1
|
Dory EK, Loterstein Y, Hazani R, Zalsman G, Weller A. The impact of maternal premating stress on the postnatal outcomes of offspring in rodent studies: A systematic review. Neurosci Biobehav Rev 2025; 172:106114. [PMID: 40154654 DOI: 10.1016/j.neubiorev.2025.106114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/13/2025] [Accepted: 03/16/2025] [Indexed: 04/01/2025]
Abstract
Maternal premating stress (mPMS) has been linked to adverse outcomes in the next generation. In this systematic review, we examined the impact of mPMS on offspring's neurodevelopmental milestones, behavioral outcomes, and physiological alterations before and after adulthood in rodent studies. We conducted a systematic literature review using PubMed, Scopus, ProQuest, and APA PsycNet, using the terms "premating stress", "pregestational stress", "prepregnancy stress, and "preconception stress". Thirty studies that met exclusion and inclusion criteria and contained relevant data were included. The reviewed literature suggests that mPMS can delay progeny's neurobehavioral development during the first week of life and increase their stress\anxiety- and depression-like behaviors, especially before postnatal day 60. Furthermore, male offspring's memory abilities may be impaired, although learning ability remained intact in both sexes. Finally, mPMS appear to have a negative impact mainly on male offsprings' social behaviors. Some physiological alterations are discussed in relation to these behavioral outcomes, but cautiously, as studies' foci were highly diverse and prevented identifying consistent patterns of results. We also note that dams' recovery period, stress intensity and severity, type, duration, and offspring's weaning age should be considered in future studies.
Collapse
Affiliation(s)
- Elin Kachuki Dory
- Department of Psychology, Bar Ilan University, Ramat Gan, Israel; Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan, Israel
| | - Yoni Loterstein
- Department of Psychology, Bar Ilan University, Ramat Gan, Israel; Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan, Israel
| | - Reut Hazani
- Department of Psychology, Bar Ilan University, Ramat Gan, Israel; Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan, Israel; Geha Mental Health Center, Petah Tiqva, Israel
| | - Gil Zalsman
- Geha Mental Health Center, Petah Tiqva, Israel; Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel; Division of Molecular Imaging and Neuropathology, Department of Psychiatry, Columbia University, New York, NY, USA
| | - Aron Weller
- Department of Psychology, Bar Ilan University, Ramat Gan, Israel; Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan, Israel.
| |
Collapse
|
2
|
Frasch MG, Wakefield C, Janoschek B, Frank YS, Karp F, Reyes N, Desrochers A, Wallingford MC, Antonelli MC, Metz GAS. Perinatal Psychoneuroimmunology of Prenatal Stress and Its Effects on Fetal and Postnatal Brain Development. Methods Mol Biol 2025; 2868:303-332. [PMID: 39546237 DOI: 10.1007/978-1-0716-4200-9_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Prenatal stress (PS) impacts early behavioral, neuroimmune, and cognitive development. Pregnant rat models have been very valuable in examining the mechanisms of such fetal programming. A pregnant sheep model of maternal stress offers the unique advantages of chronic in utero monitoring and manipulation. This chapter presents the techniques used to model single and multigenerational stress exposures and their pleiotropic effects on the offspring.
Collapse
Affiliation(s)
- Martin G Frasch
- Department of Obstetrics and Gynecology and Institute on Human Development and Disability, University of Washington, Seattle, WA, USA.
| | - Colin Wakefield
- Department of Obstetrics and Gynecology and Institute on Human Development and Disability, University of Washington, Seattle, WA, USA
| | - Ben Janoschek
- Department of Obstetrics and Gynecology and Institute on Human Development and Disability, University of Washington, Seattle, WA, USA
| | - Yael S Frank
- Department of Obstetrics and Gynecology and Institute on Human Development and Disability, University of Washington, Seattle, WA, USA
| | - Floyd Karp
- Departments of Pharmacy and Bioengineering, University of Washington, Seattle, WA, USA
| | - Nicholas Reyes
- Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - Andre Desrochers
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Mary C Wallingford
- Mother Infant Research Institute, Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, USA
- Department of Obstetrics and Gynecology, Tufts University School of Medicine, Boston, MA, USA
| | - Marta C Antonelli
- Department of Obstetrics and Gynecology, Klinikum Rechts Der Isar, Technical University of Munich, Munich, Germany
- Instituto de Biología Celular y Neurociencia "Prof. Eduardo De Robertis", Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gerlinde A S Metz
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
3
|
Demaili A, Portugalov A, Maroun M, Akirav I, Braun K, Bock J. Early life stress induces decreased expression of CB1R and FAAH and epigenetic changes in the medial prefrontal cortex of male rats. Front Cell Neurosci 2024; 18:1474992. [PMID: 39503008 PMCID: PMC11534599 DOI: 10.3389/fncel.2024.1474992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
Several studies in both animal models and in humans have provided substantial evidence that early life stress (ELS) induces long-term changes in behavior and brain function, making it a significant risk factor in the aetiology of various mental disorders, including anxiety and depression. In this study, we tested the hypothesis that ELS in male rats (i) leads to increased anxiety and depressive-like symptoms; and (ii) that these behavioral changes are associated with functional alterations in the endocannabinoid system of the medial prefrontal cortex (mPFC). We further assessed whether the predicted changes in the gene expression of two key components of the endocannabinoid system, cannabinoid receptor 1 (CB1R) and the fatty acid amide hydrolase (FAAH), are regulated by epigenetic mechanisms. Behavioral profiling revealed that the proportion of behaviorally affected animals was increased in ELS exposed male rats compared to control animals, specifically showing symptoms of anhedonia and impaired social behavior. On the molecular level we observed a decrease in CB1R and FAAH mRNA expression in the mPFC of adult ELS exposed animals. These gene expression changes were accompanied by reduced global histone 3 acetylation in the mPFC, while no significant changes in DNA methylation and no significant changes of histone-acetylation at the promoter regions of the analyzed genes were detected. Taken together, our data provide evidence that ELS induces a long-term reduction of CB1R and FAAH expression in the mPFC of adult male rats, which may partially contribute to the ELS-induced changes in adult socio-emotional behavior.
Collapse
Affiliation(s)
- Arijana Demaili
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Anna Portugalov
- Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel
| | - Mouna Maroun
- The Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Irit Akirav
- Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel
| | - Katharina Braun
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Jörg Bock
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- PG Epigenetics and Structural Plasticity, Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
4
|
Collins JM, Keane JM, Deady C, Khashan AS, McCarthy FP, O'Keeffe GW, Clarke G, Cryan JF, Caputi V, O'Mahony SM. Prenatal stress impacts foetal neurodevelopment: Temporal windows of gestational vulnerability. Neurosci Biobehav Rev 2024; 164:105793. [PMID: 38971516 DOI: 10.1016/j.neubiorev.2024.105793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
Prenatal maternal stressors ranging in severity from everyday occurrences/hassles to the experience of traumatic events negatively impact neurodevelopment, increasing the risk for the onset of psychopathology in the offspring. Notably, the timing of prenatal stress exposure plays a critical role in determining the nature and severity of subsequent neurodevelopmental outcomes. In this review, we evaluate the empirical evidence regarding temporal windows of heightened vulnerability to prenatal stress with respect to motor, cognitive, language, and behavioural development in both human and animal studies. We also explore potential temporal windows whereby several mechanisms may mediate prenatal stress-induced neurodevelopmental effects, namely, excessive hypothalamic-pituitary-adrenal axis activity, altered serotonin signalling and sympathetic-adrenal-medullary system, changes in placental function, immune system dysregulation, and alterations of the gut microbiota. While broadly defined developmental windows are apparent for specific psychopathological outcomes, inconsistencies arise when more complex cognitive and behavioural outcomes are considered. Novel approaches to track molecular markers reflective of the underlying aetiologies throughout gestation to identify tractable biomolecular signatures corresponding to critical vulnerability periods are urgently required.
Collapse
Affiliation(s)
- James M Collins
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| | - James M Keane
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
| | - Clara Deady
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| | - Ali S Khashan
- School of Public Health, University College Cork, Cork, Ireland; The Irish Centre for Maternal and Child Health Research (INFANT), Cork University Maternity Hospital, Cork, Ireland.
| | - Fergus P McCarthy
- The Irish Centre for Maternal and Child Health Research (INFANT), Cork University Maternity Hospital, Cork, Ireland; Department of Obstetrics and Gynaecology, University College Cork, Cork, Ireland.
| | - Gerard W O'Keeffe
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; The Irish Centre for Maternal and Child Health Research (INFANT), Cork University Maternity Hospital, Cork, Ireland.
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland; The Irish Centre for Maternal and Child Health Research (INFANT), Cork University Maternity Hospital, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland.
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| | - Valentina Caputi
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| | | |
Collapse
|
5
|
De Asis-Cruz J, Kim JH, Krishnamurthy D, Lopez C, Kapse K, Andescavage N, Vezina G, Limperopoulos C. Examining the relationship between fetal cortical thickness, gestational age, and maternal psychological distress. Dev Cogn Neurosci 2023; 63:101282. [PMID: 37515833 PMCID: PMC10407290 DOI: 10.1016/j.dcn.2023.101282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/31/2023] Open
Abstract
In utero exposure to maternal stress, anxiety, and depression has been associated with reduced cortical thickness (CT), and CT changes, in turn, to adverse neuropsychiatric outcomes. Here, we investigated global and regional (G/RCT) changes associated with fetal exposure to maternal psychological distress in 265 brain MRI studies from 177 healthy fetuses of low-risk pregnant women. GCT was measured from cortical gray matter (CGM) voxels; RCT was estimated from 82 cortical regions. GCT and RCT in 87% of regions strongly correlated with GA. Fetal exposure was most strongly associated with RCT in the parahippocampal region, ventromedial prefrontal cortex, and supramarginal gyrus suggesting that cortical alterations commonly associated with prenatal exposure could emerge in-utero. However, we note that while regional fetal brain involvement conformed to patterns observed in newborns and children exposed to prenatal maternal psychological distress, the reported associations did not survive multiple comparisons correction. This could be because the effects are more subtle in this early developmental window or because majority of the pregnant women in our study did not experience high levels of maternal distress. It is our hope that the current findings will spur future hypothesis-driven studies that include a full spectrum of maternal mental health scores.
Collapse
Affiliation(s)
| | - Jung-Hoon Kim
- Developing Brain Institute, Children's National, Washington, DC, USA
| | | | - Catherine Lopez
- Developing Brain Institute, Children's National, Washington, DC, USA
| | - Kushal Kapse
- Developing Brain Institute, Children's National, Washington, DC, USA
| | - Nickie Andescavage
- Developing Brain Institute, Children's National, Washington, DC, USA; Division of Neonatology, Children's National Medical Center, Washington, DC, USA
| | - Gilbert Vezina
- Division of Diagnostic Imaging and Radiology, Children's National, Washington, DC, USA
| | - Catherine Limperopoulos
- Developing Brain Institute, Children's National, Washington, DC, USA; Division of Diagnostic Imaging and Radiology, Children's National, Washington, DC, USA.
| |
Collapse
|
6
|
Villarreal L, Witzany G. Self-empowerment of life through RNA networks, cells and viruses. F1000Res 2023; 12:138. [PMID: 36785664 PMCID: PMC9918806 DOI: 10.12688/f1000research.130300.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/20/2023] [Indexed: 01/05/2024] Open
Abstract
Our understanding of the key players in evolution and of the development of all organisms in all domains of life has been aided by current knowledge about RNA stem-loop groups, their proposed interaction motifs in an early RNA world and their regulative roles in all steps and substeps of nearly all cellular processes, such as replication, transcription, translation, repair, immunity and epigenetic marking. Cooperative evolution was enabled by promiscuous interactions between single-stranded regions in the loops of naturally forming stem-loop structures in RNAs. It was also shown that cooperative RNA stem-loops outcompete selfish ones and provide foundational self-constructive groups (ribosome, editosome, spliceosome, etc.). Self-empowerment from abiotic matter to biological behavior does not just occur at the beginning of biological evolution; it is also essential for all levels of socially interacting RNAs, cells and viruses.
Collapse
Affiliation(s)
- Luis Villarreal
- Center for Virus Research, University of California, Irvine, California, USA
| | - Guenther Witzany
- Telos - Philosophische Praxis, Buermoos, Salzburg, 5111, Austria
| |
Collapse
|
7
|
Abstract
Our understanding of the key players in evolution and of the development of all organisms in all domains of life has been aided by current knowledge about RNA stem-loop groups, their proposed interaction motifs in an early RNA world and their regulative roles in all steps and substeps of nearly all cellular processes, such as replication, transcription, translation, repair, immunity and epigenetic marking. Cooperative evolution was enabled by promiscuous interactions between single-stranded regions in the loops of naturally forming stem-loop structures in RNAs. It was also shown that cooperative RNA stem-loops outcompete selfish ones and provide foundational self-constructive groups (ribosome, editosome, spliceosome, etc.). Self-empowerment from abiotic matter to biological behavior does not just occur at the beginning of biological evolution; it is also essential for all levels of socially interacting RNAs, cells and viruses.
Collapse
Affiliation(s)
- Luis Villarreal
- Center for Virus Research, University of California, Irvine, California, USA
| | - Guenther Witzany
- Telos - Philosophische Praxis, Buermoos, Salzburg, 5111, Austria
| |
Collapse
|
8
|
Demaili A, Portugalov A, Dudai M, Maroun M, Akirav I, Braun K, Bock J. Epigenetic (re)programming of gene expression changes of CB1R and FAAH in the medial prefrontal cortex in response to early life and adolescence stress exposure. Front Cell Neurosci 2023; 17:1129946. [PMID: 36909279 PMCID: PMC9992175 DOI: 10.3389/fncel.2023.1129946] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
Environmental factors, including stress, that are experienced during early life (ELS) or adolescence are potential risk factors for the development of behavioral and mental disorders later in life. The endocannabinoid system plays a major role in the regulation of stress responses and emotional behavior, thereby acting as a mediator of stress vulnerability and resilience. Among the critical factors, which determine the magnitude and direction of long-term consequences of stress exposure is age, i.e., the maturity of brain circuits during stress exposure. Thus, the present study addressed the hypotheses that ELS and adolescent stress differentially affect the expression of regulatory elements of the endocannabinoid system, cannabinoid receptor 1 (CB1R) and fatty acid amide hydrolase (FAAH) in the medial prefrontal cortex (mPFC) of adult female rats. We also tested the hypothesis that the proposed gene expression changes are epigenetically modulated via altered DNA-methylation. The specific aims were to investigate if (i) ELS and adolescent stress as single stressors induce changes in CB1R and FAAH expression (ii) ELS exposure influences the effect of adolescent stress on CB1R and FAAH expression, and (iii) if the proposed gene expression changes are paralleled by changes of DNA methylation. The following experimental groups were investigated: (1) non-stressed controls (CON), (2) ELS exposure (ELS), (3) adolescent stress exposure (forced swimming; FS), (4) ELS + FS exposure. We found an up-regulation of CB1R expression in both single-stressor groups and a reduction back to control levels in the ELS + FS group. An up-regulation of FAAH expression was found only in the FS group. The data indicate that ELS, i.e., stress during a very immature stage of brain development, exerts a buffering programming effect on gene expression changes induced by adolescent stress. The detected gene expression changes were accompanied by altered DNA methylation patterns in the promoter region of these genes, specifically, a negative correlation of mean CB1R DNA methylation with gene expression was found. Our results also indicate that ELS induces a long-term "(re)programming" effect, characterized by CpG-site specific changes within the promoter regions of the two genes that influence gene expression changes in response to FS at adolescence.
Collapse
Affiliation(s)
- Arijana Demaili
- Department of Zoology and Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Anna Portugalov
- Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa, Israel.,The Integrated Brain and Behavior Research Center, University of Haifa, Haifa, Israel
| | - Michal Dudai
- Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa, Israel.,The Integrated Brain and Behavior Research Center, University of Haifa, Haifa, Israel
| | - Mouna Maroun
- The Integrated Brain and Behavior Research Center, University of Haifa, Haifa, Israel.,Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Irit Akirav
- Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa, Israel.,The Integrated Brain and Behavior Research Center, University of Haifa, Haifa, Israel
| | - Katharina Braun
- Department of Zoology and Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Center for Brain and Behavioral Science, Magdeburg, Germany
| | - Jörg Bock
- Department of Zoology and Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Center for Brain and Behavioral Science, Magdeburg, Germany.,Project Group (PG) Epigenetics and Structural Plasticity, Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
9
|
Grochecki P, Smaga I, Surowka P, Marszalek-Grabska M, Kalaba P, Dragacevic V, Kotlinska P, Filip M, Lubec G, Kotlinska JH. Novel Dopamine Transporter Inhibitor, CE-123, Ameliorates Spatial Memory Deficits Induced by Maternal Separation in Adolescent Rats: Impact of Sex. Int J Mol Sci 2022; 23:ijms231810718. [PMID: 36142621 PMCID: PMC9503873 DOI: 10.3390/ijms231810718] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/06/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
Maternal separation (MS) is a key contributor to neurodevelopmental disorders, including learning disabilities. To test the hypothesis that dopamine signaling is a major factor in this, an atypical new dopamine transporter (DAT) inhibitor, CE-123, was assessed for its potential to counteract the MS-induced spatial learning and memory deficit in male and female rats. Hence, neonatal rats (postnatal day (PND)1 to 21) were exposed to MS (180 min/day). Next, the acquisition of spatial learning and memory (Barnes maze task) and the expression of dopamine D1 receptor, dopamine transporter (DAT), and the neuronal GTPase, RIT2, which binds DAT in the vehicle-treated rats were evaluated in the prefrontal cortex and hippocampus in the adolescent animals. The results show that MS impairs the acquisition of spatial learning and memory in rats, with a more severe effect in females. Moreover, the MS induced upregulation of DAT and dopamine D1 receptors expression in the prefrontal cortex and hippocampus in adolescent rats. Regarding RIT2, the expression was decreased in the hippocampus for both the males and females, however, in the prefrontal cortex, reduction was found only in the females, suggesting that there are region-specific differences in DAT endocytic trafficking. CE-123 ameliorated the behavioral deficits associated with MS. Furthermore, it decreased the MS-induced upregulation of D1 receptor expression level in the hippocampus. These effects were more noted in females. Overall, CE-123, an atypical DAT inhibitor, is able to restore cognitive impairment and dopamine signaling in adolescent rats exposed to MS—with more evident effect in females than males.
Collapse
Affiliation(s)
- Pawel Grochecki
- Department of Pharmacology and Pharmacodynamics, Medical University, Chodzki 4A, 20-093 Lublin, Poland
| | - Irena Smaga
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Paulina Surowka
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Marta Marszalek-Grabska
- Department of Experimental and Clinical Pharmacology, Medical University, Jaczewskiego 8B, 20-090 Lublin, Poland
| | - Predrag Kalaba
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, 1010 Vienna, Austria
- Paracelsus Private Medical University, 5020 Salzburg, Austria
| | - Vladimir Dragacevic
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, 1010 Vienna, Austria
| | | | - Malgorzata Filip
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Gert Lubec
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, 1010 Vienna, Austria
- Paracelsus Private Medical University, 5020 Salzburg, Austria
| | - Jolanta H. Kotlinska
- Department of Pharmacology and Pharmacodynamics, Medical University, Chodzki 4A, 20-093 Lublin, Poland
- Correspondence: ; Tel.: +48-81-448-7255; Fax: +48-81-448-7250
| |
Collapse
|
10
|
Kocamaz D, Franzke C, Gröger N, Braun K, Bock J. Early Life Stress-Induced Epigenetic Programming of Hippocampal NPY-Y2 Receptor Gene Expression Changes in Response to Adult Stress. Front Cell Neurosci 2022; 16:936979. [PMID: 35846564 PMCID: PMC9283903 DOI: 10.3389/fncel.2022.936979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Early Life Stress (ELS) can critically influence brain development and future stress responses and thus represents an important risk factor for mental health and disease. Neuropeptide Y (NPY) is discussed to be a key mediator of resilient vs. vulnerable adaptations and specifically, the NPY-Y2 receptor (Y2R) may be involved in the pathophysiology of depression due to its negative regulation of NPY-release. The present study addressed the hypotheses that ELS and adult stress (AS) affect the expression of hippocampal Y2R and that exposure to ELS induces an epigenetically mediated programming effect towards a consecutive stress exposure in adulthood. The specific aims were to investigate if (i) ELS or AS as single stressors induce changes in Y2 receptor gene expression in the hippocampus, (ii) the predicted Y2R changes are epigenetically mediated via promoter-specific DNA-methylation, (iii) the ELS-induced epigenetic changes exert a programming effect on Y2R gene expression changes in response to AS, and finally (iv) if the predicted alterations are sex-specific. Animals were assigned to the following experimental groups: (1) non-stressed controls (CON), (2) only ELS exposure (ELS), (3) only adult stress exposure (CON+AS), and (4) exposure to ELS followed by AS (ELS+AS). Using repeated maternal separation in mice as an ELS and swim stress as an AS we found that both stressors affected Y2R gene expression in the hippocampus of male mice but not in females. Specifically, upregulated expression was found in the CON+AS group. In addition, exposure to both stressors ELS+AS significantly reduced Y2R gene expression when compared to CON+AS. The changes in Y2R expression were paralleled by altered DNA-methylation patterns at the Y2R promoter, specifically, a decrease in mean DNA-methylation in the CON+AS males compared to the non-AS exposed groups and an increase in the ELS+AS males compared to the CON+AS males. Also, a strong negative correlation of mean DNA-methylation with Y2R expression was found. Detailed CpG-site-specific analysis of DNA-methylation revealed that ELS induced increased DNA-methylation only at specific CpG-sites within the Y2R promoter. It is tempting to speculate that these ELS-induced CpG-site-specific changes represent a “buffering” programming effect against elevations of Y2R expression induced by AS.
Collapse
Affiliation(s)
- Derya Kocamaz
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Caroline Franzke
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Nicole Gröger
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Katharina Braun
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Jörg Bock
- Center for Behavioral Brain Sciences, Magdeburg, Germany
- PG “Epigenetics and Structural Plasticity,” Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
- *Correspondence: Jörg Bock,
| |
Collapse
|
11
|
Canada's Colonial Genocide of Indigenous Peoples: A Review of the Psychosocial and Neurobiological Processes Linking Trauma and Intergenerational Outcomes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19116455. [PMID: 35682038 PMCID: PMC9179992 DOI: 10.3390/ijerph19116455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 12/04/2022]
Abstract
The policies and actions that were enacted to colonize Indigenous Peoples in Canada have been described as constituting cultural genocide. When one considers the long-term consequences from the perspective of the social and environmental determinants of health framework, the impacts of such policies on the physical and mental health of Indigenous Peoples go well beyond cultural loss. This paper addresses the impacts of key historical and current Canadian federal policies in relation to the health and well-being of Indigenous Peoples. Far from constituting a mere lesson in history, the connections between colonialist policies and actions on present-day outcomes are evaluated in terms of transgenerational and intergenerational transmission processes, including psychosocial, developmental, environmental, and neurobiological mechanisms and trauma responses. In addition, while colonialist policies have created adverse living conditions for Indigenous Peoples, resilience and the perseverance of many aspects of culture may be maintained through intergenerational processes.
Collapse
|
12
|
Buthmann J, Huang D, Casaccia P, O’Neill S, Nomura Y, Liu J. Prenatal Exposure to a Climate-Related Disaster Results in Changes of the Placental Transcriptome and Infant Temperament. Front Genet 2022; 13:887619. [PMID: 35571026 PMCID: PMC9099074 DOI: 10.3389/fgene.2022.887619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/14/2022] [Indexed: 11/25/2022] Open
Abstract
Maternal stress during pregnancy exerts long-term effects on the mental well-being of the offspring. However, the long-term effect of prenatal exposure on the offspring's mental status is only partially understood. The placenta plays a vital role in connecting the maternal side to the fetus, thereby serving as an important interface between maternal exposure and fetal development. Here, we profiled the placental transcriptome of women who were pregnant during a hurricane (Superstorm Sandy), which struck New York City in 2012. The offspring were followed longitudinally and their temperament was assessed during the first 6-12 months of age. The data identified a significant correlation between a Superstorm Sandy stress factor score and infant temperament. Further, analysis of the placental transcriptomes identified an enrichment of functional pathways related to inflammation, extracellular matrix integrity and sensory perception in the specimen from those infants with "Slow-to-Warm-up" temperament during the first year of life. Together, these findings provide initial evidence that maternal exposure to climate-related disasters results in altered placental transcriptome, which may be related to long-term emotional and behavioral consequences in children.
Collapse
Affiliation(s)
- Jessica Buthmann
- Department of Psychology, Stanford University, Stanford, CA, United States
| | - Dennis Huang
- The Graduate Center at the City University of New York, New York, NY, United States
| | - Patrizia Casaccia
- Advanced Science Research Center at the Graduate Center, Neuroscience Initiative, City University of New York, New York, NY, United States
| | - Sarah O’Neill
- The Graduate Center at the City University of New York, New York, NY, United States,The City College of New York at the City University of New York, New York, NY, United States
| | - Yoko Nomura
- Advanced Science Research Center at the Graduate Center, Neuroscience Initiative, City University of New York, New York, NY, United States,Department of Psychology, Queens College, City University of New York, New York, NY, United States,*Correspondence: Jia Liu, ; Yoko Nomura,
| | - Jia Liu
- Advanced Science Research Center at the Graduate Center, Neuroscience Initiative, City University of New York, New York, NY, United States,*Correspondence: Jia Liu, ; Yoko Nomura,
| |
Collapse
|
13
|
Maternal stress prior to conception impairs memory and decreases right dorsal hippocampal volume and basilar spine density in the prefrontal cortex of adult male offspring. Behav Brain Res 2022; 416:113543. [PMID: 34425182 DOI: 10.1016/j.bbr.2021.113543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 08/06/2021] [Accepted: 08/19/2021] [Indexed: 12/22/2022]
Abstract
Chronic parental stress impacts offspring functioning throughout life. Chronic variable stress prior to conception impairs offspring development in terms of behavior, neuroanatomy, and neurobiology. Previously, our lab demonstrated that even a consistent stressor experienced by the sire or the dam shapes offspring development beginning in early life. Here, we show how consistent maternal stress prior to conception influences the brain and behavior of offspring in adolescence and adulthood. Female Long-Evans rats were exposed to elevated platform stress twice daily for 27 consecutive days immediately prior to mating with non-stressed males. Male and female offspring were assessed in the open field and elevated plus maze in adolescence, and open field, elevated plus maze, Whishaw tray reaching, and Morris water task in adulthood. Offspring were then euthanized, and their brains were stained with Golgi-Cox solution and then examined for dendritic spine density and hippocampal volume. Major findings include deficits in spatial memory, decreased medial prefrontal cortex spine density, and reduced right dorsal hippocampal volume in male offspring only. This work illustrates that the effects of consistent maternal stress prior to conception are lifelong and highly sexually dimorphic.
Collapse
|
14
|
Cumulative life stressors and stress response to threatened preterm labour as birth date predictors. Arch Gynecol Obstet 2021; 305:1421-1429. [PMID: 34549310 DOI: 10.1007/s00404-021-06251-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/01/2021] [Indexed: 02/05/2023]
Abstract
PURPOSE Preterm birth represents one of the main causes of neonatal morbimortality and a risk factor for neurodevelopmental disorders. Appropriate predictive methods for preterm birth outcome, which consequently would facilitate prevention programs, are needed. We aim to predict birth date in women with a threatened preterm labour (TPL) based on stress response to TPL diagnosis, cumulative life stressors, and relevant obstetric variables. METHODS A prospective cohort of 157 pregnant women with TPL diagnosis between 24 and 31 weeks gestation formed the study sample. To estimate the stress response to TPL, maternal salivary cortisol, α-amylase levels, along with anxiety and depression symptoms were measured. To determine cumulative life stressors, previous traumas, social support, and family functioning were registered. Then, linear regression models were used to examine the effect of potential predictors of birth date. RESULTS Lower family adaptation, higher Body Mass Index (BMI), higher cortisol levels and TPL diagnosis week were the main predictors of birth date. Gestational week at TPL diagnosis showed a non-linear interaction with cortisol levels: TPL women with middle- and high-cortisol levels before 29 weeks of gestation went into imminent labour. CONCLUSION A combination of stress response to TPL diagnosis (salivary cortisol) and cumulative life stressors (family adaptation) together with obstetric factors (TPL gestational week and BMI) was the best birth date predictor. Therefore, a psychosocial therapeutic intervention program aimed to increase family adaptation and decrease cortisol levels at TPL diagnosis as well as losing weight, may prevent preterm birth in symptomatic women.
Collapse
|
15
|
Mustafin RN, Kazantseva AV, Enikeeva RF, Malykh SB, Khusnutdinova EK. Longitudinal genetic studies of cognitive characteristics. Vavilovskii Zhurnal Genet Selektsii 2021; 24:87-95. [PMID: 33659785 PMCID: PMC7716536 DOI: 10.18699/vj20.599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The present review describes longitudinal studies of cognitive traits and functions determining the causes of their variations and their possible correction to prevent cognitive impairment. The present study reviews the involvement of such environmental factors as nutrition, prenatal maternal stress, social isolation and others in cognitive functioning. The role of epigenetic factors in the implementation of environmental effects in cognitive characteristics is revealed. Considering the epigenome significance, several studies were focused on the design of substances affecting methylation and histone modification, which can be used for the treatment of cognitive disorders. The appropriate correction of epigenetic factors related to environmental differences in cognitive abilities requires to determine the mechanisms of chromatin modifications and variations in DNA methylation. Transposons representing stress-sensitive DNA elements appeared to mediate the environmental influence on epigenetic modifications. They can explain the mechanism of transgenerational transfer of information on cognitive abilities. Recently, large-scale meta-analyses based on the results of studies, which identified genetic associations with various cognitive traits, were carried out. As a result, the role of genes actively expressed in the brain, such as BDNF, COMT, CADM2, CYP2D6, APBA1, CHRNA7, PDE1C, PDE4B, and PDE4D in cognitive abilities was revealed. The association between cognitive functioning and genes, which have been previously involved in developing psychiatric disorders (MEF2C, CYP2D6, FAM109B, SEPT3, NAGA, TCF20, NDUFA6 genes), was revealed, thus indicating the role of the similar mechanisms of genetic and neural networks in both normal cognition and cognitive impairment. An important role in both processes belongs to common epigenetic factors. The genes involved in DNA methylation (DNMT1, DNMT3B, and FTO), histone modifications (CREBBP, CUL4B, EHMT1, EP300, EZH2, HLCS, HUWE1, KAT6B, KMT2A, KMT2D, KMT2C, NSD1, WHSC1, and UBE2A) and chromatin remodeling (ACTB, ARID1A, ARID1B, ATRX, CHD2, CHD7, CHD8, SMARCA2, SMARCA4, SMARCB1, SMARCE1, SRCAP, and SS18L1) are associated with increased risk of psychiatric diseases with cognitive deficiency together with normal cognitive functioning. The data on the correlation between transgenerational epigenetic inheritance of cognitive abilities and the insert of transposable elements in intergenic regions is discussed. Transposons regulate genes functioning in the brain due to the processing of their transcripts into non-coding RNAs. The content, quantity and arrangement of transposable elements in human genome, which do not affect changes in nucleotide sequences of protein encoding genes, but affect their expression, can be transmitted to the next generation.
Collapse
Affiliation(s)
| | - A V Kazantseva
- Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia
| | - R F Enikeeva
- Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia
| | - S B Malykh
- Psychological Institute of the Russian Academy of Education, Moscow, Russia M.V. Lomonosov Moscow State University, Laboratory of psychology of professions and conflicts, Moscow, Russia
| | - E K Khusnutdinova
- Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia M.V. Lomonosov Moscow State University, Laboratory of psychology of professions and conflicts, Moscow, Russia
| |
Collapse
|
16
|
Antonelli MC, Frasch MG, Rumi M, Sharma R, Zimmermann P, Molinet MS, Lobmaier SM. Early Biomarkers and Intervention Programs for the Infant Exposed to Prenatal Stress. Curr Neuropharmacol 2021; 20:94-106. [PMID: 33550974 PMCID: PMC9199558 DOI: 10.2174/1570159x19666210125150955] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/06/2020] [Accepted: 01/16/2021] [Indexed: 11/22/2022] Open
Abstract
Functional development of affective and reward circuits, cognition and response inhibition later in life exhibits vulnerability periods during gestation and early childhood. Extensive evidence supports the model that exposure to stressors in the gestational period and early postnatal life increases an individual's susceptibility to future impairments of functional development. Recent versions of this model integrate epigenetic mechanisms of the developmental response. Their understanding will guide the future treatment of the associated neuropsychiatric disorders. A combination of non-invasively obtainable physiological signals and epigenetic biomarkers related to the principal systems of the stress response, the Hypothalamic-Pituitary axis (HPA) and the Autonomic Nervous System (ANS), are emerging as the key predictors of neurodevelopmental outcomes. Such electrophysiological and epigenetic biomarkers can prove to timely identify children benefiting most from early intervention programs. Such programs should ameliorate future disorders in otherwise healthy children. The recently developed Early Family-Centered Intervention Programs aim to influence the care and stimuli provided daily by the family and improving parent/child attachment, a key element for healthy socio-emotional adult life. Although frequently underestimated, such biomarker-guided early intervention strategy represents a crucial first step in the prevention of future neuropsychiatric problems and in reducing their personal and societal impact.
Collapse
Affiliation(s)
- Marta C Antonelli
- Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis", Facultad de Medicina, UBA, Buenos Aires. Argentina
| | - Martin G Frasch
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA. United States
| | - Mercedes Rumi
- Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis", Facultad de Medicina, UBA, Buenos Aires. Argentina
| | - Ritika Sharma
- Department of Obstetrics and Gynecology, Klinikum rechts der Isar, Technical University of Munich. Germany
| | - Peter Zimmermann
- Department of Obstetrics and Gynecology, Klinikum rechts der Isar, Technical University of Munich. Germany
| | - Maria Sol Molinet
- Department of Obstetrics and Gynecology, Klinikum rechts der Isar, Technical University of Munich. Germany
| | - Silvia M Lobmaier
- Department of Obstetrics and Gynecology, Klinikum rechts der Isar, Technical University of Munich. Germany
| |
Collapse
|
17
|
Cissé YM, Chan JC, Nugent BM, Banducci C, Bale TL. Brain and placental transcriptional responses as a readout of maternal and paternal preconception stress are fetal sex specific. Placenta 2020; 100:164-170. [PMID: 32980048 DOI: 10.1016/j.placenta.2020.06.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/09/2020] [Accepted: 06/25/2020] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Despite a wealth of epidemiological evidence that cumulative parental lifetime stress experiences prior to conception are determinant of offspring developmental trajectories, there is a lack of insight on how these previous stress experiences are stored and communicated intergenerationally. Preconception experiences may impact offspring development through alterations in transcriptional regulation of the placenta, a major determinant of offspring growth and sex-specific developmental outcomes. We evaluated the lasting influence of maternal and paternal preconception stress (PCS) on the mid-gestation placenta and fetal brain, utilizing their transcriptomes as proximate readouts of intergenerational impact. METHODS To assess the combined vs. dominant influence of maternal and paternal preconception environment on sex-specific fetal development, we compared transcriptional outcomes using a breeding scheme of one stressed parent, both stressed parents, or no stressed parents as controls. RESULTS Interestingly, offspring sex affected the directionality of transcriptional changes in response to PCS, where male tissues showed a predominant downregulation, and female tissues showed an upregulation. There was also an intriguing effect of parental sex on placental programming where paternal PCS drove more effects in female placentas, while maternal PCS produced more transcriptional changes in male placentas. However, in the fetal brain, maternal PCS produced overall more changes in gene expression than paternal PCS, supporting the idea that the intrauterine environment may have a larger overall influence on the developing brain than it does on shaping the placenta. DISCUSSION Preconception experiences drive changes in the placental and the fetal brain transcriptome at a critical developmental timepoint. While not determinant, these altered transcriptional states may underlie sex-biased risk or resilience to stressful experiences later in life.
Collapse
Affiliation(s)
- Yasmine M Cissé
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD, 21201, United States
| | - Jennifer C Chan
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD, 21201, United States
| | - Bridget M Nugent
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD, 21201, United States
| | - Caitlin Banducci
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD, 21201, United States
| | - Tracy L Bale
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD, 21201, United States.
| |
Collapse
|
18
|
Early-Life m 6A RNA Demethylation by Fat Mass and Obesity-Associated Protein (FTO) Influences Resilience or Vulnerability to Heat Stress Later in Life. eNeuro 2020; 7:ENEURO.0549-19.2020. [PMID: 32554504 PMCID: PMC7329298 DOI: 10.1523/eneuro.0549-19.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 05/07/2020] [Accepted: 05/10/2020] [Indexed: 12/20/2022] Open
Abstract
Early life heat stress leads to either resilience or vulnerability to a similar stress later in life. We have previously shown that this tuning of the stress response depends on neural network organization in the preoptic anterior hypothalamus (PO/AH) thermal response center and is regulated by epigenetic mechanisms. Here, we expand our understanding of stress response establishment describing a role for epitranscriptomic regulation of the epigenetic machinery. Specifically, we explore the role of N6-methyladenosine (m6A) RNA methylation in long-term response to heat stress. Heat conditioning of 3-d-old chicks diminished m6A RNA methylation in the hypothalamus, simultaneously with an increase in the mRNA levels of the m6A demethylase, fat mass and obesity-associated protein (FTO). Moreover, a week later, methylation of two heat stress-related transcripts, histone 3 lysine 27 (H3K27) methyltransferase, enhancer of zeste homolog 2 (EZH2) and brain-derived neurotrophic factor (BDNF), were downregulated in harsh-heat-conditioned chicks. During heat challenge a week after conditioning, there was a reduction of m6A levels in mild-heat-conditioned chicks and an elevation in harsh-heat-conditioned ones. This increase in m6A modification was negatively correlated with the expression levels of both BDNF and EZH2. Antisense “knock-down” of FTO caused an elevation of global m6A RNA methylation, reduction of EZH2 and BDNF mRNA levels, and decrease in global H3K27 dimethylation as well as dimethyl H3K27 level along BDNF coding region, and, finally, led to heat vulnerability. These findings emphasize the multilevel regulation of gene expression, including both epigenetic and epitranscriptomic regulatory mechanisms, fine-tuning the neural network organization in a response to stress.
Collapse
|
19
|
Bögi E, Belovičová K, Moravčíková L, Csatlósová K, Dremencov E, Lacinova L, Dubovicky M. Pre-gestational stress impacts excitability of hippocampal cells in vitro and is associated with neurobehavioral alterations during adulthood. Behav Brain Res 2019; 375:112131. [DOI: 10.1016/j.bbr.2019.112131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/23/2019] [Accepted: 07/31/2019] [Indexed: 12/11/2022]
|
20
|
Henrique FL, Bezerra HVA, Polato HZ, Fernandes AC, Zanella AJ, Alves MBR, Celeghini ECC, Batissaco L, Strefezzi RDF, Pulido-Rodríguez LF, Hooper HB, Titto CG. Maternal stress in sheep during late pregnancy influences sperm quality in early puberty of the offspring. Theriogenology 2019; 145:158-166. [PMID: 31711696 DOI: 10.1016/j.theriogenology.2019.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 09/27/2019] [Accepted: 10/09/2019] [Indexed: 02/06/2023]
Abstract
Stress at the end of sheep gestation can damage the reproductive development of young males. The aim of the present study was to evaluate the effects of LPS administration in the last third of sheep pregnancy on the reproductive parameters of prepubertal rams. Thirty-six pregnant nulliparous ewes (12 ± 2 months old; 45 ± 6 kg) were assigned to two treatments, LPS (E. coli; 0.8 μg kg-1) and control (placebo/saline) administered in late pregnancy (120 days post-conception). The animals gave birth to 17 male lambs (11 LPS; 8 control). Reproductive development of the young rams was analyzed from 5 to 12 months of age. A completely randomized design in double factorial scheme was used. The data were analyzed by analysis of variance. The model included treatment (LPS; control), age as main effects and their interactions, and the animal as a repeated measure. Means were compared by the PDIFF-SAS (Pr > |t|) at P < 0.05. An effect of age was observed for scrotal circumference, testicular consistency, homogeneity of testicular parenchyma, vascularization, semen quantity and quality, and blood testosterone concentration (P < 0.05). LPS increased sperm defects (P < 0.05) but an interaction with age was not observed (P > 0.05) with higher abnormalities only during months 8 and 9 (P < 0.05) and not thereafter. In summary, LPS did not cause long-term damage to testicular morphology analyzed from the onset of puberty to sexual maturity. However, LPS treatment affected sperm morphology during early puberty of the offspring.
Collapse
Affiliation(s)
- Fábio Luís Henrique
- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, Campus Fernando Costa, Pirassununga, SP, 13635-900, Brazil
| | - Helena Viel Alves Bezerra
- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, Campus Fernando Costa, Pirassununga, SP, 13635-900, Brazil
| | - Heloise Zavatieri Polato
- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, Campus Fernando Costa, Pirassununga, SP, 13635-900, Brazil
| | - Arícia Christofaro Fernandes
- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, Campus Fernando Costa, Pirassununga, SP, 13635-900, Brazil
| | - Adroaldo José Zanella
- Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, Campus Fernando Costa, Pirassununga, SP, 13635-900, Brazil
| | - Maíra Bianchi Rodrigues Alves
- Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, Campus Fernando Costa, Pirassununga, SP, 13635-900, Brazil
| | - Eneiva Carla Carvalho Celeghini
- Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, Campus Fernando Costa, Pirassununga, SP, 13635-900, Brazil
| | - Leonardo Batissaco
- Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, Campus Fernando Costa, Pirassununga, SP, 13635-900, Brazil
| | - Ricardo de Francisco Strefezzi
- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, Campus Fernando Costa, Pirassununga, SP, 13635-900, Brazil
| | - Lina Fernanda Pulido-Rodríguez
- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, Campus Fernando Costa, Pirassununga, SP, 13635-900, Brazil
| | - Henrique Barbosa Hooper
- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, Campus Fernando Costa, Pirassununga, SP, 13635-900, Brazil
| | - Cristiane Gonçalves Titto
- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, Campus Fernando Costa, Pirassununga, SP, 13635-900, Brazil.
| |
Collapse
|
21
|
Drenth Olivares M, Kuiper DB, Haadsma ML, Heineman KR, Heineman MJ, Hadders-Algra M. IVF procedures are not, but subfertility is associated with neurological condition of 9-year-old offspring. Early Hum Dev 2019; 129:38-44. [PMID: 30639464 DOI: 10.1016/j.earlhumdev.2018.12.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/18/2018] [Accepted: 12/21/2018] [Indexed: 12/13/2022]
Abstract
In vitro fertilization (IVF) is not associated with neurological abnormalities in offspring's early childhood. Yet, it is unclear whether this is also true for school age. Neither do we know the role of parental subfertility in offspring's neurological development. The present study examined neurological condition at 9 years of 57 singletons born after controlled ovarian hyperstimulation IVF (COH-IVF), 46 singletons born after modified natural cycle IVF (MNC-IVF) and 66 singletons born to subfertile parents after natural conception (Sub-NC). To assess the effect of subfertility, the groups were pooled to form a subfertile group, and compared with a prospectively followed fertile reference group (n = 282). The sensitive Minor Neurological Dysfunction (MND) examination was used, resulting in the detailed Neurological Optimality Score (NOS) and the prevalence of the clinically relevant complex MND. Neurological condition of the three subfertile groups did not differ significantly: median NOS was 53 in each subfertile group and the prevalence of complex MND in the three subfertile groups was 30%, 37% and 36%, respectively. However, the NOS was lower and the prevalence of complex MND higher in children born to subfertile couples than in children of fertile couples (adjusted mean difference [95% CI]: -4.48 [-5.53 to -3.42]) and adjusted OR [95% CI]: 5.13 [2.60-10.16], respectively). We conclude that ovarian hyperstimulation, in vitro procedures, and the combination of both were not associated with a less favourable neurological outcome of 9-year-old singletons. However, the presence of parental subfertility was associated with less favourable neurological outcome of offspring at 9 years follow up.
Collapse
Affiliation(s)
- Machiel Drenth Olivares
- University of Groningen, University Medical Center Groningen, Department of Paediatrics, Division Developmental Neurology, Hanzeplein 1, Groningen 9713 GZ, the Netherlands
| | - Derk B Kuiper
- University of Groningen, University Medical Center Groningen, Department of Paediatrics, Division Developmental Neurology, Hanzeplein 1, Groningen 9713 GZ, the Netherlands
| | - Maaike L Haadsma
- University of Groningen, University Medical Center Groningen, Department of Genetics, Hanzeplein 1, Groningen 9713 GZ, the Netherlands
| | - Kirsten R Heineman
- University of Groningen, University Medical Center Groningen, Department of Paediatrics, Division Developmental Neurology, Hanzeplein 1, Groningen 9713 GZ, the Netherlands; SEIN: Stichting Epilepsie Instellingen Nederland, location Zwolle, Dr Denekampweg 20, Zwolle 8025 BV, the Netherlands
| | - Maas Jan Heineman
- University of Amsterdam, Academic Medical Center, Department of Obstetrics and Gynaecology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
| | - Mijna Hadders-Algra
- University of Groningen, University Medical Center Groningen, Department of Paediatrics, Division Developmental Neurology, Hanzeplein 1, Groningen 9713 GZ, the Netherlands.
| |
Collapse
|
22
|
Immune Challenge Alters Reactivity of Hippocampal Noradrenergic System in Prenatally Stressed Aged Mice. Neural Plast 2019; 2019:3152129. [PMID: 30804990 PMCID: PMC6360630 DOI: 10.1155/2019/3152129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/07/2018] [Indexed: 12/18/2022] Open
Abstract
Prenatal stress (PS) has long-term sequelae for the morphological and functional status of the central nervous system of the progeny. A PS-induced proinflammatory status of the organism may result in an impairment of both hippocampal synaptic plasticity and hippocampus-dependent memory formation in adults. We addressed here the question of how PS-induced alterations in the immune response in young and old mice may contribute to changes in hippocampal function in aging. Immune stimulation (via LPS injection) significantly affected the ability of the hippocampal CA3-CA1 synapse of PS mice to undergo long-term potentiation (LTP). Elevated corticosterone level in the blood of aged PS mice that is known to influence LTP magnitude indicates a chronic activation of the HPA axis due to the in utero stress exposure. We investigated the contribution of adrenergic receptors to the modulation of hippocampal synaptic plasticity of aged mice and found that impaired LTP in the PS-LPS group was indeed rescued by application of isoproterenol (a nonspecific noradrenergic agonist). Further exploration of the mechanisms of the observed phenomena will add to our understanding of the interaction between PS and proinflammatory immune activation and its contribution to the functional and structural integrity of the aging brain.
Collapse
|
23
|
Abstract
The prenatal period is increasingly considered as a crucial target for the primary prevention of neurodevelopmental and psychiatric disorders. Understanding their pathophysiological mechanisms remains a great challenge. Our review reveals new insights from prenatal brain development research, involving (epi)genetic research, neuroscience, recent imaging techniques, physical modeling, and computational simulation studies. Studies examining the effect of prenatal exposure to maternal distress on offspring brain development, using brain imaging techniques, reveal effects at birth and up into adulthood. Structural and functional changes are observed in several brain regions including the prefrontal, parietal, and temporal lobes, as well as the cerebellum, hippocampus, and amygdala. Furthermore, alterations are seen in functional connectivity of amygdalar-thalamus networks and in intrinsic brain networks, including default mode and attentional networks. The observed changes underlie offspring behavioral, cognitive, emotional development, and susceptibility to neurodevelopmental and psychiatric disorders. It is concluded that used brain measures have not yet been validated with regard to sensitivity, specificity, accuracy, or robustness in predicting neurodevelopmental and psychiatric disorders. Therefore, more prospective long-term longitudinal follow-up studies starting early in pregnancy should be carried out, in order to examine brain developmental measures as mediators in mediating the link between prenatal stress and offspring behavioral, cognitive, and emotional problems and susceptibility for disorders.
Collapse
|
24
|
Jenkins S, Harker A, Gibb R. Maternal Preconception Stress Alters Prefrontal Cortex Development in Long-Evans Rat Pups without Changing Maternal Care. Neuroscience 2018; 394:98-108. [PMID: 30366025 DOI: 10.1016/j.neuroscience.2018.10.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 10/11/2018] [Accepted: 10/12/2018] [Indexed: 01/08/2023]
Abstract
Stress during development can shift the typical developmental trajectory. Maternal stress prior to conception has recently been shown to exert similar influences on the offspring. The present study questioned if a consistent maternal stressor prior to conception (elevated platform stress) would impact the pre-weaning development of offspring brain and behavior, and if maternal care was vulnerable to this experience. Adult female Long-Evans rats were subjected to elevated platform stress for 27 days prior to mating with non-stressed males. Maternal care was monitored, and pups were assessed in two tests of early behavioral development, negative geotaxis and open field. Pups were perfused at weaning and their brains were extracted and stained with Cresyl Violet, allowing gross measurements of cortical and subcortical structures and estimates of neuron density. Main findings indicate that a change in prefrontal cortical thickness is evident despite no change in maternal care. Female offspring show a decrease in medial-dorsal thalamus size. The current study failed to find an effect of maternal preconception stress on early behavioral development. These results suggest that the PFC, and likely behavior dependent on the PFC, is vulnerable to maternal preconception stress and that a strong sex effect is evident. Further studies should examine how such offspring fare using a lifespan model and investigate potential mechanisms responsible for these effects.
Collapse
Affiliation(s)
- Serena Jenkins
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, 4401 University Dr W, Lethbridge, AB T1K 3M4, Canada.
| | - Allonna Harker
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, 4401 University Dr W, Lethbridge, AB T1K 3M4, Canada.
| | - Robbin Gibb
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, 4401 University Dr W, Lethbridge, AB T1K 3M4, Canada.
| |
Collapse
|
25
|
Köhler JC, Gröger N, Lesse A, Guara Ciurana S, Rether K, Fegert J, Bock J, Braun K. Early-Life Adversity Induces Epigenetically Regulated Changes in Hippocampal Dopaminergic Molecular Pathways. Mol Neurobiol 2018; 56:3616-3625. [PMID: 30173406 PMCID: PMC6476847 DOI: 10.1007/s12035-018-1199-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/26/2018] [Indexed: 12/17/2022]
Abstract
Early-life adversity (ELA) represents a major risk factor for the development of behavioral dysfunctions and mental disorders later in life. On the other hand, dependent on type, time point, and duration, ELA exposure can also induce adaptations, which result in better stress coping and resilience later in life. Guided by the hypothesis that chronic exposure to ELA results in dysfunctional brain and behavior, whereas short exposure to ELA may result in resilience, the behavioral and neurobiological consequences of long-term separation stress (LTSS) and short-term separation stress (STSS) were compared in a mouse model for ELA. In line with our hypothesis, we found that LTSS induced depressive-like behavior, whereas STSS reduced depressive-like behavioral symptoms. We then tested the hypothesis that the opposite behavioral outcomes of the two stress paradigms may be mediated by functional, epigenetically regulated changes of dopaminergic modulation in the hippocampal formation. We found that STSS exposure elevated dopamine receptor D1 (DRD1) gene expression and decreased gene expression of its downstream modulator DARPP-32 (32-kDa dopamine- and cAMP-regulated phosphoprotein), which was paralleled by decreased H3 acetylation at its gene promoter region. In contrast, LTSS elevated DARPP-32 gene expression, which was not paralleled by changes in histone acetylation and DRD1 gene expression. These findings indicate that short- and long-term neonatal exposure to ELA induces changes in dopaminergic molecular pathways, some of which are epigenetically regulated and which either alleviate or aggravate depressive-like symptoms later in life.
Collapse
Affiliation(s)
- Jana C Köhler
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg, Leipziger Straße 44, Bldg. 91, 39120, Magdeburg, Germany.,PG "Epigenetics and Structural Plasticity", Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - N Gröger
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg, Leipziger Straße 44, Bldg. 91, 39120, Magdeburg, Germany
| | - A Lesse
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg, Leipziger Straße 44, Bldg. 91, 39120, Magdeburg, Germany
| | - S Guara Ciurana
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg, Leipziger Straße 44, Bldg. 91, 39120, Magdeburg, Germany
| | - K Rether
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg, Leipziger Straße 44, Bldg. 91, 39120, Magdeburg, Germany
| | - J Fegert
- Klinik für Kinder- und Jugendpsychiatrie/Psychotherapie, Universitätsklinikum Ulm, Ulm, Germany
| | - J Bock
- PG "Epigenetics and Structural Plasticity", Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Katharina Braun
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg, Leipziger Straße 44, Bldg. 91, 39120, Magdeburg, Germany. .,Center for Behavioral Brain Sciences, Magdeburg, Germany.
| |
Collapse
|
26
|
Bogi E, Belovicova K, Csatlosova K, Dubovicky M. Animal models of maternal depression for monitoring neurodevelopmental changes occurring in dams and offspring. Interdiscip Toxicol 2018; 10:35-39. [PMID: 30123034 PMCID: PMC6096864 DOI: 10.1515/intox-2017-0005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/17/2017] [Indexed: 01/03/2023] Open
Abstract
Depression is one of the most prevalent and life-threatening forms of mental illness affecting about 20% of the population. Depressive disorder as a biochemical phenomenon, was first recognized in the mid-20th century of research, however the etiology of this disease is still not well understood. Although the need to investigate depressive disorders has emerged from the needs of clinical practice, there are many preclinical studies, which brought new insights into this field of research. During experimental work it was crucial to develop appropriate animal models, where the neurohumoral mechanism was similar to humans. In the past decades, several animal models of maternal depression have been developed. We describe the three most popular rodent models of maternal depression which are based on 1. stress prior to gestation, 2. prenatal stress and 3. early life stress. The above-mentioned animal models appear to fulfill many criteria for a relevant animal model of depression; they alter the regulation of the HPA, induce signs of depression-like behavior and several antidepressant treatments can reverse the state induced by maternal stress. Although, they are not able to model all aspects of maternal depression, they are useful models for monitoring neurodevelopmental changes occurring in dams and offspring.
Collapse
Affiliation(s)
- Eszter Bogi
- Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Kristína Belovicova
- Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Bratislava, Slovak Republic.,Department of Pharmacology, Jessenius Faculty of Medicine, Comenius University, Martin, Slovak Republic
| | - Kristína Csatlosova
- Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Bratislava, Slovak Republic.,Department of Pharmacology, Jessenius Faculty of Medicine, Comenius University, Martin, Slovak Republic
| | - Michal Dubovicky
- Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| |
Collapse
|
27
|
Frasch MG, Baier CJ, Antonelli MC, Metz GAS. Perinatal Psychoneuroimmunology: Protocols for the Study of Prenatal Stress and Its Effects on Fetal and Postnatal Brain Development. Methods Mol Biol 2018; 1781:353-376. [PMID: 29705857 DOI: 10.1007/978-1-4939-7828-1_19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Prenatal stress (PS) impacts early behavioral, neuroimmune, and cognitive development. Pregnant rat models have been very valuable in examining the mechanisms of such fetal programming. A newer pregnant sheep model of maternal stress offers the unique advantages of chronic in utero monitoring and manipulation. This chapter presents the techniques used to model single and multigenerational stress exposures and their pleiotropic effects on the offspring.
Collapse
Affiliation(s)
- Martin G Frasch
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA.
| | - Carlos J Baier
- Departamento de Biología, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bioquímica y Farmacia (DBByF), Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Marta C Antonelli
- Facultad de Medicina, Instituto de Biología Celular y Neurociencia "Prof. Eduardo De Robertis", Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gerlinde A S Metz
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
28
|
Thomas MB, Becker JB. Sex differences in prenatal stress effects on cocaine pursuit in rats. Physiol Behav 2017; 203:3-9. [PMID: 29055747 DOI: 10.1016/j.physbeh.2017.10.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 10/02/2017] [Accepted: 10/17/2017] [Indexed: 11/29/2022]
Abstract
Disruption of early-life ontogeny has severe and persistent consequences for the health of the developing organism. Both clinical and preclinical findings indicate that such interference can be caused by maternal stress during the gestation period (prenatal stress [PS]). In rats, PS facilitates the rewarding and neurochemical-stimulating effects of drugs, suggesting that PS may represent a risk factor for drug abuse in humans. Very little, however, is known about its effects in females, even though sex differences in drug susceptibility have been well documented in no PS (NPS) controls. Thus, we tested for independent effects and interactions between maternal restraint stress during the last week of gestation and sex on drug use with an extended regimen of drug self-administration. Male and female rats were provided daily access to a large but controlled amount of cocaine for seven weeks. Drug pursuit during the final week was used to indicate susceptibility to developing an addiction-like phenotype, based on reports that drug use becomes increasingly compulsive-like after weeks of testing. Overall, females satisfied more addiction-like criteria than males, and the same was true for PS rats when compared to NPS controls. In addition, sex and PS interacted to disproportionately promote drug pursuit of females with a history of PS. These results indicate that sex differences in drug susceptibility persist with continued drug exposure, and that PS widens this difference by more severely affecting females. In all, PS may be a risk factor for drug addiction in humans, and to a greater extent in women vs. men.
Collapse
Affiliation(s)
- Mark B Thomas
- Psychology Department, University of Michigan, Ann Arbor, MI, United States; Sciformix, 1500 West Park Drive, Westborough, MA, United States
| | - Jill B Becker
- Psychology Department, University of Michigan, Ann Arbor, MI, United States; Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States; Neuroscience Program, Psychiatry Department, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|