic biomarkers for predicting CRLM after oncologic resection of primary CRC and recurrence after curative-intent resection of CRLM. The current review aims to rationalise the proteomic complexity of CRC and explore the potential applications of proteomic biomarkers in CRLM.
Collapse
Affiliation(s)
- Geoffrey Yuet Mun Wong
- Department of Upper Gastrointestinal Surgery, Royal North Shore Hospital, Sydney, NSW 2065, Australia;
- Northern Clinical School, The University of Sydney, Sydney, NSW 2065, Australia;
- Correspondence:
| | - Connie Diakos
- Northern Clinical School, The University of Sydney, Sydney, NSW 2065, Australia;
- Department of Medical Oncology, Royal North Shore Hospital, Sydney, NSW 2065, Australia
| | - Thomas J. Hugh
- Department of Upper Gastrointestinal Surgery, Royal North Shore Hospital, Sydney, NSW 2065, Australia;
- Northern Clinical School, The University of Sydney, Sydney, NSW 2065, Australia;
| | - Mark P. Molloy
- Bowel Cancer and Biomarker Research Laboratory, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia;
| |
Collapse
|
12
|
High Dual Expression of the Biomarkers CD44v6/α2β1 and CD44v6/PD-L1 Indicate Early Recurrence after Colorectal Hepatic Metastasectomy. Cancers (Basel) 2022; 14:cancers14081939. [PMID: 35454846 PMCID: PMC9027562 DOI: 10.3390/cancers14081939] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/28/2022] [Accepted: 04/07/2022] [Indexed: 11/17/2022] Open
Abstract
Considering the biology of CRC, distant metastases might support the identification of high-risk patients for early recurrence and targeted therapy. Expression of a panel of druggable, metastasis-related biomarkers was immunohistochemically analyzed in 53 liver (LM) and 15 lung metastases (LuM) and correlated with survival. Differential expression between LM and LuM was observed for the growth factor receptors IGF1R (LuM 92.3% vs. LM 75.8%, p = 0.013), EGFR (LuM 68% vs. LM 41.5%, p = 0.004), the cell adhesion molecules CD44v6 (LuM 55.7% vs. LM 34.9%, p = 0.019) and α2β1 (LuM 88.3% vs. LM 58.5%, p = 0.001) and the check point molecule PD-L1 (LuM 6.1% vs. LM 3.3%, p = 0.005). Contrary, expression of HGFR, Hsp90, Muc1, Her2/neu, ERα and PR was comparable in LuM and LM. In the LM cohort (n = 52), a high CD44v6 expression was identified as an independent factor of poor prognosis (PFS: HR 2.37, 95% CI 1.18-4.78, p = 0.016). High co-expression of CD44v6/α2β1 (HR 4.14, 95% CI 1.65-10.38, p = 0.002) and CD44v6/PD-L1 (HR 2.88, 95% CI 1.21-6.85, p = 0.017) indicated early recurrence after hepatectomy, in a substantial number of patients (CD44v6/α2β1: 11 (21.15%) patients; CD44v6/PD-L1: 12 (23.1%) patients). Dual expression of druggable protein biomarkers may refine prognostic prediction and stratify high-risk patients for new therapeutic concepts, depending on the metastatic location.
Collapse
|