1
|
Chang H, Chan YC, Chen IF, Chen HC. Resting-state functional connectivity in gelotophobes: A neuroscientific perspective on the fear of laughter. Behav Brain Res 2025; 479:115355. [PMID: 39581269 DOI: 10.1016/j.bbr.2024.115355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/16/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Gelotophobia, the fear of being laughed at, is characterized by heightened sensitivity to ridicule and a tendency to perceive laughter in social situations as mocking. Resting-state functional magnetic resonance imaging (rs-fMRI) acquires brain functional connectivity while the individual remains at rest, without engaging in specific tasks. Recent studies have investigated task-based fMRI and white matter in gelotophobes; however, the resting-state functional connectivity (rsFC) in this group remains unclear. This study aimed to examine differences in rsFC between gelotophobes and non-gelotophobes, to provide insights into the neural networks underlying gelotophobia. Using a seed-based correlation approach, the present study analyzed rsFC in three key networks: the limbic system, default mode network (DMN), and executive control network (ECN). Compared to non-gelotophobes, gelotophobes exhibited significantly stronger amygdala-putamen connectivity within the limbic system, suggesting heightened sensitivity to social cues and altered processing of fear. Within the DMN, gelotophobes demonstrated stronger precuneus-temporoparietal junction (TPJ) and posterior cingulate cortex-TPJ functional connectivity, implying increased self-awareness and vigilance toward social evaluation. In the ECN, enhanced connectivity between the superior frontal gyrus and supplementary motor area in gelotophobes may reflect heightened attention to social cues. Notably, while individuals with gelotophobia exhibited greater amygdala-putamen functional connectivity, controls showed stronger amygdala-supplementary motor area connectivity. These distinct connectivity patterns across the limbic system, DMN, and ECN provide new insights into the neural basis of gelotophobia and its associated heightened sensitivity to social evaluation.
Collapse
Affiliation(s)
- Hao Chang
- Department of Educational Psychology and Counseling, National Taiwan Normal University, Taiwan
| | - Yu-Chen Chan
- Institute of Learning Sciences and Technologies, National Tsing Hua University, Taiwan.
| | - I-Fei Chen
- School of Psychology, University of Ottawa, Canada; Mind, Brain Imaging and Neuroethics Unit, Institute of Mental Health Research, Royal Ottawa Mental Health Centre, University of Ottawa, Canada
| | - Hsueh-Chih Chen
- Department of Educational Psychology and Counseling, National Taiwan Normal University, Taiwan.
| |
Collapse
|
2
|
Bas-Hoogendam JM. Genetic Vulnerability to Social Anxiety Disorder. Curr Top Behav Neurosci 2024. [PMID: 39543021 DOI: 10.1007/7854_2024_544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Most anxiety disorders 'run within families': people suffering from an anxiety disorder often have family members who are highly anxious as well. In this chapter, we explore recent work devoted to unraveling the complex interplay between genes and environment in the development of anxiety. We review studies focusing on the genetic vulnerability to develop social anxiety disorder (SAD), as SAD is one of the most prevalent anxiety disorders, with an early onset, a chronic course, and associated with significant life-long impairments. More insight into the development of SAD is thus of uttermost importance.First, we will discuss family studies, twin studies, and large-sized population-based registry studies and explain what these studies can reveal about the genetic vulnerability to develop anxiety. Next, we describe the endophenotype approach; in this context, we will summarize results from the Leiden Family Lab study on Social Anxiety Disorder. Subsequently, we review the relationship between the heritable trait 'behavioral inhibition' and the development of SAD, and highlight the relevance of this work for the development and improvement of preventative and therapeutic interventions for socially anxious youth.
Collapse
Affiliation(s)
- Janna Marie Bas-Hoogendam
- Leiden University, Leiden, The Netherlands.
- Leiden University Medical Center, Leiden, The Netherlands.
- Leiden Institute for Brain and Cognition, Leiden, The Netherlands.
| |
Collapse
|
3
|
Zhang X, Wu B, Yang X, Kemp GJ, Wang S, Gong Q. Abnormal large-scale brain functional network dynamics in social anxiety disorder. CNS Neurosci Ther 2024; 30:e14904. [PMID: 39107947 PMCID: PMC11303268 DOI: 10.1111/cns.14904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/02/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
AIMS Although static abnormalities of functional brain networks have been observed in patients with social anxiety disorder (SAD), the brain connectome dynamics at the macroscale network level remain obscure. We therefore used a multivariate data-driven method to search for dynamic functional network connectivity (dFNC) alterations in SAD. METHODS We conducted spatial independent component analysis, and used a sliding-window approach with a k-means clustering algorithm, to characterize the recurring states of brain resting-state networks; then state transition metrics and FNC strength in the different states were compared between SAD patients and healthy controls (HC), and the relationship to SAD clinical characteristics was explored. RESULTS Four distinct recurring states were identified. Compared with HC, SAD patients demonstrated higher fractional windows and mean dwelling time in the highest-frequency State 3, representing "widely weaker" FNC, but lower in States 2 and 4, representing "locally stronger" and "widely stronger" FNC, respectively. In State 1, representing "widely moderate" FNC, SAD patients showed decreased FNC mainly between the default mode network and the attention and perceptual networks. Some aberrant dFNC signatures correlated with illness duration. CONCLUSION These aberrant patterns of brain functional synchronization dynamics among large-scale resting-state networks may provide new insights into the neuro-functional underpinnings of SAD.
Collapse
Affiliation(s)
- Xun Zhang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China HospitalSichuan UniversityChengduChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
| | - Baolin Wu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China HospitalSichuan UniversityChengduChina
| | - Xun Yang
- School of Public AffairsChongqing UniversityChongqingChina
| | - Graham J. Kemp
- Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Life Course and Medical SciencesUniversity of LiverpoolLiverpoolUK
| | - Song Wang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China HospitalSichuan UniversityChengduChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
| | - Qiyong Gong
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China HospitalSichuan UniversityChengduChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
- Department of RadiologyWest China Xiamen Hospital of Sichuan UniversityXiamenChina
| |
Collapse
|
4
|
Deng X, Chen X, Wang J. The paradox of social avoidance and the yearning for understanding: Elevated interbrain synchrony among socially avoidant individuals during expression of negative emotions. Int J Clin Health Psychol 2024; 24:100500. [PMID: 39282223 PMCID: PMC11402401 DOI: 10.1016/j.ijchp.2024.100500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/21/2024] [Indexed: 09/18/2024] Open
Abstract
Social avoidance refers to the tendency to be alone and non-participating to social interactions, which is considered to hamper health interpersonal relationship. However, the neural underpinnings of social and emotional interactions among social avoidant individuals have not been fully studied. In the present study, we used EEG hyperscanning technology to investigate the brain activity and its synchronization of 25 socially avoidant dyads and 28 comparison dyads during an emotional communication task. The emotional communication task consisted of the emotional processing stage and emotional interaction stage. Event-related potentials (ERPs) of the senders during the emotional processing stage and the interbrain synchrony (IBS) of the dyads during the emotional interaction stage were analyzed. Results showed that (1) socially avoidant group showed higher beta, theta and gamma IBS in the negative condition than in the positive and neutral condition; (2) in positive condition, the N1 and LPP amplitudes during the emotional processing stage of socially avoidant individuals were negatively correlated with the IBS within dyads during the emotional communication stage. The findings suggest that the dysfunctional emotional interaction of social avoidant individuals may be attributed to the negative impact of emotional stimuli processing during emotional communication.
Collapse
Affiliation(s)
- Xinmei Deng
- School of Psychology, Shenzhen University, Shenzhen, China
- The Shenzhen Humanities & Social Sciences Key Research Bases of the Center for Mental Health, Shenzhen University, Shenzhen, China
| | - Xiaomin Chen
- Baolong School, Longgang, Shenzhen, Guangdong Province, China
| | - Jiao Wang
- School of Psychology, Shenzhen University, Shenzhen, China
- The Shenzhen Humanities & Social Sciences Key Research Bases of the Center for Mental Health, Shenzhen University, Shenzhen, China
| |
Collapse
|
5
|
Liu J, Xie S, Hu Y, Ding Y, Zhang X, Liu W, Zhang L, Ma C, Kang Y, Jin S, Xia Y, Hu Z, Liu Z, Cheng W, Yang Z. Age-dependent alterations in the coordinated development of subcortical regions in adolescents with social anxiety disorder. Eur Child Adolesc Psychiatry 2024; 33:51-64. [PMID: 36542201 DOI: 10.1007/s00787-022-02118-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022]
Abstract
Subcortical brain regions play essential roles in the pathology of social anxiety disorder (SAD). While adolescence is the peak period of SAD, the relationships between altered development of the subcortical regions during this period and SAD are still unclear. This study investigated the age-dependent alterations in structural co-variance among subcortical regions and between subcortical and cortical regions, aiming to reflect aberrant coordination during development in the adolescent with SAD. High-resolution T1-weighted images were obtained from 76 adolescents with SAD and 67 healthy controls (HC), ranging from 11 to 17.9 years. Symptom severity was evaluated with the Social Anxiety Scale for Children (SASC) and the Depression Self Rating Scale for Children (DSRS-C). Structural co-variance and sliding age-window analyses were used to detect age-dependent group differences in inter-regional coordination patterns among subcortical regions and between subcortical and cortical regions. The volume of the striatum significantly correlated with SAD symptom severity. The SAD group exhibited significantly enhanced structural co-variance among key regions of the striatum (putamen and caudate). While the co-variance decreased with age in healthy adolescents, the co-variance in SAD adolescents stayed high, leading to more apparent group differences in middle adolescence. Moreover, the striatum's mean structural co-variance with cortical regions decreased with age in HC but increased with age in SAD. Adolescents with SAD suffer aberrant developmental coordination among the key regions of the striatum and between the striatum and cortical regions. The degree of incoordination is age-dependent, which may represent a neurodevelopmental trait of SAD.
Collapse
Affiliation(s)
- Jingjing Liu
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, No. 600 South Wanping Road, Shanghai, 200013, China
| | - Shuqi Xie
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, No. 600 South Wanping Road, Shanghai, 200013, China
| | - Yang Hu
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, No. 600 South Wanping Road, Shanghai, 200013, China
| | - Yue Ding
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, No. 600 South Wanping Road, Shanghai, 200013, China
| | - Xiaochen Zhang
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, No. 600 South Wanping Road, Shanghai, 200013, China
| | - Wenjing Liu
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, No. 600 South Wanping Road, Shanghai, 200013, China
| | - Lei Zhang
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, No. 600 South Wanping Road, Shanghai, 200013, China
| | - Changminghao Ma
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, No. 600 South Wanping Road, Shanghai, 200013, China
| | - Yinzhi Kang
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, No. 600 South Wanping Road, Shanghai, 200013, China
| | - Shuyu Jin
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, No. 600 South Wanping Road, Shanghai, 200013, China
| | - Yufeng Xia
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, No. 600 South Wanping Road, Shanghai, 200013, China
| | - Zhishan Hu
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, No. 600 South Wanping Road, Shanghai, 200013, China
| | - Zhen Liu
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, No. 600 South Wanping Road, Shanghai, 200013, China
| | - Wenhong Cheng
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, No. 600 South Wanping Road, Shanghai, 200013, China.
| | - Zhi Yang
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, No. 600 South Wanping Road, Shanghai, 200013, China.
- Institute of Psychological and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, China.
- Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
6
|
Li Q, Zhang X, Yang X, Pan N, He M, Suo X, Li X, Gong Q, Wang S. Pre-COVID resting-state brain activity in the fusiform gyrus prospectively predicts social anxiety alterations during the pandemic. J Affect Disord 2024; 344:380-388. [PMID: 37838273 DOI: 10.1016/j.jad.2023.10.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/24/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Abstract
BACKGROUND Social anxiety (SA) has been linked to the coronavirus disease 2019 (COVID-19) pandemic, but the neurobiopsychological mechanisms underlying this relationship remain unclear. This study aimed to elucidate the neurofunctional markers for COVID-induced SA development and the potential role of COVID-related posttraumatic stress symptoms (PTSS) in the brain-SA alterations link. METHODS Before the COVID-19 pandemic (T1), 100 general college students underwent resting-state magnetic resonance imaging and behavioral tests. During the period of community-level outbreaks (T2), these students were re-contacted to undergo follow-up behavioral assessments. RESULTS Whole-brain correlation and prediction analyses found that pre-pandemic spontaneous neural activity (measured by fractional amplitude of low-frequency fluctuations) in the right fusiform gyrus (FG) was positively correlated to SA alterations (T2 - T1). Mediation analyses revealed that COVID-specific PTSS mediated the effects of right FG on SA alterations. LIMITATIONS The results should be interpreted carefully because only one-session neuroimaging data in a sample of normal adults were included. CONCLUSIONS The results provide evidence for neurofunctional markers of COVID-induced SA and may help develop targeted brain-based interventions that reduce SA.
Collapse
Affiliation(s)
- Qingyuan Li
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China; Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xun Zhang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Xun Yang
- School of Public Affairs, Chongqing University, Chongqing, China
| | - Nanfang Pan
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Min He
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Xueling Suo
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Xiao Li
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiyong Gong
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China; Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, China.
| | - Song Wang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China.
| |
Collapse
|
7
|
Li Q, Zhang X, Yang X, Pan N, Li X, Kemp GJ, Wang S, Gong Q. Pre-COVID brain network topology prospectively predicts social anxiety alterations during the COVID-19 pandemic. Neurobiol Stress 2023; 27:100578. [PMID: 37842018 PMCID: PMC10570707 DOI: 10.1016/j.ynstr.2023.100578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/12/2023] [Accepted: 09/30/2023] [Indexed: 10/17/2023] Open
Abstract
Background Social anxiety (SA) is a negative emotional response that can lead to mental health issues, which some have experienced during the coronavirus disease 2019 (COVID-19) pandemic. Little attention has been given to the neurobiological mechanisms underlying inter-individual differences in SA alterations related to COVID-19. This study aims to identify neurofunctional markers of COVID-specific SA development. Methods 110 healthy participants underwent resting-state magnetic resonance imaging and behavioral tests before the pandemic (T1, October 2019 to January 2020) and completed follow-up behavioral measurements during the pandemic (T2, February to May 2020). We constructed individual functional networks and used graph theoretical analysis to estimate their global and nodal topological properties, then used Pearson correlation and partial least squares correlations examine their associations with COVID-specific SA alterations. Results In terms of global network parameters, SA alterations (T2-T1) were negatively related to pre-pandemic brain small-worldness and normalized clustering coefficient. In terms of nodal network parameters, SA alterations were positively linked to a pronounced degree centrality pattern, encompassing both the high-level cognitive networks (dorsal attention network, cingulo-opercular task control network, default mode network, memory retrieval network, fronto-parietal task control network, and subcortical network) and low-level perceptual networks (sensory/somatomotor network, auditory network, and visual network). These findings were robust after controlling for pre-pandemic general anxiety, other stressful life events, and family socioeconomic status, as well as by treating SA alterations as categorical variables. Conclusions The individual functional network associated with SA alterations showed a disrupted topological organization with a more random state, which may shed light on the neurobiological basis of COVID-related SA changes at the network level.
Collapse
Affiliation(s)
- Qingyuan Li
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Xun Zhang
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Xun Yang
- School of Public Affairs, Chongqing University, Chongqing, 400044, China
| | - Nanfang Pan
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Xiao Li
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Graham J. Kemp
- Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L69 3BX, UK
| | - Song Wang
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Qiyong Gong
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, 361000, China
| |
Collapse
|
8
|
Zhang X, Yang X, Wu B, Pan N, He M, Wang S, Kemp GJ, Gong Q. Large-scale brain functional network abnormalities in social anxiety disorder. Psychol Med 2023; 53:6194-6204. [PMID: 36330833 PMCID: PMC10520603 DOI: 10.1017/s0033291722003439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/06/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Although aberrant brain regional responses are reported in social anxiety disorder (SAD), little is known about resting-state functional connectivity at the macroscale network level. This study aims to identify functional network abnormalities using a multivariate data-driven method in a relatively large and homogenous sample of SAD patients, and assess their potential diagnostic value. METHODS Forty-six SAD patients and 52 demographically-matched healthy controls (HC) were recruited to undergo clinical evaluation and resting-state functional MRI scanning. We used group independent component analysis to characterize the functional architecture of brain resting-state networks (RSNs) and investigate between-group differences in intra-/inter-network functional network connectivity (FNC). Furtherly, we explored the associations of FNC abnormalities with clinical characteristics, and assessed their ability to discriminate SAD from HC using support vector machine analyses. RESULTS SAD patients showed widespread intra-network FNC abnormalities in the default mode network, the subcortical network and the perceptual system (i.e. sensorimotor, auditory and visual networks), and large-scale inter-network FNC abnormalities among those high-order and primary RSNs. Some aberrant FNC signatures were correlated to disease severity and duration, suggesting pathophysiological relevance. Furthermore, intrinsic FNC anomalies allowed individual classification of SAD v. HC with significant accuracy, indicating potential diagnostic efficacy. CONCLUSIONS SAD patients show distinct patterns of functional synchronization abnormalities both within and across large-scale RSNs, reflecting or causing a network imbalance of bottom-up response and top-down regulation in cognitive, emotional and sensory domains. Therefore, this could offer insights into the neurofunctional substrates of SAD.
Collapse
Affiliation(s)
- Xun Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan 610041, China
| | - Xun Yang
- School of Public Affairs, Chongqing University, Chongqing 400044, China
| | - Baolin Wu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan 610041, China
| | - Nanfang Pan
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan 610041, China
| | - Min He
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan 610041, China
| | - Song Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan 610041, China
| | - Graham J. Kemp
- Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian 361000, China
| |
Collapse
|
9
|
Zrenner B, Zrenner C, Balderston N, Blumberger DM, Kloiber S, Laposa JM, Tadayonnejad R, Trevizol AP, Zai G, Feusner JD. Toward personalized circuit-based closed-loop brain-interventions in psychiatry: using symptom provocation to extract EEG-markers of brain circuit activity. Front Neural Circuits 2023; 17:1208930. [PMID: 37671039 PMCID: PMC10475600 DOI: 10.3389/fncir.2023.1208930] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/31/2023] [Indexed: 09/07/2023] Open
Abstract
Symptom provocation is a well-established component of psychiatric research and therapy. It is hypothesized that specific activation of those brain circuits involved in the symptomatic expression of a brain pathology makes the relevant neural substrate accessible as a target for therapeutic interventions. For example, in the treatment of obsessive-compulsive disorder (OCD), symptom provocation is an important part of psychotherapy and is also performed prior to therapeutic brain stimulation with transcranial magnetic stimulation (TMS). Here, we discuss the potential of symptom provocation to isolate neurophysiological biomarkers reflecting the fluctuating activity of relevant brain networks with the goal of subsequently using these markers as targets to guide therapy. We put forward a general experimental framework based on the rapid switching between psychiatric symptom states. This enable neurophysiological measures to be derived from EEG and/or TMS-evoked EEG measures of brain activity during both states. By subtracting the data recorded during the baseline state from that recorded during the provoked state, the resulting contrast would ideally isolate the specific neural circuits differentially activated during the expression of symptoms. A similar approach enables the design of effective classifiers of brain activity from EEG data in Brain-Computer Interfaces (BCI). To obtain reliable contrast data, psychiatric state switching needs to be achieved multiple times during a continuous recording so that slow changes of brain activity affect both conditions equally. This is achieved easily for conditions that can be controlled intentionally, such as motor imagery, attention, or memory retention. With regard to psychiatric symptoms, an increase can often be provoked effectively relatively easily, however, it can be difficult to reliably and rapidly return to a baseline state. Here, we review different approaches to return from a provoked state to a baseline state and how these may be applied to different symptoms occurring in different psychiatric disorders.
Collapse
Affiliation(s)
- Brigitte Zrenner
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
- University Psychiatry Hospital, University of Tübingen, Tübingen, Germany
| | - Christoph Zrenner
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute for Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- University Neurology Hospital, University of Tübingen, Tübingen, Germany
| | - Nicholas Balderston
- Center for Neuromodulation in Depression and Stress (CNDS), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Daniel M. Blumberger
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Stefan Kloiber
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Judith M. Laposa
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Reza Tadayonnejad
- TMS Clinical and Research Service, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
- Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, United States
| | - Alisson Paulino Trevizol
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Gwyneth Zai
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Jamie D. Feusner
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
- Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, United States
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
10
|
Folyi T, Rohr M, Wentura D. When emotions cannot be efficiently used to guide attention: Flexible, goal-relevant utilization of facial emotions is hindered by social anxiety. Behav Res Ther 2023; 162:104254. [PMID: 36708619 DOI: 10.1016/j.brat.2023.104254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 10/08/2022] [Accepted: 01/11/2023] [Indexed: 01/13/2023]
Abstract
In order to achieve optimal outcomes in diverse situations, emotional information can be used to initiate novel, goal-directed processes that are not inherently related to the emotional meaning. Demonstrating this goal-dependent flexibility, in a recent study, we presented facial emotions as informative spatial cues: Participants could direct their attention to the probable target location based on the expressed emotion with a remarkable efficiency (Folyi, Rohr, & Wentura, 2020). However, as inherent motivational aspects of threat-related facial expressions can be particularly salient to socially anxious individuals (e.g., Staugaard, 2010), they might not be able to use this information flexibly in the pursuit of a context-specific goal. The present study tested this assumption in an endogenous cueing task with anger and fear expressions as informative central cues. Indeed, in Experiment 1 (N = 174), higher social anxiety was associated with reduced cueing at a 600 ms cue-target asynchrony, and this deficit was specific to social as opposed to general anxiety. Furthermore, this effect occurred only when faces were presented upright (Experiment 1), and not under inverted presentation (Experiment 2, N = 90), ruling out a general deficit in attentional control. The results suggest that flexible utilization of threat-related emotional information is sensitive to participants' social anxiety, suggesting an imbalance between using emotional information in the pursuit of a context-dependent goal on the one hand, and processes intrinsically related to the emotional meaning on the other.
Collapse
Affiliation(s)
- Timea Folyi
- Department of Psychology, Saarland University, Germany.
| | - Michaela Rohr
- Department of Psychology, Saarland University, Germany
| | - Dirk Wentura
- Department of Psychology, Saarland University, Germany
| |
Collapse
|
11
|
Nyborg G, Mjelve LH, Arnesen A, Crozier WR, Bjørnebekk G, Coplan RJ. Teachers’ strategies for managing shy students’ anxiety at school. NORDIC PSYCHOLOGY 2022. [DOI: 10.1080/19012276.2022.2058072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | | | - Anne Arnesen
- Norwegian Center for Child Behavioral Development, Oslo, Norway
| | | | - Gunnar Bjørnebekk
- University of Oslo, Oslo, Norway
- Norwegian Center for Child Behavioral Development, Oslo, Norway
| | | |
Collapse
|
12
|
Frontal EEG alpha-delta ratio and social anxiety across early adolescence. Int J Psychophysiol 2022; 175:1-7. [DOI: 10.1016/j.ijpsycho.2021.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 11/18/2022]
|
13
|
Wang S, Zhao Y, Wang X, Yang X, Cheng B, Pan N, Suo X, Gong Q. Emotional intelligence mediates the association between middle temporal gyrus gray matter volume and social anxiety in late adolescence. Eur Child Adolesc Psychiatry 2021; 30:1857-1869. [PMID: 33011842 DOI: 10.1007/s00787-020-01651-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 09/18/2020] [Indexed: 12/17/2022]
Abstract
As a common mental health problem, social anxiety refers to the fear and avoidance of interacting in social or performance situations, which plays a crucial role in many health and social problems. Although a growing body of studies has explored the neuroanatomical alterations related to social anxiety in clinical patients, far fewer have examined the association between social anxiety and brain morphology in the general population, which may help us understand the neural underpinnings of social anxiety more comprehensively. Here, utilizing a voxel-based morphometry approach via structural magnetic resonance imaging, we investigated brain gray matter correlates of social anxiety in 231 recent graduates of the same high school grade. We found that social anxiety was positively associated with gray matter volume in the right middle temporal gyrus (MTG), which is a core brain area for cognitive processing of emotions and feelings. Critically, emotional intelligence mediated the impact of right MTG volume on social anxiety. Notably, our results persisted even when controlling for the effects of general anxiety and depression. Altogether, our research reveals right MTG gray matter volume as a neurostructural correlate of social anxiety in a general sample of adolescents and suggests a potential indirect effect of emotional intelligence on the association between gray matter volume and social anxiety.
Collapse
Affiliation(s)
- Song Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.,Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China.,Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Yajun Zhao
- School of Education and Psychology, Southwest Minzu University, Chengdu, China
| | - Xiuli Wang
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Xun Yang
- School of Public Affairs, Chongqing University, Chongqing, China
| | - Bochao Cheng
- Department of Radiology, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Nanfang Pan
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.,Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Xueling Suo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.,Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China. .,Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China. .,Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
14
|
Liu Z, Hu Y, Zhang Y, Liu W, Zhang L, Wang Y, Yang H, Wu J, Cheng W, Yang Z. Altered gray matter volume and structural co-variance in adolescents with social anxiety disorder: evidence for a delayed and unsynchronized development of the fronto-limbic system. Psychol Med 2021; 51:1742-1751. [PMID: 32178746 DOI: 10.1017/s0033291720000495] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Social anxiety disorder (SAD) is a prevalent mental disorder diagnosed in childhood and adolescence. Theories regarding brain development and SAD suggest a close link between neurodevelopmental dysfunction at the adolescent juncture and SAD, but direct evidence is rare. This study aims to examine brain structural abnormalities in adolescents with SAD. METHODS High-resolution T1-weighted images were obtained from 31 adolescents with SAD (15-17 years) and 42 matching healthy controls (HC). We evaluated symptom severity with the Social Anxiety Scale for Children (SASC) and the Screen for Child Anxiety Related Emotional Disorders (SCARED). We used voxel-based morphometry analysis to detect regional gray matter volume abnormalities and structural co-variance analysis to investigate inter-regional coordination patterns. RESULTS We found significantly higher gray matter volume in the orbitofrontal cortex (OFC) and the insula in adolescents with SAD compared to HC. We also observed significant co-variance of the gray matter volume between the OFC and amygdala, and the OFC and insula in HC, but these co-variance relationships diminished in SAD. CONCLUSIONS These findings provide the first evidence that the brain structural deficits in adolescents with SAD are not only in the core regions of the fronto-limbic system, but also represented by the diminished coordination in the development of these regions. The delayed and unsynchronized development pattern of the fronto-limbic system supports SAD as an adolescent-sensitive developmental mental disorder.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Hu
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwen Zhang
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjing Liu
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Zhang
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunyi Wang
- Department of Psychological Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hanshu Yang
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingyi Wu
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenhong Cheng
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Psychological Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi Yang
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Psychological and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, China
- Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
15
|
Anaya B, Vallorani AM, Pérez‐Edgar K. Individual dynamics of delta-beta coupling: using a multilevel framework to examine inter- and intraindividual differences in relation to social anxiety and behavioral inhibition. J Child Psychol Psychiatry 2021; 62:771-779. [PMID: 32936944 PMCID: PMC7960561 DOI: 10.1111/jcpp.13319] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/22/2020] [Accepted: 07/31/2020] [Indexed: 01/16/2023]
Abstract
BACKGROUND Variation in EEG-derived delta-beta coupling has recently emerged as a potential neural marker of emotion regulation, providing a novel and noninvasive method for assessing a risk factor for anxiety. However, our understanding of delta-beta coupling has been limited to group-level comparisons, which provide limited information about an individual's neural dynamics. METHODS The present study used multilevel modeling to map second-by-second coupling patterns between delta and beta power. Specifically, we examined how inter- and intraindividual delta-beta coupling patterns changed as a function of social anxiety symptoms and temperamental behavioral inhibition (BI). RESULTS We found that stronger inter- and intraindividual delta-beta coupling were both associated with social anxiety. In contrast, the high-BI group showed weaker coupling relative to the non-BI group, a pattern that did not emerge when analyzing continuous scores of BI. CONCLUSIONS In characterizing inter- and intraindividual coupling across the sample, we illustrate the utility of examining neural processes across levels of analysis in relation to psychopathology to create multilevel assessments of functioning and risk.
Collapse
Affiliation(s)
- Berenice Anaya
- Department of Psychology The Pennsylvania State University University Park PA USA
| | - Alicia M. Vallorani
- Department of Psychology The Pennsylvania State University University Park PA USA
| | - Koraly Pérez‐Edgar
- Department of Psychology The Pennsylvania State University University Park PA USA
| |
Collapse
|
16
|
Masi G, Berloffa S, Milone A, Brovedani P. Social withdrawal and gender differences: Clinical phenotypes and biological bases. J Neurosci Res 2021; 101:751-763. [PMID: 33550643 DOI: 10.1002/jnr.24802] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 01/17/2021] [Indexed: 12/19/2022]
Abstract
Evidence from everyday life suggests that differences in social behaviors between males and females exist, both in animal and in humans. These differences can be related to socio-cultural determinants, but also to specialized portions of the brain (the social brain), from the neurotransmitter to the neural network level. The high vulnerability of this system is expressed by the wide range of neuropsychiatric disorders associated with social dysfunctions, particularly social withdrawal. The principal psychiatric disorders with prominent social withdrawal are described, including hikikomori-like syndromes, and anxiety, depressive, autistic, schizophrenic, and personality disorders. It is hypothesized that social withdrawal can be partially independent from other symptoms and likely reflect alterations in the social brain itself, leading to a similar, transdiagnostic social dysfunction, reflecting defects in the social brain across a variety of psychopathological conditions. An overview is provided of gender effects in the biological determinants of social behavior, including: the anatomical structures of the social brain; the dimorphic brain structures, and the modulation of their development by sex steroids; gender differences in "social" neurotransmitters (vasopressin and oxytocin), and in their response to social stress. A better comprehension of gender differences in the phenotypes of social disorders and in the neural bases of social behaviors may provide new insights for timely, focused, innovative, and gender-specific treatments.
Collapse
Affiliation(s)
- Gabriele Masi
- IRCCS Stella Maris, Scientific Institute of Child Neurology and Psychiatry, Calambrone, Pisa, Italy
| | - Stefano Berloffa
- IRCCS Stella Maris, Scientific Institute of Child Neurology and Psychiatry, Calambrone, Pisa, Italy
| | - Annarita Milone
- IRCCS Stella Maris, Scientific Institute of Child Neurology and Psychiatry, Calambrone, Pisa, Italy
| | - Paola Brovedani
- IRCCS Stella Maris, Scientific Institute of Child Neurology and Psychiatry, Calambrone, Pisa, Italy
| |
Collapse
|
17
|
Beer JC, Smith AR, Jarcho JM, Chen G, Reynolds RC, Pine DS, Nelson EE. Anxiously elaborating the social percept: Anxiety and age differences in functional connectivity of the fusiform face area in a peer evaluation paradigm. AUSTRALIAN JOURNAL OF PSYCHOLOGY 2020. [DOI: 10.1111/ajpy.12130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Joanne C. Beer
- Section on Development and Affective Neuroscience, National Institute of Mental Health, Bethesda, MD, USA,
| | - Ashley R. Smith
- Section on Development and Affective Neuroscience, National Institute of Mental Health, Bethesda, MD, USA,
| | - Johanna M. Jarcho
- Section on Development and Affective Neuroscience, National Institute of Mental Health, Bethesda, MD, USA,
| | - Gang Chen
- Scientific and Statistical Computing Core, National Institute of Mental Health, Bethesda, MD, USA,
| | - Richard C. Reynolds
- Scientific and Statistical Computing Core, National Institute of Mental Health, Bethesda, MD, USA,
| | - Daniel S. Pine
- Section on Development and Affective Neuroscience, National Institute of Mental Health, Bethesda, MD, USA,
| | - Eric E. Nelson
- Section on Development and Affective Neuroscience, National Institute of Mental Health, Bethesda, MD, USA,
| |
Collapse
|
18
|
Transacting brains: testing an actor-partner model of frontal EEG activity in mother-infant dyads. Dev Psychopathol 2020; 34:969-980. [PMID: 33107421 DOI: 10.1017/s0954579420001558] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Studies have long observed the bidirectional nature of mother-infant relationships. While behavioral studies have shown that mothers high in social avoidance tendencies can influence the development of these traits in their offspring, the neurophysiological mechanisms underlying this phenomenon, and the role that the infants play, are not well understood. Here we acquired frontal electroencephalogram asymmetry (FA) data simultaneously in 40 mother-infant dyads (Mage mother = 31.6 years; Mage infant = 9 months). Using an actor-partner interdependence model, we examined whether mother (or infant) resting-state FA predicted infant (or mother) FA during two subsequent emotion-eliciting conditions (happy and fear). Maternal social approach versus avoidance traits were assessed as moderators to examine the impact of maternal characteristics on these mother-infant FA relations. In dyads led by mothers with high social avoidance/low social approach characteristics, maternal resting-state FA predicted infant FA during both emotion-eliciting conditions. We did not observe any effects of infant FA on mothers. Therefore, we speculate that individual differences in FA patterns might be a putative brain mechanism through which socially avoidant mothers transfer affective/behavioral information to their infants.
Collapse
|
19
|
Crawford B, Muhlert N, MacDonald G, Lawrence AD. Brain structure correlates of expected social threat and reward. Sci Rep 2020; 10:18010. [PMID: 33093488 PMCID: PMC7582181 DOI: 10.1038/s41598-020-74334-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 09/24/2020] [Indexed: 12/19/2022] Open
Abstract
Prospection (mentally simulating future events) generates emotionally-charged mental images that guide social decision-making. Positive and negative social expectancies-imagining new social interactions to be rewarding versus threatening-are core components of social approach and avoidance motivation, respectively. Interindividual differences in such positive and negative future-related cognitions may be underpinned by distinct neuroanatomical substrates. Here, we asked 100 healthy adults to vividly imagine themselves in a novel self-relevant event that was ambiguous with regards to possible social acceptance or rejection. During this task we measured participants' expectancies for social reward (anticipated feelings of social connection) or threat (anticipated feelings of rejection). On a separate day they underwent structural MRI; voxel-based morphometry was used to explore the relation between social reward and threat expectancies and regional grey matter volumes (rGMV). Increased rGMV in key default-network regions involved in prospection, socio-emotional cognition, and subjective valuation, including ventromedial prefrontal cortex, correlated with both higher social reward and lower social threat expectancies. In contrast, social threat expectancies uniquely correlated with rGMV of regions involved in social attention (posterior superior temporal sulcus, pSTS) and interoception (somatosensory cortex). These findings provide novel insight into the neurobiology of future-oriented cognitive-affective processes critical to adaptive social functioning.
Collapse
Affiliation(s)
- Bonni Crawford
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK.
| | - Nils Muhlert
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
| | - Geoff MacDonald
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Andrew D Lawrence
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK
| |
Collapse
|
20
|
Zhang X, Luo Q, Wang S, Qiu L, Pan N, Kuang W, Lui S, Huang X, Yang X, Kemp GJ, Gong Q. Dissociations in cortical thickness and surface area in non-comorbid never-treated patients with social anxiety disorder. EBioMedicine 2020; 58:102910. [PMID: 32739867 PMCID: PMC7393569 DOI: 10.1016/j.ebiom.2020.102910] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/30/2020] [Accepted: 07/10/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Abnormalities of functional activation and cortical volume in brain regions involved in the neurobiology of fear and anxiety have been implicated in the pathophysiology of social anxiety disorder (SAD). However, few studies have performed separate measurements of cortical thickness (CT) and cortical surface area (CSA) which reflect different neurobiological processes. Thus, we aimed to explore the cortical morphological anomaly separately in SAD using FreeSurfer. METHODS High-resolution structural magnetic resonance images were obtained from 32 non-comorbid never-treated adult SAD patients and 32 demography-matched healthy controls. Cortical morphometry indices including CT and CSA were separately determined by FreeSurfer and compared between the two groups via whole-brain vertex-wise analysis, while partial correlation analysis using age and gender as covariates were conducted. FINDINGS The patients with SAD showed decreased CT but increased CSA near-symmetrically in the bilateral prefrontal cortex (PFC) of the dorsolateral, dorsomedial, and ventromedial subdivisions, as well as the right lateral orbitofrontal cortex; increased CSA in the left superior temporal gyrus (STG) was also observed in SAD. The CSA in the left PFC was negatively correlated with the disease duration. INTERPRETATION As the balloon model hypothesis suggests that the tangentially stretched cortex may cause dissociations in cortical morphometry and affect the cortical capacity for information processing, our findings of dissociated morphological alterations in the PFC and cortical expansion in the STG may reflect the morphological alterations of the functional reorganization in those regions, and highlight the important role of those structures in the pathophysiology and neurobiology of SAD. FUNDING This study was funded by the National Natural Science Foundation of China (Grant Nos. 31700964, 31800963, 81621003, and 81820108018).
Collapse
Affiliation(s)
- Xun Zhang
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Psychoradiology Research Unit of Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu 610041, China
| | - Qiang Luo
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Psychoradiology Research Unit of Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu 610041, China
| | - Song Wang
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Psychoradiology Research Unit of Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu 610041, China
| | - Lihua Qiu
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Psychoradiology Research Unit of Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu 610041, China; Department of Radiology, The Second People's Hospital of Yibin, Yibin 644000, China
| | - Nanfang Pan
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Psychoradiology Research Unit of Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu 610041, China
| | - Weihong Kuang
- Department of Psychiatry, State Key Lab of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, PR, China
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Psychoradiology Research Unit of Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xiaoqi Huang
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Psychoradiology Research Unit of Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xun Yang
- School of Public Affairs, Chongqing University, Chongqing 400044, China.
| | - Graham J Kemp
- Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Psychoradiology Research Unit of Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu 610041, China; Department of Psychology, School of Public Administration, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
21
|
Smith R, Steklis HD, Steklis NG, Weihs KL, Lane RD. The evolution and development of the uniquely human capacity for emotional awareness: A synthesis of comparative anatomical, cognitive, neurocomputational, and evolutionary psychological perspectives. Biol Psychol 2020; 154:107925. [DOI: 10.1016/j.biopsycho.2020.107925] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/17/2020] [Accepted: 06/23/2020] [Indexed: 01/09/2023]
|
22
|
Al-Ezzi A, Kamel N, Faye I, Gunaseli E. Review of EEG, ERP, and Brain Connectivity Estimators as Predictive Biomarkers of Social Anxiety Disorder. Front Psychol 2020; 11:730. [PMID: 32508695 PMCID: PMC7248208 DOI: 10.3389/fpsyg.2020.00730] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/25/2020] [Indexed: 12/13/2022] Open
Abstract
Social anxiety disorder (SAD) is characterized by a fear of negative evaluation, negative self-belief and extreme avoidance of social situations. These recurrent symptoms are thought to maintain the severity and substantial impairment in social and cognitive thoughts. SAD is associated with a disruption in neuronal networks implicated in emotional regulation, perceptual stimulus functions, and emotion processing, suggesting a network system to delineate the electrocortical endophenotypes of SAD. This paper seeks to provide a comprehensive review of the most frequently studied electroencephalographic (EEG) spectral coupling, event-related potential (ERP), visual-event potential (VEP), and other connectivity estimators in social anxiety during rest, anticipation, stimulus processing, and recovery states. A search on Web of Science provided 97 studies that document electrocortical biomarkers and relevant constructs pertaining to individuals with SAD. This study aims to identify SAD neuronal biomarkers and provide insight into the differences in these biomarkers based on EEG, ERPs, VEP, and brain connectivity networks in SAD patients and healthy controls (HC). Furthermore, we proposed recommendations to improve methods of delineating the electrocortical endophenotypes of SAD, e.g., a fusion of EEG with other modalities such as functional magnetic resonance imaging (fMRI) and magnetoencephalograms (MEG), to realize better effectiveness than EEG alone, in order to ultimately evolve the treatment selection process, and to review the possibility of using electrocortical measures in the early diagnosis and endophenotype examination of SAD.
Collapse
Affiliation(s)
- Abdulhakim Al-Ezzi
- Centre for Intelligent Signal and Imaging Research, Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
| | - Nidal Kamel
- Centre for Intelligent Signal and Imaging Research, Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
| | - Ibrahima Faye
- Centre for Intelligent Signal and Imaging Research, Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
| | - Esther Gunaseli
- Psychiatry Discipline Sub Unit, Universiti Kuala Lumpur, Ipoh, Malaysia
| |
Collapse
|
23
|
Bas-Hoogendam JM, van Steenbergen H, van der Wee NJA, Westenberg PM. Amygdala hyperreactivity to faces conditioned with a social-evaluative meaning- a multiplex, multigenerational fMRI study on social anxiety endophenotypes. NEUROIMAGE-CLINICAL 2020; 26:102247. [PMID: 32247196 PMCID: PMC7125356 DOI: 10.1016/j.nicl.2020.102247] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 03/12/2020] [Accepted: 03/14/2020] [Indexed: 12/31/2022]
Abstract
Social anxiety disorder (SAD) runs in families, but the neurobiological pathways underlying the genetic susceptibility towards SAD are largely unknown. Here, we employed an endophenotype approach, and tested the hypothesis that amygdala hyperreactivity to faces conditioned with a social-evaluative meaning is a candidate SAD endophenotype. We used data from the multiplex, multigenerational Leiden Family Lab study on Social Anxiety Disorder (eight families, n = 105) and investigated amygdala activation during a social-evaluative conditioning paradigm with high ecological validity in the context of SAD. Three neutral faces were repeatedly presented in combination with socially negative, positive or neutral sentences. We focused on two endophenotype criteria: co-segregation of the candidate endophenotype with the disorder within families, and heritability. Analyses of the fMRI data were restricted to the amygdala as a region of interest, and association analyses revealed that bilateral amygdala hyperreactivity in response to the conditioned faces co-segregated with social anxiety (SA; continuous measure) within the families; we found, however, no relationship between SA and brain activation in response to more specific fMRI contrasts. Furthermore, brain activation in a small subset of voxels within these amygdala clusters was at least moderately heritable. Taken together, these findings show that amygdala engagement in response to conditioned faces with a social-evaluative meaning qualifies as a neurobiological candidate endophenotype of social anxiety. Thereby, these data shed light on the genetic vulnerability to develop SAD.
Collapse
Affiliation(s)
- Janna Marie Bas-Hoogendam
- Institute of Psychology, Leiden University, Wassenaarseweg 52, 2333 AK Leiden, The Netherlands; Department of Psychiatry, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; Leiden Institute for Brain and Cognition, Leiden, The Netherlands.
| | - Henk van Steenbergen
- Institute of Psychology, Leiden University, Wassenaarseweg 52, 2333 AK Leiden, The Netherlands; Leiden Institute for Brain and Cognition, Leiden, The Netherlands.
| | - Nic J A van der Wee
- Department of Psychiatry, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; Leiden Institute for Brain and Cognition, Leiden, The Netherlands.
| | - P Michiel Westenberg
- Institute of Psychology, Leiden University, Wassenaarseweg 52, 2333 AK Leiden, The Netherlands; Leiden Institute for Brain and Cognition, Leiden, The Netherlands.
| |
Collapse
|
24
|
Jayakar R, Tone EB, Crosson B, Turner JA, Anderson PL, Phan KL, Klumpp H. Amygdala volume and social anxiety symptom severity: Does segmentation technique matter? Psychiatry Res Neuroimaging 2020; 295:111006. [PMID: 31760338 PMCID: PMC6982531 DOI: 10.1016/j.pscychresns.2019.111006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 11/03/2019] [Accepted: 11/04/2019] [Indexed: 12/19/2022]
Abstract
The amygdala factors prominently in neurobiological models of social anxiety (SA), yet amygdala volume findings regarding SA have been inconsistent and largely focused on case-control characterization. One source of discrepant findings could be variability in volumetric techniques. Therefore, we compared amygdala volumes derived via an automated technique (Freesurfer) against a manually corrected approach, also involving Freesurfer. Additionally, we tested whether the relationship between volume and SA symptom severity would differ across volumetric techniques. We pooled participants (n = 76) from archival studies. SA severity was assessed with the Liebowitz Social Anxiety Scale; scores ranged from non-clinical to clinical levels. Freesurfer produced significantly larger amygdalar volumes for participants with poor image quality. Even after excluding such participants, paired sample t-tests showed Freesurfer's boundaries produced significantly larger amygdalar volumes than manually corrected ones, bilaterally. Yet, intra-class correlation coefficients between the two methods were high, which suggests that Freesurfer's over-estimation of amygdala volume was systemic. Regardless of segmentation technique, volumes were not associated with SA symptom severity. Potentially, amygdala sub-regions may yield clearer patterns regarding SA symptoms. Further, our study underscores the importance of image quality for segmentation of the amygdala, and image quality may be particularly valuable when examining anatomical data for subtle inter-individual differences.
Collapse
Affiliation(s)
- Reema Jayakar
- Department of Psychology, Georgia State University, Atlanta, GA 30303, USA.
| | - Erin B Tone
- Department of Psychology, Georgia State University, Atlanta, GA 30303, USA.
| | - Bruce Crosson
- Department of Psychology, Georgia State University, Atlanta, GA 30303, USA; Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA 30033, USA; Department of Neurology, Emory University, Atlanta, GA 30329, USA.
| | - Jessica A Turner
- Department of Psychology, Georgia State University, Atlanta, GA 30303, USA.
| | - Page L Anderson
- Department of Psychology, Georgia State University, Atlanta, GA 30303, USA.
| | - K Luan Phan
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, USA.
| | - Heide Klumpp
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
25
|
Warren SM, Chou YH, Steklis HD. Potential for Resting-State fMRI of the Amygdala in Elucidating Neural Mechanisms of Adaptive Self-Regulatory Strategies: A Systematic Review. Brain Connect 2020; 10:3-17. [PMID: 31950847 DOI: 10.1089/brain.2019.0700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Evolutionary-developmental theories consider the evolved mechanisms underlying adaptive behavioral strategies shaped in response to early environmental cues. Identifying neural mechanisms mediating processes of conditional adaptation in humans is an active area of research. Resting-state functional magnetic resonance imaging (RS-fMRI) captures functional connectivity theorized to represent the underlying functional architecture of the brain. This allows for investigating how underlying functional brain connections are related to early experiences during development, as well as current traits and behaviors. This review explores the potential of RS-fMRI of the amygdala (AMY) for advancing research on the neural mechanisms underlying adaptive strategies developed in early adverse environments. RS-fMRI studies of early life stress (ELS) and AMY functional connectivity within the frame of evolutionary theories are reviewed, specifically regarding the development of self-regulatory strategies. The potential of RS-fMRI for investigating the effects of ELS on developmental trajectories of self-regulation is discussed.
Collapse
Affiliation(s)
- Shannon M Warren
- Norton School of Family & Consumer Sciences, The University of Arizona, Tucson, Arizona
| | - Ying-Hui Chou
- Department of Psychology, Graduate Interdisciplinary Program in Cognitive Science, Arizona Center on Aging, BIO5 Institute, Evelyn F. McKnight Brain Institute, The University of Arizona, Tucson, Arizona
| | - Horst Dieter Steklis
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona
| |
Collapse
|
26
|
Kreifelts B, Ethofer T, Wiegand A, Brück C, Wächter S, Erb M, Lotze M, Wildgruber D. The Neural Correlates of Face-Voice-Integration in Social Anxiety Disorder. Front Psychiatry 2020; 11:657. [PMID: 32765311 PMCID: PMC7381153 DOI: 10.3389/fpsyt.2020.00657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/24/2020] [Indexed: 12/04/2022] Open
Abstract
Faces and voices are very important sources of threat in social anxiety disorder (SAD), a common psychiatric disorder where core elements are fears of social exclusion and negative evaluation. Previous research in social anxiety evidenced increased cerebral responses to negative facial or vocal expressions and also generally increased hemodynamic responses to voices and faces. But it is unclear if also the cerebral process of face-voice-integration is altered in SAD. Applying functional magnetic resonance imaging, we investigated the correlates of the audiovisual integration of dynamic faces and voices in SAD as compared to healthy individuals. In the bilateral midsections of the superior temporal sulcus (STS) increased integration effects in SAD were observed driven by greater activation increases during audiovisual stimulation as compared to auditory stimulation. This effect was accompanied by increased functional connectivity with the visual association cortex and a more anterior position of the individual integration maxima along the STS in SAD. These findings demonstrate that the audiovisual integration of facial and vocal cues in SAD is not only systematically altered with regard to intensity and connectivity but also the individual location of the integration areas within the STS. These combined findings offer a novel perspective on the neuronal representation of social signal processing in individuals suffering from SAD.
Collapse
Affiliation(s)
- Benjamin Kreifelts
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Thomas Ethofer
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany.,Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - Ariane Wiegand
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Carolin Brück
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Sarah Wächter
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Michael Erb
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - Martin Lotze
- Functional Imaging Group, Department for Diagnostic Radiology and Neuroradiology, University of Greifswald, Greifswald, Germany
| | - Dirk Wildgruber
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| |
Collapse
|
27
|
Not intended, still embarrassed: Social anxiety is related to increased levels of embarrassment in response to unintentional social norm violations. Eur Psychiatry 2020; 52:15-21. [DOI: 10.1016/j.eurpsy.2018.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 02/16/2018] [Accepted: 03/07/2018] [Indexed: 12/16/2022] Open
Abstract
AbstractBackground:Social anxiety disorder (SAD) is associated with altered social norm (SN) processing: SAD-patients rate stories on SN violations as more inappropriate and more embarrassing than healthy participants, with the most prominent effect for stories on unintentional SN violations (i.e. committing a blunder). Until now it’s unknown how levels of social anxiety (SA) are related to ratings of SN violations in the general population, in which SA-symptoms are present at a continuum. More insight in this relationship could improve our understanding of the symptom profile of SAD. Therefore, we investigated the relation between ratings of SN violations and SA-levels in the general population.Methods:Adults and adolescents (n = 87) performed the revised Social Norm Processing Task (SNPT-R) and completed self-report questionnaires on social anxiety. Repeated-measures ANCOVAs were used to investigate the effect of SA on the ratings of inappropriateness and embarrassment.Results:As hypothesized, participants with higher SA-levels rated SN violations as more inappropriate and more embarrassing. Whereas participants with low-to-intermediate SA-levels rated unintentional SN violations as less embarrassing than intentional SN violations, participants with high SA-levels (z-score SA ≥ 1.6) rated unintentional SN violations as equally embarrassing as intentional SN violations.Conclusion:These findings indicate that increased embarrassment for unintentional SN violations is an important characteristic of social anxiety. These high levels of embarrassment are likely related to the debilitating concern of socially-anxious people that their skills and behavior do not meet expectations of others, and to their fear of blundering. This concern might be an important target for future therapeutic interventions.
Collapse
|
28
|
Knyazev GG, Savostyanov AN, Bocharov AV, Aftanas LI. EEG cross-frequency correlations as a marker of predisposition to affective disorders. Heliyon 2019; 5:e02942. [PMID: 31844779 PMCID: PMC6895656 DOI: 10.1016/j.heliyon.2019.e02942] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/18/2019] [Accepted: 11/25/2019] [Indexed: 01/10/2023] Open
Abstract
EEG cross-frequency amplitude-amplitude correlation (CF-AAC) has been considered as a potential marker of social anxiety and other affective disturbances. Functional significance of this phenomenon remains unclear, partly because the majority of studies used channel-level analysis, which precluded the spatial localization of observed effects. It is not also clear whether CF-AAC may serve as a marker of specific pathological conditions and specific states, or a more general predisposition to affective disturbances. We used source-level analysis of EEG data obtained in resting conditions in a nonclinical sample and patients with major depressive disorder (MDD) and investigated associations of CF-AAC measures with a broad range of known risk factors for affective disorders, including age, gender, genotype, stress exposure, personality, and self-reported ‘neurotic’ symptomatology. A consistent pattern of associations showed that all investigated risk factors were associated with an enhancement of CF-AAC in cortical regions associated with emotional and self-referential processing. It could be concluded that CF-AAC is a promising candidate marker of a general predisposition to affective disorders at preclinical stages.
Collapse
Affiliation(s)
- Gennady G Knyazev
- Institute of Physiology and Basic Medicine, Timakova str., 4, Novosibirsk, 630117, Russia
| | - Alexander N Savostyanov
- Institute of Physiology and Basic Medicine, Timakova str., 4, Novosibirsk, 630117, Russia.,Novosibirsk State University, Pirogova str., 2, Novosibirsk, 630090, Russia
| | - Andrey V Bocharov
- Institute of Physiology and Basic Medicine, Timakova str., 4, Novosibirsk, 630117, Russia.,Novosibirsk State University, Pirogova str., 2, Novosibirsk, 630090, Russia
| | - Lyubomir I Aftanas
- Institute of Physiology and Basic Medicine, Timakova str., 4, Novosibirsk, 630117, Russia.,Novosibirsk State University, Pirogova str., 2, Novosibirsk, 630090, Russia
| |
Collapse
|
29
|
Jabbi M, Nemeroff CB. Convergent neurobiological predictors of mood and anxiety symptoms and treatment response. Expert Rev Neurother 2019; 19:587-597. [PMID: 31096806 DOI: 10.1080/14737175.2019.1620604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Mood and anxiety disorders are leading contributors to the global burden of diseases. Comorbid mood and anxiety disorders have a lifetime prevalence of ~20% globally and increases the risk for suicide, a leading cause of death. Areas covered: In this review, authors highlight recent advances in the understanding of multilevel-neurobiological mechanisms for normal/pathological human affective-functioning. The authors then address the complex interplay between environmental-adversity and molecular-genetic mediators of brain correlates of affective-symptoms. The molecular focus is strategically limited to GTF2i, BDNF, and FKBP5 genes that are, respectively, involved in transcriptional-, neurodevelopmental- and neuroendocrine-pathway mediation of affective-functions. The importance of these genes is illustrated with studies of copy-number-variants, genome-wide association (GWAS), and candidate gene-sequence variant associations with disease etiology. Authors concluded by highlighting the predictive values of integrative neurobiological processing of gene-environment interactions for affective disorder symptom management. Expert opinion: Given the transcriptional, neurodevelopmental and neuroimmune relevance of GTF2i, BDNF, and FKBP5 genes, respectively, authors reviewed the putative roles of these genes in neurobiological mediation of adaptive affective-responses. Authors discussed the importance of studying gene-dosage effects in understanding affective disorder risk biology, and how such targeted neurogenetic studies could guide precision identification of novel pharmacotherapeutic targets and aid in prediction of treatment response.
Collapse
Affiliation(s)
- Mbemba Jabbi
- a Department of Psychiatry , Dell Medical School, University of Texas at Austin , Austin , TX , USA.,b Mulva Neuroscience Institute, Dell Medical School , University of Texas at Austin , Austin , TX , USA.,c Institute of Neuroscience , University of Texas at Austin , Austin , TX , USA.,d Department of Psychology , University of Texas at Austin , Austin , TX , USA
| | - Charles B Nemeroff
- a Department of Psychiatry , Dell Medical School, University of Texas at Austin , Austin , TX , USA.,b Mulva Neuroscience Institute, Dell Medical School , University of Texas at Austin , Austin , TX , USA.,e Institute for Early Life Adversity , Dell Medical School, University of Texas at Austin , Austin , TX , USA
| |
Collapse
|
30
|
Poole KL, Schmidt LA. Frontal brain delta-beta correlation, salivary cortisol, and social anxiety in children. J Child Psychol Psychiatry 2019; 60:646-654. [PMID: 30809809 DOI: 10.1111/jcpp.13016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/07/2018] [Indexed: 01/22/2023]
Abstract
BACKGROUND Correlated activity of slow-wave (e.g. delta) and fast-wave (e.g. beta) frontal brain oscillations is thought to be an electrophysiological correlate of individual differences in neuroendocrine activity and anxiety in adult samples. We know, however, relatively little about the physiological and functional correlates of delta-beta coupling in children. METHOD We examined whether longitudinal patterns of children's basal salivary cortisol and social anxiety across two visits separated by 1 year were associated with frontal brain delta-beta correlation in children (Mage = 7.59 years, SD = 1.70). At Time 1 (T1), resting baseline electroencephalogram (EEG) recordings were collected from the children and delta and beta power was measured, and at both T1 and Time 2 (T2), basal salivary cortisol was measured, and parents reported on children's symptoms of social anxiety. RESULTS Using latent class growth curve analysis, we found that children's salivary cortisol across visits was characterized by a high, stable class (53%), and a low, unstable class (47%), and children's social anxiety was characterized by a high, stable class (50%) and a low, stable class (50%). Using Fisher's r-to-z transformation, we found that frontal EEG delta-beta correlation was significantly stronger among children with high, stable salivary cortisol levels (compared to the low, unstable class; z = 2.11, p = .02), and among children with high, stable social anxiety levels (compared to the low, stable class; z = 1.72, p = .04). CONCLUSIONS These findings demonstrate that longitudinal patterns of neuroendocrine stress activity and social anxiety may be associated with the correlation of EEG power in slow and fast frontal brain oscillations as early as childhood.
Collapse
Affiliation(s)
- Kristie L Poole
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| | - Louis A Schmidt
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
31
|
Tuned to voices and faces: Cerebral responses linked to social anxiety. Neuroimage 2019; 197:450-456. [PMID: 31075391 DOI: 10.1016/j.neuroimage.2019.05.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/23/2019] [Accepted: 05/06/2019] [Indexed: 11/23/2022] Open
Abstract
Voices and faces are the most common sources of threat in social anxiety (SA) where the fear of negative evaluation and social exclusion is the central element. SA itself is spectrally distributed among the general population and its clinical manifestation, termed social anxiety disorder, is one of the most common anxiety disorders. While heightened cerebral responses to angry or contemptuous facial or vocal expressions are well documented, it remains unclear if the brain of socially anxious individuals is generally more sensitive to voices and faces. Using functional magnetic resonance imaging, we investigated how SA affects the cerebral processing of voices and faces as compared to various other stimulus types in a study population with greatly varying SA (N = 50, 26 female). While cerebral voice-sensitivity correlated positively with SA in the left temporal voice area (TVA) and the left amygdala, an association of face-sensitivity and SA was observed in the right fusiform face area (FFA) and the face processing area of the right posterior superior temporal sulcus (pSTSFA). These results demonstrate that the increase of cerebral responses associated with social anxiety is not limited to facial or vocal expressions of social threat but that the respective sensory and emotion processing structures are also generally tuned to voices and faces.
Collapse
|
32
|
Bas-Hoogendam JM, van Steenbergen H, Tissier RLM, van der Wee NJA, Westenberg PM. Altered Neurobiological Processing of Unintentional Social Norm Violations: A Multiplex, Multigenerational Functional Magnetic Resonance Imaging Study on Social Anxiety Endophenotypes. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 5:981-990. [PMID: 31031203 DOI: 10.1016/j.bpsc.2019.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/21/2019] [Accepted: 03/04/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Patients with social anxiety disorder (SAD) fear negative evaluation in social situations. Specifically, previous work indicated that social anxiety is associated with increased medial prefrontal cortex activation in response to unintentional social norm (SN) transgressions, accompanied by increased embarrassment ratings for such SN violations. Here, we used data from the multiplex, multigenerational LFLSAD (Leiden Family Lab study on Social Anxiety Disorder), which involved two generations of families genetically enriched for SAD, and investigated whether these neurobiological and behavioral correlates of unintentional SN processing are SAD endophenotypes. Of four endophenotype criteria, we examined two: first, the cosegregation of these characteristics with social anxiety (SA) within families of SAD probands (criterion 4), and second, the heritability of the candidate endophenotypes (criterion 3). METHODS Participants (n = 110, age range 9.0-61.5 years, eight families) performed the revised Social Norm Processing Task; functional magnetic resonance imaging data and behavioral ratings related to this paradigm were used to examine whether brain activation in response to processing unintentional SN violations and ratings of embarrassment were associated with SA levels. Next, heritability of these measurements was estimated. RESULTS As expected, voxelwise functional magnetic resonance imaging analyses revealed positive associations between SA levels and brain activation in the medial prefrontal cortex and medial temporal gyrus, superior temporal gyrus, and superior temporal sulcus, and these brain activation levels displayed moderate to moderately high heritability. Furthermore, although SA levels correlated positively with behavioral ratings of embarrassment for SN transgressions, these behavioral characteristics were not heritable. CONCLUSIONS These results show, for the first time, that brain responses in the medial prefrontal cortex and medial temporal gyrus, superior temporal gyrus, and superior temporal sulcus, related to processing unintentional SN violations, provide a neurobiological candidate endophenotype of SAD.
Collapse
Affiliation(s)
- Janna Marie Bas-Hoogendam
- Institute of Psychology, Leiden University, Leiden, The Netherlands; Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands; Leiden Institute for Brain and Cognition, Leiden, The Netherlands.
| | - Henk van Steenbergen
- Institute of Psychology, Leiden University, Leiden, The Netherlands; Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| | | | - Nic J A van der Wee
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands; Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| | - P Michiel Westenberg
- Institute of Psychology, Leiden University, Leiden, The Netherlands; Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| |
Collapse
|
33
|
Phasic amygdala and BNST activation during the anticipation of temporally unpredictable social observation in social anxiety disorder patients. NEUROIMAGE-CLINICAL 2019; 22:101735. [PMID: 30878610 PMCID: PMC6423472 DOI: 10.1016/j.nicl.2019.101735] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 02/17/2019] [Accepted: 02/21/2019] [Indexed: 01/05/2023]
Abstract
Anticipation of potentially threatening social situations is a key process in social anxiety disorder (SAD). In other anxiety disorders, recent research of neural correlates of anticipation of temporally unpredictable threat suggests a temporally dissociable involvement of amygdala and bed nucleus of the stria terminalis (BNST) with phasic amygdala responses and sustained BNST activation. However, the temporal profile of amygdala and BNST responses during temporal unpredictability of threat has not been investigated in patients suffering from SAD. We used functional magnetic resonance imaging (fMRI) to investigate neural activation in the central nucleus of the amygdala (CeA) and the BNST during anticipation of temporally unpredictable aversive (video camera observation) relative to neutral (no camera observation) events in SAD patients compared to healthy controls (HC). For the analysis of fMRI data, we applied two regressors (phasic/sustained) within the same model to detect temporally dissociable brain responses. The aversive condition induced increased anxiety in patients compared to HC. SAD patients compared to HC showed increased phasic activation in the CeA and the BNST for anticipation of aversive relative to neutral events. SAD patients as well as HC showed sustained activity alterations in the BNST for aversive relative to neutral anticipation. No differential activity during sustained threat anticipation in SAD patients compared to HC was found. Taken together, our study reveals both CeA and BNST involvement during threat anticipation in SAD patients. The present results point towards potentially SAD-specific threat processing marked by elevated phasic but not sustained CeA and BNST responses when compared to HC. fMRI in SAD during anticipation of temporally unpredictable aversive events. Anticipation of social observation induces increased anxiety in SAD patients. SAD patients show elevated phasic activity in fundamental anxiety network regions. Evidence of SAD-specific threat processing.
Collapse
|
34
|
Cerebral resting state markers of biased perception in social anxiety. Brain Struct Funct 2018; 224:759-777. [PMID: 30506458 DOI: 10.1007/s00429-018-1803-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 11/24/2018] [Indexed: 01/29/2023]
Abstract
Social anxiety (SA) comprises a multitude of persistent fears around the central element of dreaded negative evaluation and exclusion. This very common anxiety is spectrally distributed among the general population and associated with social perception biases deemed causal in its maintenance. Here, we investigated cerebral resting state markers linking SA and biased social perception. To this end, resting state functional connectivity (RSFC) was assessed as the neurobiological marker in a study population with greatly varying SA using fMRI in the first step of the experiment. One month later the impact of unattended laughter-exemplifying social threat-on a face rating task was evaluated as a measure of biased social perception. Applying a dimensional approach, SA-related cognitive biases tied to the valence, dominance and arousal of the threat signal and their underlying RSFC patterns among central nodes of the cerebral emotion, voice and face processing networks were identified. In particular, the connectivity patterns between the amygdalae and the right temporal voice area met all criteria for a cerebral mediation of the association between SA and the laughter valence-related interpretation bias. Thus, beyond this identification of non-state-dependent cerebral markers of biased perception in SA, this study highlights both a starting point and targets for future research on the causal relationships between cerebral connectivity patterns, SA and biased perception, potentially via neurofeedback methods.
Collapse
|
35
|
Doruyter AG, Dupont P, Stein DJ, Lochner C, Warwick JM. Nuclear Neuroimaging in Social Anxiety Disorder: A Review. J Nucl Med 2018; 59:1794-1800. [DOI: 10.2967/jnumed.118.212795] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 10/03/2018] [Indexed: 12/12/2022] Open
|
36
|
Poole KL, Schmidt LA. Trajectory of heart period to socioaffective threat in shy children. Dev Psychobiol 2018; 60:999-1008. [PMID: 30125935 DOI: 10.1002/dev.21774] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 12/27/2022]
Abstract
Although shyness is characterized by distinct psychophysiological correlates, we know very little about the development of these correlates. In this longitudinal study, we examined how children's shyness was associated with trajectories of heart period (HP) to socioaffective threat across four assessments spanning approximately 2 years. Children (Mage = 6.39 years) viewed age-appropriate, socioaffective videos at each visit while having their HP measured concurrently. A growth curve analysis revealed that low shy children had a relatively lower HP at enrollment, but experienced increases in HP across visits, while high shy children exhibited relatively stable low HP across visits while viewing threat-related socioaffective video stimuli. These patterns did not exist for HP during resting baseline or HP to nonthreatening video stimuli. These findings suggest that longitudinal patterns of HP among shy children may reflect a stable, characteristic way of responding to socioaffective threat, and possibly a physiological mechanism underlying shyness in some children.
Collapse
Affiliation(s)
- Kristie L Poole
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Louis A Schmidt
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
37
|
Fox KCR, Andrews-Hanna JR, Mills C, Dixon ML, Markovic J, Thompson E, Christoff K. Affective neuroscience of self-generated thought. Ann N Y Acad Sci 2018; 1426:25-51. [PMID: 29754412 DOI: 10.1111/nyas.13740] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 03/16/2018] [Accepted: 03/28/2018] [Indexed: 01/05/2023]
Abstract
Despite increasing scientific interest in self-generated thought-mental content largely independent of the immediate environment-there has yet to be any comprehensive synthesis of the subjective experience and neural correlates of affect in these forms of thinking. Here, we aim to develop an integrated affective neuroscience encompassing many forms of self-generated thought-normal and pathological, moderate and excessive, in waking and in sleep. In synthesizing existing literature on this topic, we reveal consistent findings pertaining to the prevalence, valence, and variability of emotion in self-generated thought, and highlight how these factors might interact with self-generated thought to influence general well-being. We integrate these psychological findings with recent neuroimaging research, bringing attention to the neural correlates of affect in self-generated thought. We show that affect in self-generated thought is prevalent, positively biased, highly variable (both within and across individuals), and consistently recruits many brain areas implicated in emotional processing, including the orbitofrontal cortex, amygdala, insula, and medial prefrontal cortex. Many factors modulate these typical psychological and neural patterns, however; the emerging affective neuroscience of self-generated thought must endeavor to link brain function and subjective experience in both everyday self-generated thought as well as its dysfunctions in mental illness.
Collapse
Affiliation(s)
- Kieran C R Fox
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jessica R Andrews-Hanna
- Department of Psychology and Interdisciplinary Program in Cognitive Science, University of Arizona, Tucson, Arizona
| | - Caitlin Mills
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Matthew L Dixon
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Jelena Markovic
- Department of Philosophy, University of British Columbia, Vancouver, British Columbia, Canada
| | - Evan Thompson
- Department of Philosophy, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kalina Christoff
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
38
|
Neurophysiological correlates of attentional bias for emotional faces in socially anxious individuals – Evidence from a visual search task and N2pc. Biol Psychol 2018; 132:192-201. [DOI: 10.1016/j.biopsycho.2018.01.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 01/03/2018] [Accepted: 01/03/2018] [Indexed: 12/20/2022]
|
39
|
Harrewijn A, van der Molen MJW, van Vliet IM, Houwing-Duistermaat JJ, Westenberg PM. Delta-beta correlation as a candidate endophenotype of social anxiety: A two-generation family study. J Affect Disord 2018; 227:398-405. [PMID: 29154156 DOI: 10.1016/j.jad.2017.11.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/01/2017] [Accepted: 11/07/2017] [Indexed: 02/02/2023]
Abstract
BACKGROUND Social anxiety disorder (SAD) is characterized by an extreme and intense fear and avoidance of social situations. In this two-generation family study we examined delta-beta correlation during a social performance task as candidate endophenotype of SAD. METHODS Nine families with a target participant (diagnosed with SAD), their spouse and children, as well as target's siblings with spouse and children performed a social performance task in which they gave a speech in front of a camera. EEG was measured during resting state, anticipation, and recovery. Our analyses focused on two criteria for endophenotypes: co-segregation within families and heritability. RESULTS Co-segregation analyses revealed increased negative delta-low beta correlation during anticipation in participants with (sub)clinical SAD compared to participants without (sub)clinical SAD. Heritability analyses revealed that delta-low beta and delta-high beta correlation during anticipation were heritable. Delta-beta correlation did not differ between participants with and without (sub)clinical SAD during resting state or recovery, nor between participants with and without SAD during all phases of the task. LIMITATIONS It should be noted that participants were seen only once, they all performed the EEG tasks in the same order, and some participants were too anxious to give a speech. CONCLUSIONS Delta-low beta correlation during anticipation of giving a speech might be a candidate endophenotype of SAD, possibly reflecting increased crosstalk between cortical and subcortical regions. If validated as endophenotype, delta-beta correlation during anticipation could be useful in studying the genetic basis, as well as improving treatment and early detection of persons at risk for developing SAD.
Collapse
Affiliation(s)
- Anita Harrewijn
- Developmental and Educational Psychology, Leiden University, The Netherlands; Leiden Institute for Brain and Cognition, Leiden University, The Netherlands.
| | - Melle J W van der Molen
- Developmental and Educational Psychology, Leiden University, The Netherlands; Leiden Institute for Brain and Cognition, Leiden University, The Netherlands
| | - Irene M van Vliet
- Department of Psychiatry, Leiden University Medical Center, The Netherlands
| | - Jeanine J Houwing-Duistermaat
- Department of Medical Statistics and BioInformatics, Leiden University Medical Center, The Netherlands; Department of Statistics, University of Leeds, United Kingdom
| | - P Michiel Westenberg
- Developmental and Educational Psychology, Leiden University, The Netherlands; Leiden Institute for Brain and Cognition, Leiden University, The Netherlands
| |
Collapse
|
40
|
Abstract
Social anxiety is a form of anxiety characterized by continuous fear of one or more social or performance situations. Although multiple treatment modalities (cognitive behavioral therapy, selective serotonin reuptake inhibitors/selective norepinephrine reuptake inhibitors, benzodiazepines) exist for social anxiety, they are effective for only 60% to 70% of patients. Thus, researchers have looked for other candidates for social anxiety treatment. Our review focuses on the peptide oxytocin as a potential therapeutic option for individuals with social anxiety. Animal research both in nonprimates and primates supports oxytocin's role in facilitation of prosocial behaviors and its anxiolytic effects. Human studies indicate significant associations between social anxiety and oxytocin receptor gene alleles, as well as social anxiety and oxytocin plasma levels. In addition, intranasal administration of oxytocin in humans has favorable effects on social anxiety symptomology. Other disorders, including autism, schizophrenia, and anorexia, have components of social anxiety in their pathophysiology. The therapeutic role of oxytocin for social dysfunction in these disorders is discussed.
Collapse
Affiliation(s)
- Candace Jones
- University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ingrid Barrera
- University of Miami Department of Psychiatry and Behavioral Sciences, Miami, Florida, USA
| | - Shaun Brothers
- University of Miami Department of Psychiatry and Behavioral Sciences, Miami, Florida, USA
| | - Robert Ring
- Drexel University Department of Pharmacology and Physiology, Philadelphia, Pennsylvania, USA
| | - Claes Wahlestedt
- University of Miami Department of Psychiatry and Behavioral Sciences, Miami, Florida, USA
| |
Collapse
|
41
|
Electrocortical measures of information processing biases in social anxiety disorder: A review. Biol Psychol 2017; 129:324-348. [DOI: 10.1016/j.biopsycho.2017.09.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 09/18/2017] [Accepted: 09/23/2017] [Indexed: 01/06/2023]
|
42
|
Becker MPI, Simon D, Miltner WHR, Straube T. Altered activation of the ventral striatum under performance-related observation in social anxiety disorder. Psychol Med 2017; 47:2502-2512. [PMID: 28464974 DOI: 10.1017/s0033291717001076] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Social anxiety disorder (SAD) is characterized by fear of social and performance situations. The consequence of scrutiny by others for the neural processing of performance feedback in SAD is unknown. METHODS We used event-related functional magnetic resonance imaging to investigate brain activation to positive, negative, and uninformative performance feedback in patients diagnosed with SAD and age-, gender-, and education-matched healthy control subjects who performed a time estimation task during a social observation condition and a non-social control condition: while either being monitored or unmonitored by a body camera, subjects received performance feedback after performing a time estimation that they could not fully evaluate without external feedback. RESULTS We found that brain activation in ventral striatum (VS) and midcingulate cortex was modulated by an interaction of social context and feedback type. SAD patients showed a lack of social-context-dependent variation of feedback processing, while control participants showed an enhancement of brain responses specifically to positive feedback in VS during observation. CONCLUSIONS The present findings emphasize the importance of social-context processing in SAD by showing that scrutiny prevents appropriate reward-processing-related signatures in response to positive performances in SAD.
Collapse
Affiliation(s)
- M P I Becker
- Department of Biological and Clinical Psychology,Friedrich Schiller University,D-07743 Jena,Germany
| | - D Simon
- Department of Biological and Clinical Psychology,Friedrich Schiller University,D-07743 Jena,Germany
| | - W H R Miltner
- Department of Biological and Clinical Psychology,Friedrich Schiller University,D-07743 Jena,Germany
| | - T Straube
- Department of Biological and Clinical Psychology,Friedrich Schiller University,D-07743 Jena,Germany
| |
Collapse
|
43
|
Bas-Hoogendam JM, van Steenbergen H, Nienke Pannekoek J, Fouche JP, Lochner C, Hattingh CJ, Cremers HR, Furmark T, Månsson KN, Frick A, Engman J, Boraxbekk CJ, Carlbring P, Andersson G, Fredrikson M, Straube T, Peterburs J, Klumpp H, Phan KL, Roelofs K, Veltman DJ, van Tol MJ, Stein DJ, van der Wee NJ. Voxel-based morphometry multi-center mega-analysis of brain structure in social anxiety disorder. NEUROIMAGE-CLINICAL 2017; 16:678-688. [PMID: 30140607 PMCID: PMC6103329 DOI: 10.1016/j.nicl.2017.08.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 08/01/2017] [Indexed: 01/04/2023]
Abstract
Social anxiety disorder (SAD) is a prevalent and disabling mental disorder, associated with significant psychiatric co-morbidity. Previous research on structural brain alterations associated with SAD has yielded inconsistent results concerning the direction of the changes in gray matter (GM) in various brain regions, as well as on the relationship between brain structure and SAD-symptomatology. These heterogeneous findings are possibly due to limited sample sizes. Multi-site imaging offers new opportunities to investigate SAD-related alterations in brain structure in larger samples. An international multi-center mega-analysis on the largest database of SAD structural T1-weighted 3T MRI scans to date was performed to compare GM volume of SAD-patients (n = 174) and healthy control (HC)-participants (n = 213) using voxel-based morphometry. A hypothesis-driven region of interest (ROI) approach was used, focusing on the basal ganglia, the amygdala-hippocampal complex, the prefrontal cortex, and the parietal cortex. SAD-patients had larger GM volume in the dorsal striatum when compared to HC-participants. This increase correlated positively with the severity of self-reported social anxiety symptoms. No SAD-related differences in GM volume were present in the other ROIs. Thereby, the results of this mega-analysis suggest a role for the dorsal striatum in SAD, but previously reported SAD-related changes in GM in the amygdala, hippocampus, precuneus, prefrontal cortex and parietal regions were not replicated. Our findings emphasize the importance of large sample imaging studies and the need for meta-analyses like those performed by the Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium. Multi-center mega-analysis on gray matter (GM) in social anxiety disorder (SAD) Largest sample available for analysis to date: 174 SAD-patients vs 213 controls Larger GM volume in the right putamen in SAD-patients No SAD-related alterations in amygdala-hippocampal, prefrontal or parietal regions Results stress need for larger samples and meta-analyses - cf. ENIGMA Consortium
Collapse
Affiliation(s)
- Janna Marie Bas-Hoogendam
- Institute of Psychology, Leiden University, Leiden, The Netherlands
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands
- Leiden Institute for Brain and Cognition, Leiden, The Netherlands
- Corresponding author at: Institute of Psychology, Leiden University, Wassenaarseweg 52, 2333 AK Leiden, The Netherlands.
| | - Henk van Steenbergen
- Institute of Psychology, Leiden University, Leiden, The Netherlands
- Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| | - J. Nienke Pannekoek
- Neuropsychopharmacology Unit, Centre for Psychiatry, Division of Brain Sciences, Imperial College London, United Kingdom
| | - Jean-Paul Fouche
- Department of Psychiatry and Mental Health, University of Cape Town, Observatory, Cape Town, South Africa
| | - Christine Lochner
- SU/UCT MRC Unit on Anxiety & Stress Disorders, South Africa
- Department of Psychiatry, Stellenbosch University, Tygerberg, South Africa
| | - Coenraad J. Hattingh
- Department of Psychiatry and Mental Health, University of Cape Town, Observatory, Cape Town, South Africa
| | - Henk R. Cremers
- Department of Clinical Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | - Tomas Furmark
- Department of Psychology, Uppsala University, Uppsala, Sweden
| | - Kristoffer N.T. Månsson
- Department of Psychology, Uppsala University, Uppsala, Sweden
- Department of Psychology, Stockholm University, Stockholm, Sweden
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Andreas Frick
- Department of Psychology, Uppsala University, Uppsala, Sweden
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jonas Engman
- Department of Psychology, Uppsala University, Uppsala, Sweden
| | - Carl-Johan Boraxbekk
- Umeå Centre for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
- Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark
| | - Per Carlbring
- Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Gerhard Andersson
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Behavioural Sciences and Learning, Psychology, Linköping University, Linköping, Sweden
| | - Mats Fredrikson
- Department of Psychology, Uppsala University, Uppsala, Sweden
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Straube
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Münster, Germany
| | - Jutta Peterburs
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Münster, Germany
| | - Heide Klumpp
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
- Department of Psychology, University of Illinois at Chicago, Chicago, IL, United States
| | - K. Luan Phan
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
- Department of Psychology, University of Illinois at Chicago, Chicago, IL, United States
| | - Karin Roelofs
- Behavioural Science Institute, Radboud University, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Dick J. Veltman
- Department of Psychiatry, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Marie-José van Tol
- Department of Neuroscience, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Dan J. Stein
- Department of Psychiatry and Mental Health, University of Cape Town, Observatory, Cape Town, South Africa
- SU/UCT MRC Unit on Anxiety & Stress Disorders, South Africa
| | - Nic J.A. van der Wee
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands
- Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| |
Collapse
|
44
|
Surmeier DJ, Halliday GM, Simuni T. Calcium, mitochondrial dysfunction and slowing the progression of Parkinson's disease. Exp Neurol 2017; 298:202-209. [PMID: 28780195 DOI: 10.1016/j.expneurol.2017.08.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/25/2017] [Accepted: 08/01/2017] [Indexed: 12/20/2022]
Abstract
Parkinson's disease is characterized by progressively distributed Lewy pathology and neurodegeneration. The motor symptoms of clinical Parkinson's disease (cPD) are unequivocally linked to the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNc). Several features of these neurons appear to make them selectively vulnerable to factors thought to cause cPD, like aging, genetic mutations and environmental toxins. Among these features, Ca2+ entry through Cav1 channels is particularly amenable to pharmacotherapy in early stage cPD patients. This review outlines the linkage between these channels, mitochondrial oxidant stress and cPD pathogenesis. It also summarizes considerations that went into the design and execution of the ongoing Phase 3 clinical trial with an inhibitor of these channels - isradipine.
Collapse
Affiliation(s)
- D James Surmeier
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Glenda M Halliday
- Brain and Mind Centre, Sydney Medical School, University of Sydney, 2006, Australia; School of Medical Sciences, University of New South Wales, Neuroscience Research Australia, Sydney 2052, Australia
| | - Tanya Simuni
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
45
|
Surmeier DJ, Obeso JA, Halliday GM. Selective neuronal vulnerability in Parkinson disease. Nat Rev Neurosci 2017; 18:101-113. [PMID: 28104909 DOI: 10.1038/nrn.2016.178] [Citation(s) in RCA: 698] [Impact Index Per Article: 87.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Intracellular α-synuclein (α-syn)-rich protein aggregates called Lewy pathology (LP) and neuronal death are commonly found in the brains of patients with clinical Parkinson disease (cPD). It is widely believed that LP appears early in the disease and spreads in synaptically coupled brain networks, driving neuronal dysfunction and death. However, post-mortem analysis of human brains and connectome-mapping studies show that the pattern of LP in cPD is not consistent with this simple model, arguing that, if LP propagates in cPD, it must be gated by cell- or region-autonomous mechanisms. Moreover, the correlation between LP and neuronal death is weak. In this Review, we briefly discuss the evidence for and against the spreading LP model, as well as evidence that cell-autonomous factors govern both α-syn pathology and neuronal death.
Collapse
Affiliation(s)
- D James Surmeier
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - José A Obeso
- Centro Integral de Neurociencias A.C. (CINAC), HM Puerta del Sur, Hospitales de Madrid, Mostoles and CEU San Pablo University, 28938 Madrid, Spain.,Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, 28031 Madrid, Spain
| | - Glenda M Halliday
- Brain and Mind Centre, Sydney Medical School, The University of Sydney, Sydney 2006, Australia.,School of Medical Sciences, University of New South Wales and Neuroscience Research Australia, Sydney 2052, Australia
| |
Collapse
|
46
|
Battaglia M, Michelini G, Pezzica E, Ogliari A, Fagnani C, Stazi MA, Bertoletti E, Scaini S. Shared genetic influences among childhood shyness, social competences, and cortical responses to emotions. J Exp Child Psychol 2017; 160:67-80. [PMID: 28432866 DOI: 10.1016/j.jecp.2017.03.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 03/15/2017] [Accepted: 03/19/2017] [Indexed: 01/13/2023]
Abstract
Visual event-related potentials (ERPs) evoked by facial expressions are useful to map socioemotional responses among shy children and to predict transition into social phobia. We investigated the sources of covariation among childhood shyness, social competences, and ERPs to other children's happy, neutral, and angry expressions. Electrophysiological and twin analyses examined the phenotypic and etiological association among an index of childhood shyness, an index of social competences, and ERP responses to facial expressions in 200 twins (mean age=9.23years). Multivariate twin analyses showed that the covariation among shyness, social competences, and a composite of a frontal late negative component occurring around 200-400ms in response to happy, neutral, and angry expressions could be entirely explained by shared genetic factors. A coherent causal structure links childhood shyness, social competences, and the cortical responses to facial emotions. A common genetic substrate can explain the interrelatedness of individual differences for childhood shyness, social competences, and some associated electrophysiological responses to socioemotional signals.
Collapse
Affiliation(s)
- Marco Battaglia
- Department of Psychiatry, University of Toronto, Toronto, Ontario M6J 1H4, Canada; Division of Child and Youth Psychiatry, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario M6J 1H4, Canada.
| | - Giorgia Michelini
- MRC Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London SE5 8AF, UK
| | - Elettra Pezzica
- Developmental Psychopathology Unit, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Anna Ogliari
- Developmental Psychopathology Unit, Vita-Salute San Raffaele University, 20132 Milan, Italy; Department of Clinical Neurosciences, San Raffaele Hospital, 20132 Milan, Italy
| | | | | | - Eleonora Bertoletti
- Department of Clinical Neurosciences, San Raffaele Hospital, 20132 Milan, Italy
| | - Simona Scaini
- Developmental Psychopathology Unit, Vita-Salute San Raffaele University, 20132 Milan, Italy; Faculty of Psychology, Sigmund Freud University, 20143 Milan, Italy
| |
Collapse
|
47
|
Altered time course of amygdala activation during speech anticipation in social anxiety disorder. J Affect Disord 2017; 209:23-29. [PMID: 27870942 PMCID: PMC5191910 DOI: 10.1016/j.jad.2016.11.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 11/14/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND Exaggerated anticipatory anxiety is common in social anxiety disorder (SAD). Neuroimaging studies have revealed altered neural activity in response to social stimuli in SAD, but fewer studies have examined neural activity during anticipation of feared social stimuli in SAD. The current study examined the time course and magnitude of activity in threat processing brain regions during speech anticipation in socially anxious individuals and healthy controls (HC). METHOD Participants (SAD n=58; HC n=16) underwent functional magnetic resonance imaging (fMRI) during which they completed a 90s control anticipation task and 90s speech anticipation task. Repeated measures multi-level modeling analyses were used to examine group differences in time course activity during speech vs. control anticipation for regions of interest, including bilateral amygdala, insula, ventral striatum, and dorsal anterior cingulate cortex. RESULTS The time course of amygdala activity was more prolonged and less variable throughout speech anticipation in SAD participants compared to HCs, whereas the overall magnitude of amygdala response did not differ between groups. Magnitude and time course of activity was largely similar between groups across other regions of interest. LIMITATIONS Analyses were restricted to regions of interest and task order was the same across participants due to the nature of deception instructions. CONCLUSIONS Sustained amygdala time course during anticipation may uniquely reflect heightened detection of threat or deficits in emotion regulation in socially anxious individuals. Findings highlight the importance of examining temporal dynamics of amygdala responding.
Collapse
|
48
|
Kreifelts B, Brück C, Ethofer T, Ritter J, Weigel L, Erb M, Wildgruber D. Prefrontal mediation of emotion regulation in social anxiety disorder during laughter perception. Neuropsychologia 2017; 96:175-183. [DOI: 10.1016/j.neuropsychologia.2017.01.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 01/11/2017] [Accepted: 01/13/2017] [Indexed: 11/28/2022]
|
49
|
How Well Can We Measure Visual Attention? Psychometric Properties of Manual Response Times and First Fixation Latencies in a Visual Search Paradigm. COGNITIVE THERAPY AND RESEARCH 2017. [DOI: 10.1007/s10608-016-9830-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
50
|
Heitmann CY, Feldker K, Neumeister P, Brinkmann L, Schrammen E, Zwitserlood P, Straube T. Brain activation to task-irrelevant disorder-related threat in social anxiety disorder: The impact of symptom severity. NEUROIMAGE-CLINICAL 2017; 14:323-333. [PMID: 28224080 PMCID: PMC5310170 DOI: 10.1016/j.nicl.2017.01.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/21/2016] [Accepted: 01/18/2017] [Indexed: 01/08/2023]
Abstract
Unintentional and uncontrollable processing of threat has been suggested to contribute to the pathology of social anxiety disorder (SAD). The present study investigated the neural correlates of processing task-irrelevant, highly ecologically valid, disorder-related stimuli as a function of symptom severity in SAD. Twenty-four SAD patients and 24 healthy controls (HC) performed a feature-based comparison task during functional magnetic resonance imaging, while task-irrelevant, disorder-related or neutral scenes were presented simultaneously at a different spatial position. SAD patients showed greater activity than HC in response to disorder-related versus neutral scenes in brain regions associated with self-referential processing (e.g. insula, precuneus, dorsomedial prefrontal cortex) and emotion regulation (e.g. dorsolateral prefrontal cortex (dlPFC), inferior frontal gyrus). Symptom severity was positively associated with amygdala activity, and negatively with activation in dorsal anterior cingulate cortex and dlPFC in SAD patients. Additional correlation analysis revealed that amygdala-prefrontal coupling was positively associated with symptom severity. A network of brain regions is thus involved in SAD patients' processing of task-irrelevant, complex, ecologically valid, disorder-related scenes. Furthermore, increasing symptom severity in SAD patients seems to reflect a growing imbalance between neural mechanisms related to stimulus-driven bottom-up and regulatory top-down processes resulting in dysfunctional regulation strategies.
Collapse
Affiliation(s)
- Carina Yvonne Heitmann
- Institute of Medical Psychology and Systems Neuroscience, University of Muenster, Germany
| | - Katharina Feldker
- Institute of Medical Psychology and Systems Neuroscience, University of Muenster, Germany
| | - Paula Neumeister
- Institute of Medical Psychology and Systems Neuroscience, University of Muenster, Germany
| | - Leonie Brinkmann
- Institute of Medical Psychology and Systems Neuroscience, University of Muenster, Germany
| | - Elisabeth Schrammen
- Institute of Medical Psychology and Systems Neuroscience, University of Muenster, Germany
| | | | - Thomas Straube
- Institute of Medical Psychology and Systems Neuroscience, University of Muenster, Germany
| |
Collapse
|