1
|
Raymakers L, Demmers TJ, Meijer GJ, Molenaar IQ, van Santvoort HC, Intven MPW, Leusen JHW, Olofsen PA, Daamen LA. The Effect of Radiation Treatment of Solid Tumors on Neutrophil Infiltration and Function: A Systematic Review. Int J Radiat Oncol Biol Phys 2024; 120:845-861. [PMID: 39009323 DOI: 10.1016/j.ijrobp.2024.07.2141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/13/2024] [Accepted: 07/02/2024] [Indexed: 07/17/2024]
Abstract
Radiation therapy (RT) initiates a local and systemic immune response which can induce antitumor immunity and improve immunotherapy efficacy. Neutrophils are among the first immune cells that infiltrate tumors after RT and are suggested to be essential for the initial antitumor immune response. However, neutrophils in tumors are associated with poor outcomes and RT-induced neutrophil infiltration could also change the composition of the tumor microenvironment (TME) in favor of tumor progression. To improve RT efficacy for patients with cancer it is important to understand the interplay between RT and neutrophils. Here, we review the literature on how RT affects the infiltration and function of neutrophils in the TME of solid tumors, using both patients studies and preclinical murine in vivo models. In general, it was found that neutrophil levels increase and reach maximal levels in the first days after RT and can remain elevated up to 3 weeks. Most studies report an immunosuppressive role of neutrophils in the TME after RT, caused by upregulated expression of neutrophil indoleamine 2,3-dioxygenase 1 and arginase 1, as well as neutrophil extracellular trap formation. RT was also associated with increased reactive oxygen species production by neutrophils, which can both improve and inhibit antitumor immunity. In addition, multiple murine models showed improved RT efficacy when depleting neutrophils, suggesting that neutrophils have a protumor phenotype after RT. We conclude that the role of neutrophils should not be overlooked when developing RT strategies and requires further investigation in specific tumor types. In addition, neutrophils can possibly be exploited to enhance RT efficacy by combining RT with neutrophil-targeting therapies.
Collapse
Affiliation(s)
- Léon Raymakers
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Radiation Oncology, University Medical Center Utrecht, UMC Utrecht Cancer Center, Utrecht, The Netherlands
| | - Thijs J Demmers
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gert J Meijer
- Department of Radiation Oncology, University Medical Center Utrecht, UMC Utrecht Cancer Center, Utrecht, The Netherlands
| | - I Quintus Molenaar
- Department of Surgery, Regional Academic Cancer Center Utrecht, UMC Utrecht Cancer Center and St. Antonius Hospital Nieuwegein, Utrecht University, Utrecht, The Netherlands
| | - Hjalmar C van Santvoort
- Department of Surgery, Regional Academic Cancer Center Utrecht, UMC Utrecht Cancer Center and St. Antonius Hospital Nieuwegein, Utrecht University, Utrecht, The Netherlands
| | - Martijn P W Intven
- Department of Radiation Oncology, University Medical Center Utrecht, UMC Utrecht Cancer Center, Utrecht, The Netherlands
| | - Jeanette H W Leusen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Patricia A Olofsen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lois A Daamen
- Department of Radiation Oncology, University Medical Center Utrecht, UMC Utrecht Cancer Center, Utrecht, The Netherlands; Department of Surgery, Regional Academic Cancer Center Utrecht, UMC Utrecht Cancer Center and St. Antonius Hospital Nieuwegein, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
2
|
Li X, Hu L, Naeem A, Xiao S, Yang M, Shang H, Zhang J. Neutrophil Extracellular Traps in Tumors and Potential Use of Traditional Herbal Medicine Formulations for Its Regulation. Int J Nanomedicine 2024; 19:2851-2877. [PMID: 38529365 PMCID: PMC10961241 DOI: 10.2147/ijn.s449181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/28/2024] [Indexed: 03/27/2024] Open
Abstract
Neutrophil extracellular traps (NETs) are extracellular fibers composed of deoxyribonucleic acid (DNA) and decorated proteins produced by neutrophils. Recently, NETs have been associated with the development of many diseases, including tumors. Herein, we reviewed the correlation between NETs and tumors. In addition, we detailed active compounds from traditional herbal medicine formulations that inhibit NETs, related nanodrug delivery systems, and antibodies that serve as "guiding moieties" to ensure targeted delivery to NETs. Furthermore, we discussed the strategies used by pathogenic microorganisms to evade NETs.
Collapse
Affiliation(s)
- Xiang Li
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Lei Hu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Abid Naeem
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, People’s Republic of China
| | - Shanghua Xiao
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
| | - Ming Yang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
| | - Hongming Shang
- Department of Biochemistry & Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - Jing Zhang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330006, People’s Republic of China
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
| |
Collapse
|
3
|
Liu S, Wang W, Hu S, Jia B, Tuo B, Sun H, Wang Q, Liu Y, Sun Z. Radiotherapy remodels the tumor microenvironment for enhancing immunotherapeutic sensitivity. Cell Death Dis 2023; 14:679. [PMID: 37833255 PMCID: PMC10575861 DOI: 10.1038/s41419-023-06211-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/22/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023]
Abstract
Cancer immunotherapy has transformed traditional treatments, with immune checkpoint blockade being particularly prominent. However, immunotherapy has minimal benefit for patients in most types of cancer and is largely ineffective in some cancers (such as pancreatic cancer and glioma). A synergistic anti-tumor response may be produced through the combined application with traditional tumor treatment methods. Radiotherapy (RT) not only kills tumor cells but also triggers the pro-inflammatory molecules' release and immune cell infiltration, which remodel the tumor microenvironment (TME). Therefore, the combination of RT and immunotherapy is expected to achieve improved efficacy. In this review, we summarize the effects of RT on cellular components of the TME, including T cell receptor repertoires, different T cell subsets, metabolism, tumor-associated macrophages and other myeloid cells (dendritic cells, myeloid-derived suppressor cells, neutrophils and eosinophils). Meanwhile, non-cellular components such as lactate and extracellular vesicles are also elaborated. In addition, we discuss the impact of different RT modalities on tumor immunity and issues related to the clinical practice of combination therapy.
Collapse
Affiliation(s)
- Senbo Liu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Wenkang Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Shengyun Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Bin Jia
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Baojing Tuo
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Haifeng Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Qiming Wang
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, 450001, Zhengzhou, China.
| | - Yang Liu
- Department of Radiotherapy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, 450001, Zhengzhou, China.
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China.
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China.
| |
Collapse
|
4
|
Frosina G. Radiotherapy of high-grade gliomas: dealing with a stalemate. Crit Rev Oncol Hematol 2023; 190:104110. [PMID: 37657520 DOI: 10.1016/j.critrevonc.2023.104110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/14/2023] [Accepted: 08/23/2023] [Indexed: 09/03/2023] Open
Abstract
This article discusses the studies on radiotherapy of high-grade gliomas published between January 1, 2022, and June 30, 2022, with special reference to their molecular biology basis. The focus was on advances in radioresistance, radiosensitization and the toxicity of radiotherapy treatments. In the first half of 2022, several important advances have been made in understanding resistance mechanisms in high-grade gliomas. Furthermore, the development of several radiosensitization procedures for these deadly tumors, including studies with small molecule radiosensitizers, new fractionation protocols, and new immunostimulatory agents, has progressed in both the preclinical and clinical settings, reflecting the frantic research effort in the field. However, since 2005 our research efforts fail to produce significant improvements to treatment guidelines for high-grade gliomas. Possible reasons for this stalemate and measures to overcome it are discussed.
Collapse
Affiliation(s)
- Guido Frosina
- Mutagenesis & Cancer Prevention Unit, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy.
| |
Collapse
|
5
|
Liu H, Zeng Z, Sun P. Prognosis and immunoinfiltration analysis of angiogene-related genes in grade 4 diffuse gliomas. Aging (Albany NY) 2023; 15:9842-9857. [PMID: 37737709 PMCID: PMC10564429 DOI: 10.18632/aging.205054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/29/2023] [Indexed: 09/23/2023]
Abstract
Although angiogenesis critically influences the progression of solid tumors, its contribution to highly malignant, grade 4 diffuse gliomas remains unclear. After analyzing 506 angiogenesis-related genes differentially expressed in grade 4 diffuse gliomas via LASSO and univariate and multivariate COX regression analyses, we constructed a nomogram based on COL22A1, IGFBP2, and MPO that accurately predicted patient survival. The nomogram's performance was validated in an external patient cohort, and a risk score based on the formula COL22A1*0.148+IGFBP2*0.234+MPO*0.145 was used to distinguish high-risk from low-risk patients. Based on differentially expressed genes among risk groups, functional enrichment and drug sensitivity analyses were conducted, and the association between COL22A1, IGFBP2, and MPO expression and infiltrating immune cells and immune checkpoint genes was investigated. We next focused on COL22A1, and verified its overexpression in both glioma cell lines and clinical samples. A pro-oncogenic role for COL22A1, evidenced by impaired proliferation, migration, and invasion capacities, was evidenced upon shRNA-mediated COL22A1 silencing in glioma U87 and LN18 cells. In summary, we present a novel nomogram based on the angiogenesis-related genes COL22A1, IGFBP2, and MPO that allows survival prediction in patients with grade 4 diffuse gliomas. Furthermore, our cellular assays support a pro-oncogenic role for COL22A1 in these tumors.
Collapse
Affiliation(s)
- Hui Liu
- Department of Neurosurgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhirui Zeng
- Department of Neurosurgery, Guizhou Medical University, Guiyang, China
| | - Peng Sun
- Department of Neurosurgery, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
6
|
Osman NAHK, Abd-Elazeem OM, Al-Eisa RA, El-Shenawy NS. Anticancer and antimicrobial evaluation of extract from brown algae Hormophysa cuneiformis. J Appl Biomed 2023; 21:121-136. [PMID: 37747312 DOI: 10.32725/jab.2023.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023] Open
Abstract
AIM We investigated the antimicrobial and anticancer properties of an ethanol crude extract of Red Sea brown alga (Hormophysa cuneiformis) from Egypt. METHODS Extraction was achieved by mixing 100 g of sample powder with absolute ethanol, incubating at 37 °C overnight in a shaking incubator, and then collecting the extract. The extract's antimicrobial activity was tested using a well diffusion assay against the tested pathogens (Escherichia coli, Bacillus subtilis, Staphylococcus aureus, and Candida albicans) in comparison to commercial antibiotics. Anticancer activity was assessed using MTT assay on MCF-7, HepG-2, and HEP-2 cell lines. The anticancer mechanism of action against the HepG-2 cell line was investigated using cell cycle analysis, Annexin V, and antioxidant enzymes, in addition to transmission electron microscopy. RESULTS GC-MS phytoconstituent profile of the extract was dominant with fatty acids. A broad antimicrobial effect against all the pathogenic isolates of E. coli, S. aureus, B. subtitles, and C. albicans was demonstrated, especially at the high concentration in comparison to commercial antibiotics. The extract could inhibit the growth of the tested cell lines. We observed the most significant effect on HepG-2 cells, and the concentration of the extract played a role in the level of inhibition (IC50 of 44.6 ± 0.6 µg/ml). The extract had negligible effects on Vero normal cell lines at the lower concentration, with slight toxicity (90.8% viability) at the highest concentration (500 µg/ml). At this same concentration, the extract caused 80-92% inhibition of the cancer cell lines. The extract appears to have demonstrated promising effects on cancer cells. It induces programmed cell death (apoptosis), arrests the cell cycle, and affects the oxidative/antioxidant balance within the cells, potentially leading to the suppression or elimination of cancer cells. These findings are encouraging and may have implications for cancer treatment or further research in this area. More action of extract was seen against bacteria than fungi, with a wide antibacterial impact against all of the tested isolates, notably at the high concentration in comparison to conventional antibiotics. CONCLUSION According to the findings, H. cuneiformis may be a valuable source of chemicals that are both antimicrobial and anticancer.
Collapse
Affiliation(s)
- Nehal A H K Osman
- Suez Canal University, Faculty of Science, Botany and Microbiology Department, Ismailia 41522, Egypt
| | - Omniya M Abd-Elazeem
- Suez Canal University, Faculty of Science, Department of Zoology, Ismailia 41522, Egypt
| | - Rasha A Al-Eisa
- Taif University, College of Sciences, Department of Biology, Taif 21944, Saudi Arabia
| | - Nahla S El-Shenawy
- Suez Canal University, Faculty of Science, Department of Zoology, Ismailia 41522, Egypt
| |
Collapse
|
7
|
Wang H, Xu Q, Dong X, Guan Z, Wang Z, Hao Y, Lu R, Chen L. Gold nanoparticles enhances radiosensitivity in glioma cells by inhibiting TRAF6/NF-κB induced CCL2 expression. Heliyon 2023; 9:e14362. [PMID: 36967939 PMCID: PMC10036657 DOI: 10.1016/j.heliyon.2023.e14362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
Gliomas are inherently difficult to treat by radiotherapy because glioma cells become radioresistant over time. However, combining radiotherapy with a radiosensitizer could be an effective strategy to mitigate the radioresistance of glioma cells. Gold nanoparticles (AuNPs) have emerged as a promising nanomaterial for cancer therapy, but little is known about whether AuNPs and X-ray radiation have cytotoxic synergistic effects against tumors. In this study, we found that the combination of AuNPs and X-ray irradiation significantly reduced the viabilities, as well as the migration and invasion, of glioma cells. Mechanistically, we observed that the AuNPs inhibited radiation-induced CCL2 expression by inhibiting the TRAF6/NF-κB pathway, which likely manifested the synergistic therapeutic effect between the AuNPs and X-ray radiation. The AuNPs also re-sensitized radioresistant glioma cells by inhibiting CCL2 expression. These results were also observed in another tumor cell line with a different molecular pattern, indicating that the underlying mechanism may be ubiquitous through cancer cells. Lastly, using the glioma mouse model, we observed that AuNPs significantly reduced tumor growth in the presence of X-ray radiation compared to radiotherapy alone.
Collapse
|
8
|
Seyedi SMR, Asoodeh A, Darroudi M. The human immune cell simulated anti-breast cancer nanorobot: the efficient, traceable, and dirigible anticancer bio-bot. Cancer Nanotechnol 2022; 13:44. [DOI: 10.1186/s12645-022-00150-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022] Open
Abstract
Abstract
Background
Various types of cancer therapy strategies have been investigated and successfully applied so far. There are a few modern strategies for improving drug selectivity and biocompatibility, such as nanoparticle-based drug delivery systems. Herein, we designed the traceable enzyme-conjugated magnetic nanoparticles to target human breast cancer cells by simulating the innate immune cell’s respiratory explosion response.
Methods
The human immune cell simulated anti-breast cancer-nanorobot (hisABC-NB) was produced by conjugating the mouse-derived iNOS and human-originated MPO enzymes on the folate-linked chitosan-coated Fe3O4 nanoparticles. The synthesized nanoparticles were functionalized with folic acid as the breast cancer cell detector. Then, the hisABC-NB’s stability and structural properties were characterized by studying Zeta-potential, XRD, FTIR, VSM, FESEM, and DLS analysis. Next, the selectivity and anti-tumor activity of the hisABC-NB were comparatively analyzed on both normal (MCF-10) and cancerous (MCF-7) human breast cells by analyzing the cells’ survival, apoptotic gene expression profile (P53, BAX, BCL2), and flow cytometry data. Finally, the hisABC-NB’s traceability was detected by T2-weighted MRI imaging on the balb-c breast tumor models.
Results
The hisABC-NB significantly reduced the MCF-7 human breast cancer cells by inducing apoptosis response and arresting the cell cycle at the G2/M phase compared with the normal cell type (MCF-10). Moreover, the hisABC-NB exhibited a proper MRI contrast at the tumor region of treated mice compared with the non-treated type, which approved their appropriate MRI-mediated traceability.
Conclusion
The hisABC-NB’s traceability, dirigibility, and selective cytotoxicity were approved, which are the three main required factors for an efficient anticancer compound. Therefore, it has the potential to be used as an intelligent safe anticancer agent for human breast cancer treatment. However, several in vitro and in vivo studies are required to clarify its selectivity, stability, and safety.
Collapse
|