1
|
Aguirre-Rodríguez CA, Delgado A, Alatorre A, Oviedo-Chávez A, Martínez-Escudero JR, Barrientos R, Querejeta E. Local activation of CB1 receptors by synthetic and endogenous cannabinoids dampens burst firing mode of reticular thalamic nucleus neurons in rats under ketamine anesthesia. Exp Brain Res 2024; 242:2137-2157. [PMID: 38980339 DOI: 10.1007/s00221-024-06889-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
The reticular thalamic nucleus (RTN) is a thin shell that covers the dorsal thalamus and controls the overall information flow from the thalamus to the cerebral cortex through GABAergic projections that contact thalamo-cortical neurons (TC). RTN neurons receive glutamatergic afferents fibers from neurons of the sixth layer of the cerebral cortex and from TC collaterals. The firing mode of RTN neurons facilitates the generation of sleep-wake cycles; a tonic mode or desynchronized mode occurs during wake and REM sleep and a burst-firing mode or synchronized mode is associated with deep sleep. Despite the presence of cannabinoid receptors CB1 (CB1Rs) and mRNA that encodes these receptors in RTN neurons, there are few works that have analyzed the participation of endocannabinoid-mediated transmission on the electrical activity of RTN. Here, we locally blocked or activated CB1Rs in ketamine anesthetized rats to analyze the spontaneous extracellular spiking activity of RTN neurons. Our results show the presence of a tonic endocannabinoid input, since local infusion of AM 251, an antagonist/inverse agonist, modifies RTN neurons electrical activity; furthermore, local activation of CB1Rs by anandamide or WIN 55212-2 produces heterogeneous effects in the basal spontaneous spiking activity, where the main effect is an increase in the spiking rate accompanied by a decrease in bursting activity in a dose-dependent manner; this effect is inhibited by AM 251. In addition, previous activation of GABA-A receptors suppresses the effects of CB1Rs on reticular neurons. Our results show that local activation of CB1Rs primarily diminishes the burst firing mode of RTn neurons.
Collapse
Affiliation(s)
- Carlos A Aguirre-Rodríguez
- Sección de Investigación y Posgrado de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de México, 11340, México
| | - Alfonso Delgado
- Departamento de Fisiología Experimental, Facultad de Medicina y Ciencias Biomédicas, Universidad Autónoma de Chihuahua, Circuito Universitario Campus II, 31127, Chihuahua, Chihuahua, México
| | - Alberto Alatorre
- Academia de Fisiología, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de México, 11340, México
- Sección de Investigación y Posgrado de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de México, 11340, México
| | - Aldo Oviedo-Chávez
- Academia de Fisiología, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de México, 11340, México
- Sección de Investigación y Posgrado de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de México, 11340, México
| | - José R Martínez-Escudero
- Sección de Investigación y Posgrado de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de México, 11340, México
| | - Rafael Barrientos
- Academia de Fisiología, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de México, 11340, México
- Sección de Investigación y Posgrado de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de México, 11340, México
| | - Enrique Querejeta
- Academia de Fisiología, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de México, 11340, México.
- Sección de Investigación y Posgrado de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de México, 11340, México.
| |
Collapse
|
2
|
Fradkin SI, Silverstein SM. Resistance to Depth Inversion Illusions: A Biosignature of Psychosis with Potential Utility for Monitoring Positive Symptom Emergence and Remission in Schizophrenia. Biomark Neuropsychiatry 2022. [DOI: 10.1016/j.bionps.2022.100050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
3
|
Hirjak D, Schmitgen MM, Werler F, Wittemann M, Kubera KM, Wolf ND, Sambataro F, Calhoun VD, Reith W, Wolf RC. Multimodal MRI data fusion reveals distinct structural, functional and neurochemical correlates of heavy cannabis use. Addict Biol 2022; 27:e13113. [PMID: 34808703 DOI: 10.1111/adb.13113] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/24/2021] [Accepted: 10/29/2021] [Indexed: 12/19/2022]
Abstract
Heavy cannabis use (HCU) is frequently associated with a plethora of cognitive, psychopathological and sensorimotor phenomena. Although HCU is frequent, specific patterns of abnormal brain structure and function underlying HCU in individuals presenting without cannabis-use disorder or other current and life-time major mental disorders are unclear at present. This multimodal magnetic resonance imaging (MRI) study examined resting-state functional MRI (rs-fMRI) and structural MRI (sMRI) data from 24 persons with HCU and 16 controls. Parallel independent component analysis (p-ICA) was used to examine covarying components among grey matter volume (GMV) maps computed from sMRI and intrinsic neural activity (INA), as derived from amplitude of low-frequency fluctuations (ALFF) maps computed from rs-fMRI data. Further, we used JuSpace toolbox for cross-modal correlations between MRI-based modalities with nuclear imaging derived estimates, to examine specific neurotransmitter system changes underlying HCU. We identified two transmodal components, which significantly differed between the HCU and controls (GMV: p = 0.01, ALFF p = 0.03, respectively). The GMV component comprised predominantly cerebello-temporo-thalamic regions, whereas the INA component included fronto-parietal regions. Across HCU, loading parameters of both components were significantly associated with distinct HCU behavior. Finally, significant associations between GMV and the serotonergic system as well as between INA and the serotonergic, dopaminergic and μ-opioid receptor system were detected. This study provides novel multimodal neuromechanistic insights into HCU suggesting co-altered structure/function-interactions in neural systems subserving cognitive and sensorimotor functions.
Collapse
Affiliation(s)
- Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim Heidelberg University Mannheim Germany
| | - Mike M. Schmitgen
- Department of General Psychiatry at the Center for Psychosocial Medicine Heidelberg University Mannheim Germany
| | - Florian Werler
- Department of General Psychiatry at the Center for Psychosocial Medicine Heidelberg University Mannheim Germany
| | - Miriam Wittemann
- Department of Psychiatry and Psychotherapy Saarland University Saarbrücken Germany
| | - Katharina M. Kubera
- Department of General Psychiatry at the Center for Psychosocial Medicine Heidelberg University Mannheim Germany
| | - Nadine D. Wolf
- Department of General Psychiatry at the Center for Psychosocial Medicine Heidelberg University Mannheim Germany
| | - Fabio Sambataro
- Department of Neurosciences, Padua Neuroscience Center University of Padua Padua Italy
| | - Vince D. Calhoun
- Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology Emory University Atlanta Georgia USA
| | - Wolfgang Reith
- Department of Neuroradiology Saarland University Saarbrücken Germany
| | - Robert Christian Wolf
- Department of General Psychiatry at the Center for Psychosocial Medicine Heidelberg University Mannheim Germany
| |
Collapse
|
4
|
Cheng Z, Phokaew C, Chou YL, Lai D, Meyers JL, Agrawal A, Farrer LA, Kranzler HR, Gelernter J. A regulatory variant of CHRM3 is associated with cannabis-induced hallucinations in European Americans. Transl Psychiatry 2019; 9:309. [PMID: 31740666 PMCID: PMC6861240 DOI: 10.1038/s41398-019-0639-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 07/01/2019] [Accepted: 08/11/2019] [Indexed: 11/08/2022] Open
Abstract
Cannabis, the most widely used illicit drug, can induce hallucinations. Our understanding of the biology of cannabis-induced hallucinations (Ca-HL) is limited. We used the Semi-Structured Assessment for Drug Dependence and Alcoholism (SSADDA) to identify cannabis-induced hallucinations (Ca-HL) among long-term cannabis users (used cannabis ≥1 year and ≥100 times). A genome-wide association study (GWAS) was conducted by analyzing European Americans (EAs) and African Americans (AAs) in Yale-Penn 1 and 2 cohorts individually, then meta-analyzing the two cohorts within population. In the meta-analysis of Yale-Penn EAs (n = 1917), one genome-wide significant (GWS) signal emerged at the CHRM3 locus, represented by rs115455482 (P = 1.66 × 10-10), rs74722579 (P = 2.81 × 10-9), and rs1938228 (P = 1.57 × 10-8); signals were GWS in Yale-Penn 1 EAs (n = 1092) and nominally significant in Yale-Penn 2 EAs (n = 825). Two SNPs, rs115455482 and rs74722579, were available from the Collaborative Study on the Genetics of Alcoholism data (COGA; 3630 long-term cannabis users). The signals did not replicate, but when meta-analyzing Yale-Penn and COGA EAs, the two SNPs' association signals were increased (meta-P-values 1.32 × 10-10 and 2.60 × 10-9, respectively; n = 4291). There were no significant findings in AAs, but in the AA meta-analysis (n = 3624), nominal significance was seen for rs74722579. The rs115455482*T risk allele was associated with lower CHRM3 expression in the thalamus. CHRM3 was co-expressed with three psychosis risk genes (GABAG2, CHRNA4, and HRH3) in the thalamus and other human brain tissues and mouse GABAergic neurons. This work provides strong evidence for the association of CHRM3 with Ca-HL and provides insight into the potential involvement of thalamus for this trait.
Collapse
Affiliation(s)
- Zhongshan Cheng
- Division of Human Genetics, Department of Psychiatry, VA CT Healthcare Center, Yale University School of Medicine, New Haven, CT, USA
| | - Chureerat Phokaew
- Division of Human Genetics, Department of Psychiatry, VA CT Healthcare Center, Yale University School of Medicine, New Haven, CT, USA
| | - Yi-Ling Chou
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MI, USA
| | - Dongbing Lai
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jacquelyn L Meyers
- Department of Psychiatry, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - Arpana Agrawal
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MI, USA
| | - Lindsay A Farrer
- Departments of Neurology, Ophthalmology, Genetics & Genomics, Epidemiology and Biostatistics, Boston University Schools of Medicine and Public Health, Boston, MA, USA
| | - Henry R Kranzler
- Department of Psychiatry, Center for Studies of Addiction and Crescenz Veterans Affairs Medical Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Joel Gelernter
- Division of Human Genetics, Department of Psychiatry, VA CT Healthcare Center, Yale University School of Medicine, New Haven, CT, USA.
- Departments of Genetics and Neuroscience, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
5
|
Banister SD, Arnold JC, Connor M, Glass M, McGregor IS. Dark Classics in Chemical Neuroscience: Δ 9-Tetrahydrocannabinol. ACS Chem Neurosci 2019; 10:2160-2175. [PMID: 30689342 DOI: 10.1021/acschemneuro.8b00651] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cannabis ( Cannabis sativa) is the most widely used illicit drug in the world, with an estimated 192 million users globally. The main psychoactive component of cannabis is (-)- trans-Δ9-tetrahydrocannabinol (Δ9-THC), a compound with a diverse range of pharmacological actions. The unique and distinctive intoxication caused by Δ9-THC primarily reflects partial agonist action at central cannabinoid type 1 (CB1) receptors. Δ9-THC is an approved therapeutic treatment for a range of conditions, including chronic pain, chemotherapy-induced nausea and vomiting, and multiple sclerosis, and is being investigated in indications such as anorexia nervosa, agitation in dementia, and Tourette's syndrome. It is available as a regulated pharmaceutical in products such as Marinol, Sativex, and Namisol as well as in an ever-increasing range of unregistered medicinal and recreational cannabis products. While cannabis is an ancient medicament, contemporary use is embroiled in legal, scientific, and social controversy, much of which relates to the potential hazards and benefits of Δ9-THC itself. Robust contemporary debate surrounds the therapeutic value of Δ9-THC in different diseases, its capacity to produce psychosis and cognitive impairment, and the addictive and "gateway" potential of the drug. This review will provide a profile of the chemistry, pharmacology, and therapeutic uses of Δ9-THC as well as the historical and societal import of this unique, distinctive, and ubiquitous psychoactive substance.
Collapse
Affiliation(s)
- Samuel D. Banister
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- Faculty of Science and School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jonathon C. Arnold
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Medical Science and Discipline of Pharmacology, The University of Sydney, Sydney, NSW 2006, Australia
| | - Mark Connor
- Faculty of Medicine and Health Sciences, Macquarie University, Macquarie Park, NSW 2109, Australia
| | - Michelle Glass
- Department of Pharmacology and Toxicology, University of Otago, Dunedin 9016, New Zealand
| | - Iain S. McGregor
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- Faculty of Science and School of Psychology, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
6
|
Manza P, Tomasi D, Volkow ND. Subcortical Local Functional Hyperconnectivity in Cannabis Dependence. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2017; 3:285-293. [PMID: 29486870 DOI: 10.1016/j.bpsc.2017.11.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/10/2017] [Accepted: 11/13/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Cannabis abuse (CA) has been associated with psychopathology, including negative emotionality and higher risk of psychosis, particularly with early age of initiation. However, the mechanisms underlying this association are poorly understood. Because aberrant dopamine signaling is implicated in cannabis-associated psychopathology, we hypothesized that regular CA would be associated with altered resting-state functional connectivity in dopamine midbrain-striatal circuits. METHODS We examined resting-state brain activity of subcortical regions in 441 young adults from the Human Connectome Project, including 30 subjects with CA meeting DSM-IV criteria for dependence and 30 control subjects matched on age, sex, education, body mass index, anxiety, depression, and alcohol and tobacco usage. RESULTS Across all subjects, local functional connectivity density hubs in subcortical regions were most prominent in ventral striatum, hippocampus, amygdala, dorsal midbrain, and posterior-ventral brainstem. As hypothesized, subjects with CA showed markedly increased local functional connectivity density relative to control subjects, not only in ventral striatum (where nucleus accumbens is located) and midbrain (where substantia nigra and ventral tegmental nuclei are located) but also in brainstem and lateral thalamus. These effects were observed in the absence of significant differences in subcortical volumes and were most pronounced in individuals who began cannabis use earliest in life and who reported high levels of negative emotionality. CONCLUSIONS Together, these findings suggest that chronic CA is associated with changes in resting-state brain function, particularly in dopaminergic nuclei implicated in psychosis but that are also critical for habit formation and reward processing. These results shed light on neurobiological differences that may be relevant to psychopathology associated with cannabis use.
Collapse
Affiliation(s)
- Peter Manza
- National Institute on Alcoholism and Alcohol Abuse, National Institutes of Health, Bethesda, Maryland.
| | - Dardo Tomasi
- National Institute on Alcoholism and Alcohol Abuse, National Institutes of Health, Bethesda, Maryland
| | - Nora D Volkow
- National Institute on Alcoholism and Alcohol Abuse, National Institutes of Health, Bethesda, Maryland; National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
7
|
Bou Khalil R. Is insulin growth factor-1 the future for treating autism spectrum disorder and/or schizophrenia? Med Hypotheses 2017; 99:23-25. [PMID: 28110691 DOI: 10.1016/j.mehy.2016.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 12/05/2016] [Accepted: 12/10/2016] [Indexed: 12/14/2022]
|
8
|
Balleine BW, Morris RW, Leung BK. Thalamocortical integration of instrumental learning and performance and their disintegration in addiction. Brain Res 2015; 1628:104-16. [DOI: 10.1016/j.brainres.2014.12.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 12/03/2014] [Accepted: 12/06/2014] [Indexed: 01/01/2023]
|
9
|
Abayomi O, Adelufosi AO. Psychosocial interventions for cannabis abuse and/or dependence among persons with co-occurring cannabis use and psychotic disorders. Hippokratia 2015. [DOI: 10.1002/14651858.cd011488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Olukayode Abayomi
- Ladoke Akintola University Teaching Hospital; Psychiatry; P.M.B 4007 Ogbomoso Oyo Nigeria 210214
| | - Adegoke Oloruntoba Adelufosi
- Northern Regional Health Authority; Community Mental Health Program; 867 Thompson Drive South Thompson Manitoba Canada
| |
Collapse
|
10
|
Vukadinovic Z. Elevated striatal dopamine attenuates nigrothalamic inputs and impairs transthalamic cortico-cortical communication in schizophrenia: A hypothesis. Med Hypotheses 2015; 84:47-52. [DOI: 10.1016/j.mehy.2014.11.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 10/28/2014] [Accepted: 11/11/2014] [Indexed: 12/12/2022]
|
11
|
Vukadinovic Z. NMDA receptor hypofunction and the thalamus in schizophrenia. Physiol Behav 2014; 131:156-9. [PMID: 24792662 DOI: 10.1016/j.physbeh.2014.04.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 04/10/2014] [Accepted: 04/24/2014] [Indexed: 12/16/2022]
Abstract
The thalamus can be subdivided into two kinds of nuclei, the higher order (HO) and the first order (FO) relays, which are distinguished based on the origin of their main or driver inputs. The driver inputs to the HO nuclei arrive from the cortex, and the messages they deliver are then relayed to other cortical areas. As the origin of these inputs is the cortical layer V, whose axons branch and innervate lower motor centers in the CNS, the messages are copies of motor instructions issued to those lower motor centers. These copies are thus an integral part of perceptual processes. In schizophrenia, the HO nuclei are shrunken suggesting that a reduced ability to integrate copies of ongoing motor commands in perceptual processes may be one part of the underlying pathophysiology. The driver inputs in the thalamus utilize ionotropic glutamate receptors such as the NMDAR. NMDAR antagonists may exert their pro-psychotic effects by impairing the function of the HO nuclei. Here, we argue that such agents (or the proposed NMDAR hypofunction in schizophrenia) weaken the driver inputs in the HO nuclei, thereby producing a cortico-thalamo-cortical disconnection and impairing sensorimotor integration.
Collapse
Affiliation(s)
- Zoran Vukadinovic
- University of New Mexico School of Medicine, Department of Psychiatry, United States.
| |
Collapse
|