1
|
Zając-Lamparska L, Zabielska-Mendyk E, Zapała D, Augustynowicz P. Cognitive training and retest learning effects on theta and alpha power in older and young adults: A perspective on the crunch hypothesis and the STAC-R model. Int J Clin Health Psychol 2025; 25:100568. [PMID: 40292420 PMCID: PMC12033919 DOI: 10.1016/j.ijchp.2025.100568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 04/03/2025] [Indexed: 04/30/2025] Open
Abstract
According to the STAC-R model, scaffolding enhancement is achievable through various interventions. Indicating forms of compensatory scaffolding, the STAC-R model refers to phenomena described in other theoretical models, such as the enhanced fronto-parietal recruitment described in the CRUNCH hypothesis. The presented study investigated whether working memory training can induce compensatory scaffolding in older adults through increased prefrontal and parietal involvement (indicated by changes in theta and alpha power). The sample comprised 90 individuals, including 45 participants from the experimental (22 older and 23 young adults) and 45 from the passive control group (21 older and 24 young adults). The age range was 60-75 years for older adults and 20-35 years for young adults. We assessed the effects of a 12-session working memory training with the use of the adaptive n-back task on theta and alpha power measured in frontal midline and central-parietal areas by EEG in older and young adults during the n-back task performance at three difficulty levels. At the behavioral level, we found a positive, significant improvement in cognitive performance in young adults from experimental group. In contrast, the positive changes in older adults were too small to prove statistically significant. At the level of neuronal activity, we observed not a training effect but a retest effect. It was revealed primarily for theta oscillations in older adults and manifested by increased theta power with higher task demands and equalization of theta power of older and younger persons in the post-test. For alpha oscillations, the retest effect was negligible, and its only manifestation observed in older adults was a reduction in the dependence of alpha power on task difficulty. The study results indicate limited potential for improving WM performance in older adults compared to young adults. The presence of the retest learning effect, instead of the training effect, proved that familiarity with the task was crucial, rather than regular training of its performance. Changes observed in older adults in theta power can be considered positive, and these results are consistent with the CRUNCH hypothesis of a compensatory role for increased executive control involvement. In turn, changes in the alpha power in the same group should be considered rather maladaptive. Nevertheless, given the overall study findings, it can be concluded that although the behavioral effects of training are stronger in young adults, the changes in neuronal activity resulting from the retest learning effect are more marked in older adults.
Collapse
Affiliation(s)
- Ludmiła Zając-Lamparska
- Faculty of Psychology, Department of General and Human Development Psychology, Kazimierz Wielki University in Bydgoszcz, Poland
| | - Emilia Zabielska-Mendyk
- Institute of Psychology, Department of Experimental Psychology, The John Paul II Catholic University of Lublin, Poland
| | - Dariusz Zapała
- Institute of Psychology, Department of Experimental Psychology, The John Paul II Catholic University of Lublin, Poland
| | - Paweł Augustynowicz
- Institute of Psychology, Department of Experimental Psychology, The John Paul II Catholic University of Lublin, Poland
| |
Collapse
|
2
|
Planton M, Nemmi F, Pages B, Albucher JF, Raposo N, Danet L, Péran P, Pariente J. Galantamine combined with cognitive rehabilitation on post-stroke cognitive impairment: a proof-of-concept study. Brain Inj 2025; 39:108-117. [PMID: 39359162 DOI: 10.1080/02699052.2024.2409355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 09/06/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024]
Abstract
PURPOSE We conducted a proof-of-concept study to evaluate the effects of galantamine treatment versus placebo combined to cognitive rehabilitation (CR) after stroke. MATERIALS AND METHODS In this 12-week, double blinded, randomized, controlled trial, patients were assigned to either combined approach of galantamine and CR (G-CR) or placebo and CR (P-CR). Primary outcome was the proportion of patients who crossed over from vascular cognitive disorder (VCD) to no-VCD at 12 weeks. Secondary outcomes included changes in cognition, mood, quality of life and the N-back fMRI paradigm, assessed at baseline, 6 and 12 weeks and after an 8-week washout period. RESULTS Ten patients were allocated to G-RC group, 12 to the P-RC group. After 12 weeks, 40.1% of all patients converted to no-VCD with similar proportions between groups. Both groups showed improvements in episodic and working memory, executive and quality of life after 6 weeks of CR. Decreased depression and anxiety were noted, and all benefits persisted after the washout period. An interaction effect was observed in the right parietal lobule during the N-back task. CONCLUSIONS Interventions lead to improved cognition and distinct cortical reorganization without being able to establish correlation between neural changes and behavioral measures.
Collapse
Affiliation(s)
- Mélanie Planton
- Department of Neurology, Toulouse University Hospital, Toulouse, France
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Federico Nemmi
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Berengère Pages
- Department of Neurology, Toulouse University Hospital, Toulouse, France
| | - Jean-François Albucher
- Department of Neurology, Toulouse University Hospital, Toulouse, France
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Nicolas Raposo
- Department of Neurology, Toulouse University Hospital, Toulouse, France
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Lola Danet
- Department of Neurology, Toulouse University Hospital, Toulouse, France
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Patrice Péran
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Jérémie Pariente
- Department of Neurology, Toulouse University Hospital, Toulouse, France
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| |
Collapse
|
3
|
Zhang Y, Fu J, Zhao X. Neural correlates of working memory training: An fMRI meta-analysis. Neuroimage 2024; 301:120885. [PMID: 39395643 DOI: 10.1016/j.neuroimage.2024.120885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/16/2024] [Accepted: 10/07/2024] [Indexed: 10/14/2024] Open
Abstract
Working memory (WM) can be improved by cognitive training. Numerous studies examined neural mechanisms underlying WM training, although with differing conclusions. Therefore, we conducted a meta-analysis to examine the neural substrates underlying WM training in healthy adults. Findings from global analyses showed substantial neural changes in the frontoparietal and subcortical regions. Results from training dosage analyses of WM training showed that shorter WM training could produce neural changes in the frontoparietal regions, whereas longer WM training could produce changes in the subcortical regions (striatum, anterior cingulate cortex, and insula). WM training-induced neural changes were also moderated by the type of training task, with updating tasks inducing neural changes in more regions than maintenance tasks. Overall, these results indicate that the neural changes associated with WM training occur in the frontoparietal network and dopamine-related brain areas, extending previous meta-analyses on WM training and advancing our understanding of the neural underpinnings of WM training effects.
Collapse
Affiliation(s)
- Yao Zhang
- School of Psychology, Key Laboratory of Behavioral and Mental Health of Gansu Province, Northwest Normal University, Lanzhou, China
| | - Junjun Fu
- School of Psychology, Key Laboratory of Behavioral and Mental Health of Gansu Province, Northwest Normal University, Lanzhou, China
| | - Xin Zhao
- School of Psychology, Key Laboratory of Behavioral and Mental Health of Gansu Province, Northwest Normal University, Lanzhou, China.
| |
Collapse
|
4
|
Jylkkä J, Stickley Z, Fellman D, Waris O, Ritakallio L, Little TD, Salmi J, Laine M. From task-general towards task-specific cognitive operations in a few minutes? Working memory performance as an adaptive process. Q J Exp Psychol (Hove) 2024:17470218241278272. [PMID: 39164820 DOI: 10.1177/17470218241278272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Measurement of cognitive functions is typically based on the implicit assumption that the mental architecture underlying cognitive task performance is constant throughout the task. In contrast, skill learning theory implies that cognitively demanding task performance is an adaptive process that progresses from initial heavy engagement of effortful and task-general metacognitive and executive control processes towards more automatic and task-specific performance. However, this hypothesis is rarely applied to the short time spans of traditional cognitive tasks such as working memory (WM) tasks. We utilised longitudinal structural equation models on two well-powered data sets to test the hypothesis that the initial stages of WM task performances load heavily on a task-general g-factor and then start to diverge towards factors specific to task structure. In line with the hypothesis, data from the first experiment (N = 296) were successfully fitted in a model with task-initial unity of the WM paradigm-specific latent factors, after which their intercorrelations started to diverge. The second experiment (N = 201) replicated this pattern except for one paradigm-specific latent factor. These preliminary results suggest that the processes underlying WM task performance tend to progress rapidly from more task-general towards task-specific, in line with the cognitive skill learning framework. Such task-internal dynamics has important implications for the measurement of complex cognitive functions.
Collapse
Affiliation(s)
- Jussi Jylkkä
- Department of Psychology, Åbo Akademi University, Abo, Finland
| | | | - Daniel Fellman
- Department of Psychology, Åbo Akademi University, Abo, Finland
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Applied Educational Science, Umeå University, Umeå, Sweden
| | - Otto Waris
- Department of Child Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
- INVEST Research Flagship Center, University of Turku, Turku, Finland
| | | | - Todd D Little
- College of Education, Texas Tech University, Lubbock, TX, USA
- Optentia Research Focus Area, North-West University, Vanderbijlpark, South Africa
| | - Juha Salmi
- Department of Neuroscience and Biomedical Engineering, Aalto University, Finland
| | - Matti Laine
- Department of Psychology, Åbo Akademi University, Abo, Finland
| |
Collapse
|
5
|
Su K, Huang Z, Li Q, Fan M, Li T, Yin D. Dissociable functional responses along the posterior-anterior gradient of the frontal and parietal cortices revealed by parametric working memory and training. Brain Struct Funct 2024; 229:1681-1696. [PMID: 38995366 DOI: 10.1007/s00429-024-02834-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/06/2024] [Indexed: 07/13/2024]
Abstract
While the storage capacity is limited, accumulating studies have indicated that working memory (WM) can be improved by cognitive training. However, understanding how exactly the brain copes with limited WM capacity and how cognitive training optimizes the brain remains inconclusive. Given the hierarchical functional organization of WM, we hypothesized that the activation profiles along the posterior-anterior gradient of the frontal and parietal cortices characterize WM load and training effects. To test this hypothesis, we recruited 51 healthy volunteers and adopted a parametric WM paradigm and training method. In contrast to exclusively strengthening the activation of posterior areas, a broader range of activation concurrently occurred in the anterior areas to cope with increased memory load for all subjects at baseline. Moreover, there was an imbalance in the responses of the posterior and anterior areas to the same increment of 1 item at different load levels. Although a general decrease in activation after adaptive training, the changes in the posterior and anterior areas were distinct at different memory loads. Particularly, we found that the activation gradient between the posterior and anterior areas was significantly increased at load 4-back after adaptive training, and the changes were correlated with improvement in WM performance. Together, our results demonstrate a shift in the predominant role of posterior and anterior areas in the frontal and parietal cortices when approaching WM capacity limits. Additionally, the training-induced performance improvement likely benefits from the elevated neural efficiency reflected in the increased activation gradient between the posterior and anterior areas.
Collapse
Affiliation(s)
- Kaiqiang Su
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, 3663 North Zhong-Shan Road, Shanghai, 200062, China
| | - Ziyi Huang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, 3663 North Zhong-Shan Road, Shanghai, 200062, China
| | - Qianwen Li
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, 200062, China
| | - Mingxia Fan
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, 200062, China
| | - Ting Li
- Shanghai Changning Mental Health Center, Shanghai, 200335, China
| | - Dazhi Yin
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, 3663 North Zhong-Shan Road, Shanghai, 200062, China.
- Shanghai Changning Mental Health Center, Shanghai, 200335, China.
- Key Laboratory of Philosophy and Social Science of Anhui Province on Adolescent Mental Health and Crisis Intelligence Intervention, Hefei Normal University, Hefei, 241002, China.
| |
Collapse
|
6
|
Long K, Zhang X, Wang N, Lei H. Event-related prefrontal activations during online video game playing are modulated by game mechanics, physiological arousal and the amount of daily playing. Behav Brain Res 2024; 469:115038. [PMID: 38705282 DOI: 10.1016/j.bbr.2024.115038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/09/2024] [Accepted: 04/30/2024] [Indexed: 05/07/2024]
Abstract
There is a trend to study human brain functions in ecological contexts and in relation to human factors. In this study, functional near-infrared spectroscopy (fNIRS) was used to record real-time prefrontal activities in 42 male university student habitual video game players when they played a round of multiplayer online battle arena game, League of Legends. A content-based event coding approach was used to analyze regional activations in relation to event type, physiological arousal indexed by heart rate (HR) change, and individual characteristics of the player. Game events Slay and Slain were found to be associated with similar HR and prefrontal responses before the event onset, but differential responses after the event onset. Ventrolateral prefrontal cortex (VLPFC) activation preceding the Slay onset correlated positively with HR change, whereas activations in dorsolateral prefrontal cortex (DLPFC) and rostral frontal pole area (FPAr) preceding the Slain onset were predicted by self-reported hours of weekly playing (HoWP). Together, these results provide empirical evidence to support the notion that event-related regional prefrontal activations during online video game playing are shaped by game mechanics, in-game dynamics of physiological arousal and individual characteristics the players.
Collapse
Affiliation(s)
- Kehong Long
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei, PR China; University of Chinese Academy of Sciences, Beijing, PR China
| | - Xuzhe Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei, PR China; University of Chinese Academy of Sciences, Beijing, PR China
| | - Ningxin Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei, PR China; Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Hao Lei
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei, PR China; Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; University of Chinese Academy of Sciences, Beijing, PR China.
| |
Collapse
|
7
|
Yang X, Zeng Y, Jiao G, Gan X, Linden D, Hernaus D, Zhu C, Li K, Yao D, Yao S, Jiang Y, Becker B. A brief real-time fNIRS-informed neurofeedback training of the prefrontal cortex changes brain activity and connectivity during subsequent working memory challenge. Prog Neuropsychopharmacol Biol Psychiatry 2024; 132:110968. [PMID: 38354898 DOI: 10.1016/j.pnpbp.2024.110968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 11/06/2023] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
Working memory (WM) represents a building-block of higher cognitive functions and a wide range of mental disorders are associated with WM impairments. Initial studies have shown that several sessions of functional near-infrared spectroscopy (fNIRS) informed real-time neurofeedback (NF) allow healthy individuals to volitionally increase activity in the dorsolateral prefrontal cortex (DLPFC), a region critically involved in WM. For the translation to therapeutic or neuroenhancement applications, however, it is critical to assess whether fNIRS-NF success transfers into neural and behavioral WM enhancement in the absence of feedback. We therefore combined single-session fNIRS-NF of the left DLPFC with a randomized sham-controlled design (N = 62 participants) and a subsequent WM challenge with concomitant functional MRI. Over four runs of fNIRS-NF, the left DLPFC NF training group demonstrated enhanced neural activity in this region, reflecting successful acquisition of neural self-regulation. During the subsequent WM challenge, we observed no evidence for performance differences between the training and the sham group. Importantly, however, examination of the fMRI data revealed that - compared to the sham group - the training group exhibited significantly increased regional activity in the bilateral DLPFC and decreased left DLPFC - left anterior insula functional connectivity during the WM challenge. Exploratory analyses revealed a negative association between DLPFC activity and WM reaction times in the NF group. Together, these findings indicate that healthy individuals can learn to volitionally increase left DLPFC activity in a single training session and that the training success translates into WM-related neural activation and connectivity changes in the absence of feedback. This renders fNIRS-NF as a promising and scalable WM intervention approach that could be applied to various mental disorders.
Collapse
Affiliation(s)
- Xi Yang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital; University of Electronic Science and Technology of China, Chengdu, China; MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands
| | - Yixu Zeng
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital; University of Electronic Science and Technology of China, Chengdu, China; MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Guojuan Jiao
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital; University of Electronic Science and Technology of China, Chengdu, China; MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xianyang Gan
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital; University of Electronic Science and Technology of China, Chengdu, China; MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - David Linden
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands
| | - Dennis Hernaus
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands
| | - Chaozhe Zhu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China
| | - Keshuang Li
- School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Dezhong Yao
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Shuxia Yao
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yihan Jiang
- Center for the Cognitive Science of Language, Beijing Language and Culture University, Beijing, China.
| | - Benjamin Becker
- The University of Hong Kong, State Key Laboratory of Brain and Cognitive Sciences, Hong Kong, China; The University of Hong Kong, Department of Psychology, Hong Kong, China.
| |
Collapse
|
8
|
Zhang DW, Johnstone SJ, Sauce B, Arns M, Sun L, Jiang H. Remote neurocognitive interventions for attention-deficit/hyperactivity disorder - Opportunities and challenges. Prog Neuropsychopharmacol Biol Psychiatry 2023; 127:110802. [PMID: 37257770 DOI: 10.1016/j.pnpbp.2023.110802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
Improving neurocognitive functions through remote interventions has been a promising approach to developing new treatments for attention-deficit/hyperactivity disorder (AD/HD). Remote neurocognitive interventions may address the shortcomings of the current prevailing pharmacological therapies for AD/HD, e.g., side effects and access barriers. Here we review the current options for remote neurocognitive interventions to reduce AD/HD symptoms, including cognitive training, EEG neurofeedback training, transcranial electrical stimulation, and external cranial nerve stimulation. We begin with an overview of the neurocognitive deficits in AD/HD to identify the targets for developing interventions. The role of neuroplasticity in each intervention is then highlighted due to its essential role in facilitating neuropsychological adaptations. Following this, each intervention type is discussed in terms of the critical details of the intervention protocols, the role of neuroplasticity, and the available evidence. Finally, we offer suggestions for future directions in terms of optimizing the existing intervention protocols and developing novel protocols.
Collapse
Affiliation(s)
- Da-Wei Zhang
- Department of Psychology/Center for Place-Based Education, Yangzhou University, Yangzhou, China; Department of Psychology, Monash University Malaysia, Bandar Sunway, Malaysia.
| | - Stuart J Johnstone
- School of Psychology, University of Wollongong, Wollongong, Australia; Brain & Behaviour Research Institute, University of Wollongong, Australia
| | - Bruno Sauce
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Martijn Arns
- Research Institute Brainclinics, Brainclinics Foundation, Nijmegen, Netherlands; Department of Experimental Psychology, Utrecht University, Utrecht, Netherlands; NeuroCare Group, Nijmegen, Netherlands
| | - Li Sun
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China; National Clinical Research Center for Mental Disorders, Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
| | - Han Jiang
- College of Special Education, Zhejiang Normal University, Hangzhou, China
| |
Collapse
|
9
|
Beneventi H, Løhaugen GC, Andersen GL, Sundberg C, Østgård HF, Bakkan E, Walther G, Vik T, Skranes J. Working Memory Training in Norwegian Children with Cerebral Palsy (CP) Show Minimal Evidence of Near and No Far Transfer Effects. Dev Neurorehabil 2023; 26:364-370. [PMID: 37740724 DOI: 10.1080/17518423.2023.2259985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 09/13/2023] [Indexed: 09/25/2023]
Abstract
In children with cerebral palsy (CP), learning disabilities are well documented, and impairments in executive functions, such as attention, inhibition, shifting and working memory, represent significant burdens on patients, their families and the society. The aim of this study was to evaluate whether Cogmed RM working memory training could improve working memory in children with CP and investigate whether increased working memory capacity would generalize to other cognitive functions. Twenty-eight children completed the training and the results were compared to a waitlist control group (n = 32). The results yielded three main findings. First, children with CP improved with practice on trained working memory tasks. Second, the intervention group showed minimal near transfer effects to non-trained working memory tasks. Third, no effects on cognitive and behavioral far transfer measures were found.
Collapse
Affiliation(s)
- Harald Beneventi
- Department of Paediatric Habilitation, Stavanger University Hospital, Stavanger, Norway
| | - Gro Cc Løhaugen
- Department of Pediatrics, Sørlandet Hospital, Arendal, Norway
- Department of Clinical and Laboratory Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Guro L Andersen
- Department of Clinical and Laboratory Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Cerebral Palsy Register of Norway, Habilitation Center, Vestfold Hospital Trust, Tønsberg, Norway
| | - Cato Sundberg
- Department of Pediatrics, Sørlandet Hospital, Arendal, Norway
| | - Heidi Furre Østgård
- Department of Clinical and Laboratory Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ellen Bakkan
- Department of Paediatric Habilitation, Stavanger University Hospital, Stavanger, Norway
| | - Geir Walther
- Department of Child and Adolescent Psychiatry, Vestfold Hospital Trust, Tønsberg, Norway
| | - Torstein Vik
- Department of Clinical and Laboratory Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jon Skranes
- Department of Pediatrics, Sørlandet Hospital, Arendal, Norway
- Department of Clinical and Laboratory Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
10
|
Jaeggi SM, Weaver AN, Carbone E, Trane FE, Smith-Peirce RN, Buschkuehl M, Flueckiger C, Carlson M, Jonides J, Borella E. EngAge - A metacognitive intervention to supplement working memory training: A feasibility study in older adults. AGING BRAIN 2023; 4:100083. [PMID: 38098966 PMCID: PMC10719574 DOI: 10.1016/j.nbas.2023.100083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/31/2023] [Accepted: 06/15/2023] [Indexed: 12/17/2023] Open
Abstract
Working Memory (WM) training has shown promise in supporting cognitive functioning in older adult populations, but effects that generalize beyond the trained task have been inconsistent. Targeting cognitive processes in isolation might be a limiting factor given that metacognitive and motivational factors have been shown to impact older adults' engagement with challenging cognitive activities, such as WM training. The current feasibility study implemented a novel metacognitive intervention in conjunction with WM training in older adults and examined its potential amplifying short- and long-term effects on cognitive and self-report outcomes as compared to WM or active control training alone. One-hundred and nineteen older adults completed a cognitive training over the course of 20 sessions at home. The cognitive training targeted either WM or general knowledge. In addition, one of the WM training groups completed a metacognitive program via group seminars. We tested for group differences in WM, inhibitory control, and episodic memory, and we assessed participants' perceived self-efficacy and everyday memory failures. At post-test, we replicated earlier work by demonstrating that participants who completed the WM intervention outperformed the active control group in non-trained WM measures, and to some extent, in inhibitory control. However, we found no evidence that the supplemental metacognitive program led to benefits over and above the WM intervention. Nonetheless, we conclude that our metacognitive program is a step in the right direction given the tentative long-term effects and participants' positive feedback, but more longitudinal data with larger sample sizes are needed to confirm these early findings.
Collapse
Affiliation(s)
| | | | - Elena Carbone
- Department of General Psychology, University of Padova, Italy
| | | | | | | | | | | | | | - Erika Borella
- Department of General Psychology, University of Padova, Italy
| |
Collapse
|
11
|
Quan M, Wang Q, Qin W, Wang W, Li F, Zhao T, Li T, Qiu Q, Cao S, Wang S, Wang Y, Jin H, Zhou A, Fang J, Jia L, Jia J. Shared and unique effects of ApoEε4 and pathogenic gene mutation on cognition and imaging in preclinical familial Alzheimer's disease. Alzheimers Res Ther 2023; 15:40. [PMID: 36850008 PMCID: PMC9972804 DOI: 10.1186/s13195-023-01192-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 02/13/2023] [Indexed: 03/01/2023]
Abstract
BACKGROUND Neuropsychology and imaging changes have been reported in the preclinical stage of familial Alzheimer's disease (FAD). This study investigated the effects of APOEε4 and known pathogenic gene mutation on different cognitive domains and circuit imaging markers in preclinical FAD. METHODS One hundred thirty-nine asymptomatic subjects in FAD families, including 26 APOEε4 carriers, 17 APP and 20 PS1 mutation carriers, and 76 control subjects, went through a series of neuropsychological tests and MRI scanning. Test scores and imaging measures including volumes, diffusion indices, and functional connectivity (FC) of frontostriatal and hippocampus to posterior cingulate cortex pathways were compared between groups and analyzed for correlation. RESULTS Compared with controls, the APOEε4 group showed increased hippocampal volume and decreased FC of fronto-caudate pathway. The APP group showed increased recall scores in auditory verbal learning test, decreased fiber number, and increased radial diffusivity and FC of frontostriatal pathway. All three genetic groups showed decreased fractional anisotropy of hippocampus to posterior cingulate cortex pathway. These neuropsychological and imaging measures were able to discriminate genetic groups from controls, with areas under the curve from 0.733 to 0.837. Circuit imaging measures are differentially associated with scores in various cognitive scales in control and genetic groups. CONCLUSIONS There are neuropsychological and imaging changes in the preclinical stage of FAD, some of which are shared by APOEε4 and known pathogenic gene mutation, while some are unique to different genetic groups. These findings are helpful for the early identification of Alzheimer's disease and for developing generalized and individualized prevention and intervention strategies.
Collapse
Affiliation(s)
- Meina Quan
- grid.413259.80000 0004 0632 3337Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China ,National Center for Neurological Disorders and National Clinical Research Center for Geriatric Diseases, Beijing, China ,grid.24696.3f0000 0004 0369 153XClinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, China ,grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, China ,grid.24696.3f0000 0004 0369 153XCenter of Alzheimer’s Disease, Beijing Institute for Brain Disorders, Beijing, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Qi Wang
- grid.413259.80000 0004 0632 3337Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China ,National Center for Neurological Disorders and National Clinical Research Center for Geriatric Diseases, Beijing, China ,grid.24696.3f0000 0004 0369 153XClinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, China ,grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, China ,grid.24696.3f0000 0004 0369 153XCenter of Alzheimer’s Disease, Beijing Institute for Brain Disorders, Beijing, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Wei Qin
- grid.413259.80000 0004 0632 3337Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China ,National Center for Neurological Disorders and National Clinical Research Center for Geriatric Diseases, Beijing, China ,grid.24696.3f0000 0004 0369 153XClinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, China ,grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, China ,grid.24696.3f0000 0004 0369 153XCenter of Alzheimer’s Disease, Beijing Institute for Brain Disorders, Beijing, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Wei Wang
- grid.413259.80000 0004 0632 3337Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China ,National Center for Neurological Disorders and National Clinical Research Center for Geriatric Diseases, Beijing, China ,grid.24696.3f0000 0004 0369 153XClinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, China ,grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, China ,grid.24696.3f0000 0004 0369 153XCenter of Alzheimer’s Disease, Beijing Institute for Brain Disorders, Beijing, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Fangyu Li
- grid.413259.80000 0004 0632 3337Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China ,National Center for Neurological Disorders and National Clinical Research Center for Geriatric Diseases, Beijing, China ,grid.24696.3f0000 0004 0369 153XClinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, China ,grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, China ,grid.24696.3f0000 0004 0369 153XCenter of Alzheimer’s Disease, Beijing Institute for Brain Disorders, Beijing, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Tan Zhao
- grid.413259.80000 0004 0632 3337Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China ,National Center for Neurological Disorders and National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Tingting Li
- grid.413259.80000 0004 0632 3337Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China ,National Center for Neurological Disorders and National Clinical Research Center for Geriatric Diseases, Beijing, China ,grid.24696.3f0000 0004 0369 153XClinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, China ,grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, China ,grid.24696.3f0000 0004 0369 153XCenter of Alzheimer’s Disease, Beijing Institute for Brain Disorders, Beijing, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Qiongqiong Qiu
- grid.413259.80000 0004 0632 3337Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China ,National Center for Neurological Disorders and National Clinical Research Center for Geriatric Diseases, Beijing, China ,grid.24696.3f0000 0004 0369 153XClinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, China ,grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, China ,grid.24696.3f0000 0004 0369 153XCenter of Alzheimer’s Disease, Beijing Institute for Brain Disorders, Beijing, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Shuman Cao
- grid.413259.80000 0004 0632 3337Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China ,National Center for Neurological Disorders and National Clinical Research Center for Geriatric Diseases, Beijing, China ,grid.24696.3f0000 0004 0369 153XClinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, China ,grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, China ,grid.24696.3f0000 0004 0369 153XCenter of Alzheimer’s Disease, Beijing Institute for Brain Disorders, Beijing, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Shiyuan Wang
- grid.413259.80000 0004 0632 3337Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China ,National Center for Neurological Disorders and National Clinical Research Center for Geriatric Diseases, Beijing, China ,grid.24696.3f0000 0004 0369 153XClinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, China ,grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, China ,grid.24696.3f0000 0004 0369 153XCenter of Alzheimer’s Disease, Beijing Institute for Brain Disorders, Beijing, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Yan Wang
- grid.413259.80000 0004 0632 3337Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China ,National Center for Neurological Disorders and National Clinical Research Center for Geriatric Diseases, Beijing, China ,grid.24696.3f0000 0004 0369 153XClinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, China ,grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, China ,grid.24696.3f0000 0004 0369 153XCenter of Alzheimer’s Disease, Beijing Institute for Brain Disorders, Beijing, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Hongmei Jin
- grid.413259.80000 0004 0632 3337Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China ,National Center for Neurological Disorders and National Clinical Research Center for Geriatric Diseases, Beijing, China ,grid.24696.3f0000 0004 0369 153XClinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, China ,grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, China ,grid.24696.3f0000 0004 0369 153XCenter of Alzheimer’s Disease, Beijing Institute for Brain Disorders, Beijing, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Aihong Zhou
- grid.413259.80000 0004 0632 3337Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China ,National Center for Neurological Disorders and National Clinical Research Center for Geriatric Diseases, Beijing, China ,grid.24696.3f0000 0004 0369 153XClinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, China ,grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, China ,grid.24696.3f0000 0004 0369 153XCenter of Alzheimer’s Disease, Beijing Institute for Brain Disorders, Beijing, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Jiliang Fang
- grid.464297.aGuang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Longfei Jia
- grid.413259.80000 0004 0632 3337Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China ,National Center for Neurological Disorders and National Clinical Research Center for Geriatric Diseases, Beijing, China ,grid.24696.3f0000 0004 0369 153XClinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, China ,grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, China ,grid.24696.3f0000 0004 0369 153XCenter of Alzheimer’s Disease, Beijing Institute for Brain Disorders, Beijing, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China. .,National Center for Neurological Disorders and National Clinical Research Center for Geriatric Diseases, Beijing, China. .,Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, China. .,Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, China. .,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China. .,Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China.
| |
Collapse
|
12
|
Kulkarni M, Covey TJ. Examination of the temporal-spatial dynamics of working memory training-induced neuroplasticity. Brain Res 2023; 1798:148135. [DOI: 10.1016/j.brainres.2022.148135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022]
|
13
|
Cubillo A, Hermes H, Berger E, Winkel K, Schunk D, Fehr E, Hare TA. Intra-individual variability in task performance after cognitive training is associated with long-term outcomes in children. Dev Sci 2023; 26:e13252. [PMID: 35184350 PMCID: PMC10078259 DOI: 10.1111/desc.13252] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 11/22/2021] [Accepted: 02/04/2022] [Indexed: 12/15/2022]
Abstract
The potential benefits and mechanistic effects of working memory training (WMT) in children are the subject of much research and debate. We show that after five weeks of school-based, adaptive WMT 6-9 year-old primary school children had greater activity in prefrontal and striatal brain regions, higher task accuracy, and reduced intra-individual variability in response times compared to controls. Using a sequential sampling decision model, we demonstrate that this reduction in intra-individual variability can be explained by changes to the evidence accumulation rates and thresholds. Critically, intra-individual variability is useful in quantifying the immediate impact of cognitive training interventions, being a better predictor of academic skills and well-being 6-12 months after the end of training than task accuracy. Taken together, our results suggest that attention control is the initial mechanism that leads to the long-run benefits from adaptive WMT. Selective and sustained attention abilities may serve as a scaffold for subsequent changes in higher cognitive processes, academic skills, and general well-being. Furthermore, these results highlight that the selection of outcome measures and the timing of the assessments play a crucial role in detecting training efficacy. Thus, evaluating intra-individual variability, during or directly after training could allow for the early tailoring of training interventions in terms of duration or content to maximise their impact.
Collapse
Affiliation(s)
- Ana Cubillo
- Zurich Center for Neuroeconomics, Department of Economics, University of Zurich, Zurich, Switzerland.,Department of Child and Adolescent Psychiatry, University Psychiatric Clinics Basel, Basel, Switzerland
| | - Henning Hermes
- DICE, Heinrich Heine University of Dusseldorf, Dusseldorf, Germany
| | - Eva Berger
- Chair of Public and Behavioral Economics, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Kirsten Winkel
- Chair of Statistics and Econometrics, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Daniel Schunk
- Chair of Public and Behavioral Economics, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Ernst Fehr
- Zurich Center for Neuroeconomics, Department of Economics, University of Zurich, Zurich, Switzerland
| | - Todd A Hare
- Zurich Center for Neuroeconomics, Department of Economics, University of Zurich, Zurich, Switzerland
| |
Collapse
|
14
|
A randomized pharmacological fMRI trial investigating D-cycloserine and brain plasticity mechanisms in learned pain responses. Sci Rep 2022; 12:19080. [PMID: 36351953 PMCID: PMC9646732 DOI: 10.1038/s41598-022-23769-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
Learning and negative outcome expectations can increase pain sensitivity, a phenomenon known as nocebo hyperalgesia. Here, we examined how a targeted pharmacological manipulation of learning would impact nocebo responses and their brain correlates. Participants received either a placebo (n = 27) or a single 80 mg dose of D-cycloserine (a partial NMDA receptor agonist; n = 23) and underwent fMRI. Behavioral conditioning and negative suggestions were used to induce nocebo responses. Participants underwent pre-conditioning outside the scanner. During scanning, we first delivered baseline pain stimulations, followed by nocebo acquisition and extinction phases. During acquisition, high intensity thermal pain was paired with supposed activation of sham electrical stimuli (nocebo trials), whereas moderate pain was administered with inactive electrical stimulation (control trials). Nocebo hyperalgesia was induced in both groups (p < 0.001). Nocebo magnitudes and brain activations did not show significant differences between D-cycloserine and placebo. In acquisition and extinction, there were significantly increased activations bilaterally in the amygdala, ACC, and insula, during nocebo compared to control trials. Nocebo acquisition trials also showed increased vlPFC activation. Increased opercular activation differentiated nocebo-augmented pain aggravation from baseline pain. These results support the involvement of integrative cognitive-emotional processes in nocebo hyperalgesia.
Collapse
|
15
|
Zhao W, Zhang Q, Su Y, Chen X, Li X, Du B, Deng X, Ji F, Li J, Dong Q, Chen C, Li J. Effect of schizophrenia risk gene polymorphisms on cognitive and neural plasticity. Schizophr Res 2022; 248:173-179. [PMID: 36075127 DOI: 10.1016/j.schres.2022.08.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 07/13/2022] [Accepted: 08/20/2022] [Indexed: 11/24/2022]
Abstract
A recent Chinese genome-wide association study found evidence for 58 out of the 128 schizophrenia-associated variants previously discovered in Western samples by the Schizophrenia Working Group of the Psychiatric Genomics Consortium (PGC). However, the functional impact of these trans-ancestry genome-wide single-nucleotide polymorphisms (SNPs) is not clear. In the current study, we examined the roles of trans-ancestry SNPs in cognitive and neural plasticity. We first performed a behavioral study of 547 healthy volunteers, who received month-long working memory training, and working memory capability assessment both before and after the training. A separate sample of 101 subjects received the same training and received fMRI scans during a working memory task, both before and after the training. The behavioral study found a significant association between the polygenic risk score (PRS) and behavioral plasticity, with higher schizophrenia risk scores being linked to less plasticity. At the SNP level, rs36068923 showed a significant signal, with the risk allele being associated with less plasticity. The fMRI study further found that the PRS and rs36068923 polymorphism were associated with training-induced changes in striatal activation, with higher PRS and the risk allele of rs36068923 being linked to less brain plasticity. In sum, this study found that a high genetic risk for schizophrenia was associated with less plasticity at both behavioral and neural levels. These results provide new insights into the neural and cognitive mechanisms linking genes to schizophrenia.
Collapse
Affiliation(s)
- Wan Zhao
- School of Psychology, Nanjing Normal University, Nanjing 210097, Jiangsu, PR China
| | - Qiumei Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, PR China; School of Public Health, Jining Medical University, Jining 272013, Shandong, PR China
| | - Yanyan Su
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, PR China
| | - Xiongying Chen
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders & the Advanced Innovation Center for Human Brain Protection, Beijing Anding Hospital, School of Mental Health, Capital Medical University, Beijing 100088, PR China
| | - Xiaohong Li
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders & the Advanced Innovation Center for Human Brain Protection, Beijing Anding Hospital, School of Mental Health, Capital Medical University, Beijing 100088, PR China
| | - Boqi Du
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, PR China
| | - Xiaoxiang Deng
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, PR China
| | - Feng Ji
- School of Mental Health, Jining Medical University, Jining 272013, Shandong, PR China
| | - Jin Li
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, 95 East Zhongguancun Road, Beijing 100190, PR China; National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, 95 East Zhongguancun Road, Beijing 100190, PR China
| | - Qi Dong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, PR China
| | - Chuansheng Chen
- Department of Psychological Science, University of California, Irvine, CA 92697, United States
| | - Jun Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, PR China.
| |
Collapse
|
16
|
Pahor A, Seitz AR, Jaeggi SM. Near transfer to an unrelated N-back task mediates the effect of N-back working memory training on matrix reasoning. Nat Hum Behav 2022; 6:1243-1256. [PMID: 35726054 DOI: 10.1038/s41562-022-01384-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/10/2022] [Indexed: 02/04/2023]
Abstract
The extent to which working memory training improves performance on untrained tasks is highly controversial. Here we address this controversy by testing the hypothesis that far transfer may depend on near transfer using mediation models in three separate randomized controlled trials (RCTs). In all three RCTs, totalling 460 individuals, performance on untrained N-back tasks (near transfer) mediated transfer to Matrix Reasoning (representing far transfer) despite the lack of an intervention effect in RCTs 2 and 3. Untrained N-back performance also mediated transfer to a working memory composite, which showed a significant intervention effect (RCT 3). These findings support a model of N-back training in which transfer to untrained N-back tasks gates further transfer (at least in the case of working memory at the construct level) and Matrix Reasoning. This model can help adjudicate between the many studies and meta-analyses of working memory training that have provided mixed results but have not examined the relationship between near and far transfer on an individual-differences level.
Collapse
Affiliation(s)
- Anja Pahor
- School of Education, University of California, Irvine, Irvine, CA, USA.
- Department of Psychology, University of California, Riverside, Riverside, CA, USA.
- Department of Psychology, University of Maribor, Maribor, Slovenia.
| | - Aaron R Seitz
- Department of Psychology, University of California, Riverside, Riverside, CA, USA
| | - Susanne M Jaeggi
- School of Education, University of California, Irvine, Irvine, CA, USA
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
17
|
|
18
|
Flannery JS, Riedel MC, Hill-Bowen LD, Poudel R, Bottenhorn KL, Salo T, Laird AR, Gonzalez R, Sutherland MT. Altered large-scale brain network interactions associated with HIV infection and error processing. Netw Neurosci 2022; 6:791-815. [PMID: 36605414 PMCID: PMC9810366 DOI: 10.1162/netn_a_00241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/14/2022] [Indexed: 01/07/2023] Open
Abstract
Altered activity within and between large-scale brain networks has been implicated across various neuropsychiatric conditions. However, patterns of network dysregulation associated with human immunodeficiency virus (HIV), and further impacted by cannabis (CB) use, remain to be delineated. We examined the impact of HIV and CB on resting-state functional connectivity (rsFC) between brain networks and associations with error awareness and error-related network responsivity. Participants (N = 106), stratified into four groups (HIV+/CB+, HIV+/CB-, HIV-/CB+, HIV-/CB-), underwent fMRI scanning while completing a resting-state scan and a modified Go/NoGo paradigm assessing brain responsivity to errors and explicit error awareness. We examined separate and interactive effects of HIV and CB on resource allocation indexes (RAIs), a measure quantifying rsFC strength between the default mode network (DMN), central executive network (CEN), and salience network (SN). We observed reduced RAIs among HIV+ (vs. HIV-) participants, which was driven by increased SN-DMN rsFC. No group differences were detected for SN-CEN rsFC. Increased SN-DMN rsFC correlated with diminished error awareness, but not with error-related network responsivity. These outcomes highlight altered network interactions among participants with HIV and suggest such rsFC dysregulation may persist during task performance, reflecting an inability to disengage irrelevant mental operations, ultimately hindering error processing.
Collapse
Affiliation(s)
- Jessica S. Flannery
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael C. Riedel
- Department of Physics, Florida International University, Miami, FL, USA
| | | | - Ranjita Poudel
- Department of Psychology, Florida International University, Miami, FL, USA
| | - Katherine L. Bottenhorn
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Taylor Salo
- Department of Psychology, Florida International University, Miami, FL, USA
| | - Angela R. Laird
- Department of Physics, Florida International University, Miami, FL, USA
| | - Raul Gonzalez
- Department of Psychology, Florida International University, Miami, FL, USA
| | - Matthew T. Sutherland
- Department of Psychology, Florida International University, Miami, FL, USA,* Corresponding Author:
| |
Collapse
|
19
|
Boroshok AL, Park AT, Fotiadis P, Velasquez GH, Tooley UA, Simon KR, Forde JCP, Delgado Reyes LM, Tisdall MD, Bassett DS, Cooper EA, Mackey AP. Individual differences in frontoparietal plasticity in humans. NPJ SCIENCE OF LEARNING 2022; 7:14. [PMID: 35739201 PMCID: PMC9226021 DOI: 10.1038/s41539-022-00130-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Neuroplasticity, defined as the brain's potential to change in response to its environment, has been extensively studied at the cellular and molecular levels. Work in animal models suggests that stimulation to the ventral tegmental area (VTA) enhances plasticity, and that myelination constrains plasticity. Little is known, however, about whether proxy measures of these properties in the human brain are associated with learning. Here, we investigated the plasticity of the frontoparietal system by asking whether VTA resting-state functional connectivity and myelin map values (T1w/T2w ratios) predicted learning after short-term training on the adaptive n-back (n = 46, ages 18-25). We found that stronger baseline connectivity between VTA and lateral prefrontal cortex predicted greater improvements in accuracy. Lower myelin map values predicted improvements in response times, but not accuracy. Our findings suggest that proxy markers of neural plasticity can predict learning in humans.
Collapse
Affiliation(s)
- Austin L Boroshok
- Department of Psychology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Anne T Park
- Department of Psychology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Panagiotis Fotiadis
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Gerardo H Velasquez
- Department of Psychology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ursula A Tooley
- Department of Psychology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Katrina R Simon
- Teachers College, Columbia University, New York, NY, 10027, USA
| | - Jasmine C P Forde
- Department of Psychology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lourdes M Delgado Reyes
- Department of Psychology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - M Dylan Tisdall
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Dani S Bassett
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Pennsylvania, PA, 19104, USA
- Department of Electrical & Systems Engineering, School of Engineering and Applied Sciences, University of Pennsylvania, Pennsylvania, PA, 19104, USA
- Department of Physics & Astronomy, School of Arts and Sciences, University of Pennsylvania, Pennsylvania, PA, 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, 19104, USA
- Santa Fe Institute, Santa Fe, NM, 87501, USA
| | - Emily A Cooper
- Herbert Wertheim School of Optometry & Vision Science, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Allyson P Mackey
- Department of Psychology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
20
|
Far transfer effects of executive working memory training on cognitive flexibility. CURRENT PSYCHOLOGY 2022. [DOI: 10.1007/s12144-022-03363-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
21
|
Jones JS, Adlam ALR, Benattayallah A, Milton FN. The neural correlates of working memory training in typically developing children. Child Dev 2022; 93:815-830. [PMID: 34897651 DOI: 10.1111/cdev.13721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Working memory training improves children's cognitive performance on untrained tasks; however, little is known about the underlying neural mechanisms. This was investigated in 32 typically developing children aged 10-14 years (19 girls and 13 boys) using a randomized controlled design and multi-modal magnetic resonance imaging (Devon, UK; 2015-2016). Training improved working memory performance and increased intrinsic functional connectivity between the bilateral intraparietal sulci. Furthermore, improvements in working memory were associated with greater recruitment of the left middle frontal gyrus on a complex span task. Repeated engagement of fronto-parietal regions during training may increase their activity and functional connectivity over time, affording greater working memory performance. The plausibility of generalizable cognitive benefits from a neurobiological perspective and implications for neurodevelopmental theory are discussed.
Collapse
Affiliation(s)
- Jonathan S Jones
- School of Psychology, College of Life and Environmental Sciences, University of Exeter, Exeter, UK.,MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Anna-Lynne R Adlam
- School of Psychology, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Abdelmalek Benattayallah
- School of Psychology, College of Life and Environmental Sciences, University of Exeter, Exeter, UK.,School of Medicine, University of Plymouth, Plymouth, UK
| | - Fraser N Milton
- School of Psychology, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| |
Collapse
|
22
|
Wang W, Yang J, Yu Y, Li H, Liu Y, Yu Y, Yu J, Tang X, Yang J, Takahashi S, Ejima Y, Wu J. Tactile angle discriminability improvement: Contributions of working memory training and continuous attended sensory input. J Neurophysiol 2022; 127:1398-1406. [PMID: 35443143 PMCID: PMC9255707 DOI: 10.1152/jn.00529.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Perceptual learning is commonly assumed to enhance perception through continuous attended sensory input. However, learning is generalizable to performance in untrained stimuli and tasks. Although previous studies have observed a possible generalization effect across tasks as a result of working memory (WM) training, comparisons of the contributions of WM training and continuous attended sensory input to perceptual learning generalization are still rare. Therefore, we compared which factors contributed most to perceptual generalization and investigated which skills acquired during WM training led to tactile generalization across tasks. Here, a Braille-like dot pattern matching n-back WM task was used as the WM training task, with four workload levels (0, 1, 2, and 3-back levels). A tactile angle discrimination (TAD) task was used as a pre- and posttest to assess improvements in tactile perception. Between tests, four subject groups were randomly assigned to four different workload n-back tasks to consecutively complete three sessions of training. The results showed that tactile n-back WM training could enhance TAD performance, with the 3-back training group having the highest TAD threshold improvement rate. Furthermore, the rate of WM capacity improvement on the 3-back level across training sessions was correlated with the rate of TAD threshold improvement. These findings suggest that continuous attended sensory input and enhanced WM capacity can lead to improvements in TAD ability, and that greater improvements in WM capacity can predict greater improvements in TAD performance. NEW & NOTEWORTHY Perceptual learning is not always specific to the trained task and stimuli. We demonstrate that both continuous attended sensory input and improved WM capacity can be used to enhance tactile angle discrimination (TAD) ability. Moreover, WM capacity improvement is important in generalizing the training effect to the TAD ability. These findings contribute to understanding the mechanism of perceptual learning generalization across tasks.
Collapse
Affiliation(s)
- Wu Wang
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China
| | - Jiajia Yang
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan.,Section on Functional Imaging Methods, National Institute of Mental Health, Bethesda, MD, United States
| | - Yinghua Yu
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan.,Section on Functional Imaging Methods, National Institute of Mental Health, Bethesda, MD, United States
| | - Huazhi Li
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Yulong Liu
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Yiyang Yu
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan.,Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Jiabin Yu
- College of Information Engineering, China Jiliang University, Hangzhou, China
| | - Xiaoyu Tang
- School of Psychology, Liaoning Collaborative Innovation Center of Children and Adolescents Healthy Personality Assessment and Cultivation, Liaoning Normal University, Dalian, China
| | - Jingjing Yang
- School of Computer Science and Technology, Changchun University of Science and Technology, Changchun, China
| | - Satoshi Takahashi
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Yoshimichi Ejima
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Jinglong Wu
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan.,Beijing Institute of Technology, Beijing, China
| |
Collapse
|
23
|
Vartanian O, Replete V, Saint SA, Lam Q, Forbes S, Beaudoin ME, Brunyé TT, Bryant DJ, Feltman KA, Heaton KJ, McKinley RA, Van Erp JBF, Vergin A, Whittaker A. What Is Targeted When We Train Working Memory? Evidence From a Meta-Analysis of the Neural Correlates of Working Memory Training Using Activation Likelihood Estimation. Front Psychol 2022; 13:868001. [PMID: 35432071 PMCID: PMC9005969 DOI: 10.3389/fpsyg.2022.868001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/14/2022] [Indexed: 11/23/2022] Open
Abstract
Working memory (WM) is the system responsible for maintaining and manipulating information, in the face of ongoing distraction. In turn, WM span is perceived to be an individual-differences construct reflecting the limited capacity of this system. Recently, however, there has been some evidence to suggest that WM capacity can increase through training, raising the possibility that training can functionally alter the neural structures supporting WM. To address the hypothesis that the neural substrates underlying WM are targeted by training, we conducted a meta-analysis of functional magnetic resonance imaging (fMRI) studies of WM training using Activation Likelihood Estimation (ALE). Our results demonstrate that WM training is associated exclusively with decreases in blood oxygenation level-dependent (BOLD) responses in clusters within the fronto-parietal system that underlie WM, including the bilateral inferior parietal lobule (BA 39/40), middle (BA 9) and superior (BA 6) frontal gyri, and medial frontal gyrus bordering on the cingulate gyrus (BA 8/32). We discuss the various psychological and physiological mechanisms that could be responsible for the observed reductions in the BOLD signal in relation to WM training, and consider their implications for the construct of WM span as a limited resource.
Collapse
Affiliation(s)
- Oshin Vartanian
- Defence Research and Development Canada, Toronto, ON, Canada
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Vladyslava Replete
- Defence Research and Development Canada, Toronto, ON, Canada
- Faculty of Medicine, Queen’s University, Kingston, ON, Canada
| | - Sidney Ann Saint
- Defence Research and Development Canada, Toronto, ON, Canada
- Department of Psychology, University of Waterloo, Waterloo, ON, Canada
| | - Quan Lam
- Defence Research and Development Canada, Toronto, ON, Canada
| | - Sarah Forbes
- Defence Research and Development Canada, Toronto, ON, Canada
- Department of Psychiatry, University of Manitoba, Winnipeg, MB, Canada
| | - Monique E. Beaudoin
- Applied Research Laboratory for Intelligence and Security, University of Maryland, College Park, MD, United States
| | - Tad T. Brunyé
- U.S. Army DEVCOM Soldier Center, Natick, MA, United States
| | - David J. Bryant
- Defence Research and Development Canada, Toronto, ON, Canada
| | - Kathryn A. Feltman
- U.S. Army Aeromedical Research Laboratory, Fort Rucker, AL, United States
| | - Kristin J. Heaton
- U.S. Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - Richard A. McKinley
- U.S. Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, United States
| | - Jan B. F. Van Erp
- Netherlands Organization for Applied Scientific Research (TNO), Soesterberg, Netherlands
- Department of Human Media Interaction, University of Twente, Enschede, Netherlands
| | - Annika Vergin
- Bundeswehr Office for Defence Planning, Federal Ministry of Defence, Berlin, Germany
| | - Annalise Whittaker
- Defence Science and Technology Laboratory, UK Ministry of Defence, Salisbury, United Kingdom
| |
Collapse
|
24
|
Ripp I, Wu Q, Wallenwein L, Emch M, Yakushev I, Koch K. Neuronal efficiency following n-back training task is accompanied by a higher cerebral glucose metabolism. Neuroimage 2022; 253:119095. [PMID: 35304266 DOI: 10.1016/j.neuroimage.2022.119095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/22/2022] [Accepted: 03/10/2022] [Indexed: 11/28/2022] Open
Abstract
Recent functional magnetic resonance imaging (fMRI) studies revealed lower neural activation during processing of an n-back task following working memory training, indicating a training-related increase in neural efficiency. In the present study, we asked if the training induced regional neural activation is accompanied by changes in glucose consumption. An active control and an experimental group of healthy middle-aged volunteers conducted 32 sessions of visual and verbal n-back trainings over 8 weeks. We analyzed data of 52 subjects (25 experimental and 27 control group) for practice effects underlying verbal working memory task and 50 subjects (24 experimental and 26 control group) for practice effects underlying visual WM task. The samples of these two tasks were nearly identical (data of 47 subjects were available for both verbal and visual tasks). Both groups completed neuroimaging sessions at a hybrid PET/MR system before and after training. Each session included criterion task fMRI and resting state positron emission tomography with FDG (FDG-PET). As reported previously, lower neural activation following n-back training was found in regions of the fronto-parieto-cerebellar circuitry during a verbal n-back task. Notably, these changes co-occurred spatially with a higher relative FDG-uptake. Decreased neural activation within regions of the fronto-parietal network during visual n-back task did not show co-occurring changes in relative FDG-uptake. There was no direct association between neuroimaging and behavioral measures, which could be due to the inter-subjects' variability in reaching capacity limits. Our findings provide new details for working memory training induced neural efficiency on a molecular level by integrating FDG-PET and fMRI measures.
Collapse
Affiliation(s)
- Isabelle Ripp
- Department of Nuclear Medicine, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany; TUM-Neuroimaging Center (TUM-NIC), Technical University of Munich, Ismaninger Strasse 22, Munich 81675, Germany; Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität, Martinsried, Germany
| | - Qiong Wu
- Department of Neuroradiology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany; TUM-Neuroimaging Center (TUM-NIC), Technical University of Munich, Ismaninger Strasse 22, Munich 81675, Germany; Institute of Medical Psychology, Ludwig-Maximilians-Universität, Munich, Germany.
| | - Lara Wallenwein
- Department of Nuclear Medicine, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Mónica Emch
- Department of Neuroradiology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany; TUM-Neuroimaging Center (TUM-NIC), Technical University of Munich, Ismaninger Strasse 22, Munich 81675, Germany; Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität, Martinsried, Germany
| | - Igor Yakushev
- Department of Nuclear Medicine, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany; TUM-Neuroimaging Center (TUM-NIC), Technical University of Munich, Ismaninger Strasse 22, Munich 81675, Germany; Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität, Martinsried, Germany
| | - Kathrin Koch
- Department of Neuroradiology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany; TUM-Neuroimaging Center (TUM-NIC), Technical University of Munich, Ismaninger Strasse 22, Munich 81675, Germany; Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität, Martinsried, Germany
| |
Collapse
|
25
|
Flannery JS, Riedel MC, Salo T, Poudel R, Laird AR, Gonzalez R, Sutherland MT. HIV infection is linked with reduced error-related default mode network suppression and poorer medication management abilities. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110398. [PMID: 34224796 PMCID: PMC8380727 DOI: 10.1016/j.pnpbp.2021.110398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/07/2021] [Accepted: 06/29/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Brain activity linked with error processing has rarely been examined among persons living with HIV (PLWH) despite importance for monitoring and modifying behaviors that could lead to adverse health outcomes (e.g., medication non-adherence, drug use, risky sexual practices). Given that cannabis (CB) use is prevalent among PLWH and impacts error processing, we assessed the influence of HIV serostatus and chronic CB use on error-related brain activity while also considering associated implications for everyday functioning and clinically-relevant disease management behaviors. METHODS A sample of 109 participants, stratified into four groups by HIV and CB (HIV+/CB+, n = 32; HIV+/CB-, n = 27; HIV-/CB+, n = 28; HIV-/CB-, n = 22), underwent fMRI scanning while completing a modified Go/NoGo paradigm called the Error Awareness Task (EAT). Participants also completed a battery of well-validated instruments including a subjective report of everyday cognitive failures and an objective measure of medication management abilities. RESULTS Across all participants, we observed expected error-related anterior insula (aI) activation which correlated with better task performance (i.e., less errors) and, among HIV- participants, fewer self-reported cognitive failures. Regarding awareness, greater insula activation as well as greater posterior cingulate cortex (PCC) deactivation were notably linked with aware (vs. unaware) errors. Regarding group effects, unlike HIV- participants, PLWH displayed a lack of error-related deactivation in two default mode network (DMN) regions (i.e., PCC, medial prefrontal cortex [mPFC]). No CB main or interaction effects were detected. Across all participants, reduced error-related PCC deactivation correlated with reduced medication management abilities and PCC deactivation mediated the effect of HIV on such abilities. More lifetime CB use was linked with reduced error-related mPFC deactivation among HIV- participants and poorer medication management across CB users. CONCLUSIONS These results demonstrate that insufficient error-related DMN suppression linked with HIV infection, as well as chronic CB use among HIV- participants, has real-world consequences for medication management behaviors. We speculate that insufficient DMN suppression may reflect an inability to disengage task irrelevant mental operations, ultimately hindering error monitoring and behavior modification.
Collapse
Affiliation(s)
| | | | - Taylor Salo
- Department of Psychology, Florida International University, Miami, FL
| | - Ranjita Poudel
- Department of Psychology, Florida International University, Miami, FL
| | - Angela R. Laird
- Department of Physics, Florida International University, Miami, FL
| | - Raul Gonzalez
- Department of Psychology, Florida International University, Miami, FL
| | - Matthew T. Sutherland
- Department of Psychology, Florida International University, Miami, FL,Correspondence: Matthew T. Sutherland, Ph.D., Florida International University, Department of Psychology, AHC-4, RM 312, 11299 S.W. 8th St, Miami, FL 33199, , 305-348-7962
| |
Collapse
|
26
|
Zuber P, Gaetano L, Griffa A, Huerbin M, Pedullà L, Bonzano L, Altermatt A, Tsagkas C, Parmar K, Hagmann P, Wuerfel J, Kappos L, Sprenger T, Sporns O, Magon S. Additive and interaction effects of working memory and motor sequence training on brain functional connectivity. Sci Rep 2021; 11:23089. [PMID: 34845312 PMCID: PMC8630199 DOI: 10.1038/s41598-021-02492-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/29/2021] [Indexed: 11/08/2022] Open
Abstract
Although shared behavioral and neural mechanisms between working memory (WM) and motor sequence learning (MSL) have been suggested, the additive and interactive effects of training have not been studied. This study aimed at investigating changes in brain functional connectivity (FC) induced by sequential (WM + MSL and MSL + WM) and combined (WM × MSL) training programs. 54 healthy subjects (27 women; mean age: 30.2 ± 8.6 years) allocated to three training groups underwent twenty-four 40-min training sessions over 6 weeks and four cognitive assessments including functional MRI. A double-baseline approach was applied to account for practice effects. Test performances were compared using linear mixed-effects models and t-tests. Resting state fMRI data were analysed using FSL. Processing speed, verbal WM and manual dexterity increased following training in all groups. MSL + WM training led to additive effects in processing speed and verbal WM. Increased FC was found after training in a network including the right angular gyrus, left superior temporal sulcus, right superior parietal gyrus, bilateral middle temporal gyri and left precentral gyrus. No difference in FC was found between double baselines. Results indicate distinct patterns of resting state FC modulation related to sequential and combined WM and MSL training suggesting a relevance of the order of training performance. These observations could provide new insight for the planning of effective training/rehabilitation.
Collapse
Affiliation(s)
- Priska Zuber
- Division of Cognitive Neuroscience, Faculty of Psychology, University of Basel, Basel, Switzerland
| | | | - Alessandra Griffa
- Department of Clinical Neurosciences, Division of Neurology, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Center of Neuroprosthetics, Institute of Bioengineering, École Polytechnique Fédérale De Lausanne (EPFL), Geneva, Switzerland
| | - Manuel Huerbin
- Medical Image Analysis Center (MIAC AG), Basel, Switzerland
| | - Ludovico Pedullà
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy
- Italian Multiple Sclerosis Foundation, Scientific Research Area, Genoa, Italy
| | - Laura Bonzano
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Anna Altermatt
- Medical Image Analysis Center (MIAC AG), Basel, Switzerland
| | - Charidimos Tsagkas
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Medicine and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Katrin Parmar
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Medicine and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Reha Rheinfelden, Rheinfelden, Switzerland
| | - Patric Hagmann
- Center of Neuroprosthetics, Institute of Bioengineering, École Polytechnique Fédérale De Lausanne (EPFL), Geneva, Switzerland
- Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Jens Wuerfel
- Medical Image Analysis Center (MIAC AG), Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Ludwig Kappos
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Medicine and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Till Sprenger
- Department of Neurology, DKD Helios Klinik, Wiesbaden, Germany
| | - Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
- Indiana University Network Science Institute, Indiana University, Bloomington, IN, USA
| | - Stefano Magon
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland.
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland.
| |
Collapse
|
27
|
Zhao W, Zhang Q, Chen X, Li Y, Li X, Du B, Deng X, Ji F, Wang C, Xiang YT, Dong Q, Chen C, Li J. The VNTR of the AS3MT gene is associated with brain activations during a memory span task and their training-induced plasticity. Psychol Med 2021; 51:1927-1932. [PMID: 32308175 PMCID: PMC8381288 DOI: 10.1017/s0033291720000720] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 01/10/2020] [Accepted: 03/11/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND The Arsenic (+3 oxidation state) methyltransferase (AS3MT) gene has been identified as a top risk gene for schizophrenia in several large-scale genome-wide association studies. A variable number tandem repeat (VNTR) of this gene is the most significant expression quantitative trait locus, but its role in brain activity in vivo is still unknown. METHODS We first performed a functional magnetic resonance imaging (fMRI) scan of 101 healthy subjects during a memory span task, trained all subjects on an adaptive memory span task for 1 month, and finally performed another fMRI scan after the training. After excluding subjects with excessive head movements for one or more scanning sessions, data from 93 subjects were included in the final analyses. RESULTS The VNTR was significantly associated with both baseline brain activation and training-induced changes in multiple regions including the prefrontal cortex and the anterior and posterior cingulate cortex. Additionally, it was associated with baseline brain activation in the striatum and the parietal cortex. All these results were corrected based on the family-wise error rate method across the whole brain at the peak level. CONCLUSIONS This study sheds light on the role of AS3MT gene variants in neural plasticity related to memory span training.
Collapse
Affiliation(s)
- Wan Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, P.R. China
| | - Qiumei Zhang
- School of Public Health, Jining Medical University, 45# Jianshe South Road, Jining272013, Shandong Province, P.R. China
| | - Xiongying Chen
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders & the Advanced Innovation Center for Human Brain Protection, Beijing Anding Hospital, School of Mental Health, Capital Medical University, Beijing100088, China
| | - Yang Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, P.R. China
| | - Xiaohong Li
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders & the Advanced Innovation Center for Human Brain Protection, Beijing Anding Hospital, School of Mental Health, Capital Medical University, Beijing100088, China
| | - Boqi Du
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, P.R. China
| | - Xiaoxiang Deng
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, P.R. China
| | - Feng Ji
- School of Mental Health, Jining Medical University, 45# Jianshe South Road, Jining272013, Shandong Province, P.R. China
| | - Chuanyue Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders & the Advanced Innovation Center for Human Brain Protection, Beijing Anding Hospital, School of Mental Health, Capital Medical University, Beijing100088, China
| | - Yu-Tao Xiang
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Qi Dong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, P.R. China
| | - Chuansheng Chen
- Department of Psychology and Social Behavior, University of California, Irvine, CA92697, USA
| | - Jun Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, P.R. China
| |
Collapse
|
28
|
Sombric CJ, Torres-Oviedo G. Cognitive and Motor Perseveration Are Associated in Older Adults. Front Aging Neurosci 2021; 13:610359. [PMID: 33986654 PMCID: PMC8110726 DOI: 10.3389/fnagi.2021.610359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
Aging causes perseveration (difficulty to switch between actions) in motor and cognitive tasks, suggesting that the same neural processes could govern these abilities in older adults. To test this, we evaluated the relation between independently measured motor and cognitive perseveration in young (21.4 ± 3.7 y/o) and older participants (76.5 ± 2.9 y/o). Motor perseveration was measured with a locomotor task in which participants had to transition between distinct walking patterns. Cognitive perseveration was measured with a card matching task in which participants had to switch between distinct matching rules. We found that perseveration in the cognitive and motor domains were positively related in older, but not younger individuals, such that participants exhibiting greater perseveration in the motor task also perseverated more in the cognitive task. Additionally, exposure reduces motor perseveration: older adults who had practiced the motor task could transition between walking patterns as proficiently as naïve, young individuals. Our results suggest an overlap in neural processes governing cognitive and motor perseveration with aging and that exposure can counteract the age-related motor perseveration.
Collapse
Affiliation(s)
| | - Gelsy Torres-Oviedo
- Sensorimotor Learning Laboratory, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
29
|
Iordan AD, Moored KD, Katz B, Cooke KA, Buschkuehl M, Jaeggi SM, Polk TA, Peltier SJ, Jonides J, Reuter‐Lorenz PA. Age differences in functional network reconfiguration with working memory training. Hum Brain Mapp 2021; 42:1888-1909. [PMID: 33534925 PMCID: PMC7978135 DOI: 10.1002/hbm.25337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/16/2022] Open
Abstract
Demanding cognitive functions like working memory (WM) depend on functional brain networks being able to communicate efficiently while also maintaining some degree of modularity. Evidence suggests that aging can disrupt this balance between integration and modularity. In this study, we examined how cognitive training affects the integration and modularity of functional networks in older and younger adults. Twenty three younger and 23 older adults participated in 10 days of verbal WM training, leading to performance gains in both age groups. Older adults exhibited lower modularity overall and a greater decrement when switching from rest to task, compared to younger adults. Interestingly, younger but not older adults showed increased task-related modularity with training. Furthermore, whereas training increased efficiency within, and decreased participation of, the default-mode network for younger adults, it enhanced efficiency within a task-specific salience/sensorimotor network for older adults. Finally, training increased segregation of the default-mode from frontoparietal/salience and visual networks in younger adults, while it diffusely increased between-network connectivity in older adults. Thus, while younger adults increase network segregation with training, suggesting more automated processing, older adults persist in, and potentially amplify, a more integrated and costly global workspace, suggesting different age-related trajectories in functional network reorganization with WM training.
Collapse
Affiliation(s)
| | - Kyle D. Moored
- Department of Mental Health, Bloomberg School of Public HealthJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Benjamin Katz
- Department of Human Development and Family ScienceVirginia TechBlacksburgVirginiaUSA
| | | | | | - Susanne M. Jaeggi
- School of EducationUniversity of California‐IrvineIrvineCaliforniaUSA
| | - Thad A. Polk
- Department of PsychologyUniversity of MichiganAnn ArborMichiganUSA
| | - Scott J. Peltier
- Functional MRI LaboratoryUniversity of MichiganAnn ArborMichiganUSA
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
| | - John Jonides
- Department of PsychologyUniversity of MichiganAnn ArborMichiganUSA
| | | |
Collapse
|
30
|
Dziemian S, Appenzeller S, von Bastian CC, Jäncke L, Langer N. Working Memory Training Effects on White Matter Integrity in Young and Older Adults. Front Hum Neurosci 2021; 15:605213. [PMID: 33935667 PMCID: PMC8079651 DOI: 10.3389/fnhum.2021.605213] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 03/15/2021] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVES Working memory is essential for daily life skills like reading comprehension, reasoning, and problem-solving. Healthy aging of the brain goes along with working memory decline that can affect older people's independence in everyday life. Interventions in the form of cognitive training are a promising tool for delaying age-related working memory decline, yet the underlying structural plasticity of white matter is hardly studied. METHODS We conducted a longitudinal diffusion tensor imaging study to investigate the effects of an intensive four-week adaptive working memory training on white matter integrity quantified by global and tract-wise mean diffusivity. We compared diffusivity measures of fiber tracts that are associated with working memory of 32 young and 20 older participants that were randomly assigned to a working memory training group or an active control group. RESULTS The behavioral analysis showed an increase in working memory performance after the four-week adaptive working memory training. The neuroanatomical analysis revealed a decrease in mean diffusivity in the working memory training group after the training intervention in the right inferior longitudinal fasciculus for the older adults. There was also a decrease in mean diffusivity in the working memory training group in the right superior longitudinal fasciculus for the older and young participants after the intervention. CONCLUSION This study shows that older people can benefit from working memory training by improving their working memory performance that is also reflected in terms of improved white matter integrity in the superior longitudinal fasciculus and the inferior longitudinal fasciculus, where the first is an essential component of the frontoparietal network known to be essential in working memory.
Collapse
Affiliation(s)
- Sabine Dziemian
- Department of Methods of Plasticity Research, Institute of Psychology, University of Zurich, Zurich, Switzerland
- University Research Priority Program “Dynamic of Healthy Aging”, University of Zurich, Zurich, Switzerland
- Center for Reproducible Science, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), Zurich, Switzerland
| | - Sarah Appenzeller
- Department of Methods of Plasticity Research, Institute of Psychology, University of Zurich, Zurich, Switzerland
| | - Claudia C. von Bastian
- Department of Psychology, University of Sheffield, Sheffield, United Kingdom
- Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Lutz Jäncke
- Institute of Psychology, Department of Neuropsychology, University of Zurich, Zurich, Switzerland
- University Research Priority Program “Dynamic of Healthy Aging”, University of Zurich, Zurich, Switzerland
| | - Nicolas Langer
- Department of Methods of Plasticity Research, Institute of Psychology, University of Zurich, Zurich, Switzerland
- University Research Priority Program “Dynamic of Healthy Aging”, University of Zurich, Zurich, Switzerland
- Center for Reproducible Science, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), Zurich, Switzerland
| |
Collapse
|
31
|
Research on Differential Brain Networks before and after WM Training under Different Frequency Band Oscillations. Neural Plast 2021; 2021:6628021. [PMID: 33824657 PMCID: PMC8007374 DOI: 10.1155/2021/6628021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/20/2021] [Accepted: 03/10/2021] [Indexed: 11/17/2022] Open
Abstract
Previous studies have shown that different frequency band oscillations are associated with cognitive processing such as working memory (WM). Electroencephalogram (EEG) coherence and graph theory can be used to measure functional connections between different brain regions and information interaction between different clusters of neurons. At the same time, it was found that better cognitive performance of individuals indicated stronger small-world characteristics of resting-state WM networks. However, little is known about the neural synchronization of the retention stage during ongoing WM tasks (i.e., online WM) by training on the whole-brain network level. Therefore, combining EEG coherence and graph theory analysis, the present study examined the topological changes of WM networks before and after training based on the whole brain and constructed differential networks with different frequency band oscillations (i.e., theta, alpha, and beta). The results showed that after WM training, the subjects' WM networks had higher clustering coefficients and shorter optimal path lengths than before training during the retention period. Moreover, the increased synchronization of the frontal theta oscillations seemed to reflect the improved executive ability of WM and the more mature resource deployment; the enhanced alpha oscillatory synchronization in the frontoparietal and fronto-occipital regions may reflect the enhanced ability to suppress irrelevant information during the delay and pay attention to memory guidance; the enhanced beta oscillatory synchronization in the temporoparietal and frontoparietal regions may indicate active memory maintenance and preparation for memory-guided attention. The findings may add new evidence to understand the neural mechanisms of WM on the changes of network topological attributes in the task-related mode.
Collapse
|
32
|
Dual n-back working memory training evinces superior transfer effects compared to the method of loci. Sci Rep 2021; 11:3072. [PMID: 33542383 PMCID: PMC7862396 DOI: 10.1038/s41598-021-82663-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 01/22/2021] [Indexed: 01/30/2023] Open
Abstract
Working memory (WM) training is a prevalent intervention for multiple cognitive deficits, however, the transfer effects to other cognitive tasks from gains in WM induced by different training techniques still remains controversial. Therefore, the current study recruited three groups of young adults to investigate the memory training transference, with N-back group (NBG) (n = 50) training on dual n-back task, Memory Palace group (MPG) (n = 50) on method of loci, and a blank control group (BCG) (n = 48) receiving no training. Our results showed that both training groups separately improved WM capacity on respective trained task. For untrained tasks, both training groups enhanced performance on digit-span task, while on change detection task, significant improvement was only observed in NBG. In conclusion, while both techniques can be used as effective training methods to improve WM, the dual n-back task training method, perhaps has a more prominent transfer effect than that of method of loci.
Collapse
|
33
|
Is Training with the N-Back Task More Effective Than with Other Tasks? N-Back vs. Dichotic Listening vs. Simple Listening. JOURNAL OF COGNITIVE ENHANCEMENT 2020. [DOI: 10.1007/s41465-020-00202-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AbstractCognitive training most commonly uses computerized tasks that stimulate simultaneous cognitive processing in two modalities, such as a dual n-back task with visual and auditive stimuli, or on two receptive channels, such as a listening task with dichotically presented stimuli. The present study was designed to compare a dual n-back task and a dichotic listening (DL) task with an active control condition (a simple listening task) and a no-training control condition for their impact on cognitive performance, daily life memory, and mindfulness. One hundred thirty healthy adults aged 18–55 years were randomly assigned to one of the four conditions. The training consisted of twenty 15-min sessions spread across 4 weeks. The results indicated some improvement on episodic memory tasks and a trend for enhanced performance in an untrained working memory (WM) span task following cognitive training relative to the no-training control group. However, the only differential training effects were found for the DL training in increasing choice reaction performance and a trend for self-reported mindfulness. Transfer to measures of fluid intelligence and memory in daily life did not emerge. Additionally, we found links between self-efficacy and n-back training performance and between emotion regulation and training motivation. Our results contribute to the field of WM training by demonstrating that our listening tasks are comparable in effect to a dual n-back task in slightly improving memory. The possibility of improving attentional control and mindfulness through dichotic listening training is promising and deserves further consideration.
Collapse
|
34
|
Stavroulaki V, Giakoumaki SG, Sidiropoulou K. Working memory training effects across the lifespan: Evidence from human and experimental animal studies. Mech Ageing Dev 2020; 194:111415. [PMID: 33338498 DOI: 10.1016/j.mad.2020.111415] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 11/23/2020] [Accepted: 12/09/2020] [Indexed: 10/22/2022]
Abstract
Working memory refers to a cognitive function that provides temporary storage and manipulation of the information necessary for complex cognitive tasks. Due to its central role in general cognition, several studies have investigated the possibility that training on working memory tasks could improve not only working memory function but also increase other cognitive abilities or modulate other behaviors. This possibility is still highly controversial, with prior studies providing contradictory findings. The lack of systematic approaches and methodological shortcomings complicates this debate even more. This review highlights the impact of working memory training at different ages on humans. Finally, it demonstrates several findings about the neural substrate of training in both humans and experimental animals, including non-human primates and rodents.
Collapse
Affiliation(s)
| | - Stella G Giakoumaki
- Laboratory of Neuropsychology, Department of Psychology, Gallos University Campus, University of Crete, Rethymno, 74100, Crete, Greece; University of Crete Research Center for the Humanities, The Social and Educational Sciences, University of Crete, Rethymno, 74100, Crete, Greece
| | - Kyriaki Sidiropoulou
- Dept of Biology, University of Crete, Greece; Institute of Molecular Biology and Biotechnology - Foundation for Research and Technology Hellas, Greece.
| |
Collapse
|
35
|
Guo X, Yamashita M, Suzuki M, Ohsawa C, Asano K, Abe N, Soshi T, Sekiyama K. Musical instrument training program improves verbal memory and neural efficiency in novice older adults. Hum Brain Mapp 2020; 42:1359-1375. [PMID: 33617124 PMCID: PMC7927292 DOI: 10.1002/hbm.25298] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/10/2020] [Accepted: 11/16/2020] [Indexed: 11/08/2022] Open
Abstract
Previous studies indicate that musical instrument training may improve the cognitive function of older adults. However, little is known about the neural origins of training‐related improvement in cognitive function. Here, we assessed the effects of instrumental training program on cognitive functions and neural efficiency in musically naïve older adults (61–85 years old). Participants were assigned to either the intervention group, which received a 4‐month instrumental training program using keyboard harmonica, or a control group without any alternative training. Cognitive measurements and functional magnetic resonance imaging during visual working memory (VWM) task were administered before and after the intervention in both groups. Behavioral data revealed that the intervention group significantly improved memory performance on the test that measures verbal recall compared to the control group. Neuroimaging data revealed that brain activation in the right supplementary motor area, left precuneus, and bilateral posterior cingulate gyrus (PCgG) during the VWM task decreased after instrumental training only in the intervention group. Task‐related functional connectivity (FC) analysis revealed that the intervention group showed decreased FC between the right PCgG and left middle temporal gyrus, and between the left putamen and right superior temporal gyrus (lPu‐rSTG) during a VWM task after the intervention. Furthermore, a greater improvement in memory performance in the intervention group was associated with a larger reduction in lPu‐rSTG FC, which might be interpreted as improved neural efficiency. Our results indicate that the musical instrument training program may contribute to improvements in verbal memory and neural efficiency in novice older adults.
Collapse
Affiliation(s)
- Xia Guo
- Graduate School of Social and Cultural Sciences, Kumamoto University, Kumamoto, Japan.,Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Kyoto, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Masatoshi Yamashita
- Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Kyoto, Japan
| | - Maki Suzuki
- Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Kyoto, Japan.,Department of Behavioral Neurology and Neuropsychiatry, Osaka University United Graduate School of Child Development, Osaka, Japan
| | - Chie Ohsawa
- Kokoro Research Center, Kyoto University, Kyoto, Japan.,School of Music, Mukogawa Women's University, Hyogo, Japan
| | - Kohei Asano
- Kokoro Research Center, Kyoto University, Kyoto, Japan.,Faculty of Child Care and Education, Osaka University of Comprehensive Children Education, Osaka, Japan
| | - Nobuhito Abe
- Kokoro Research Center, Kyoto University, Kyoto, Japan
| | - Takahiro Soshi
- Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Kyoto, Japan
| | - Kaoru Sekiyama
- Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Kyoto, Japan
| |
Collapse
|
36
|
Salmi J, Soveri A, Salmela V, Alho K, Leppämäki S, Tani P, Koski A, Jaeggi SM, Laine M. Working memory training restores aberrant brain activity in adult attention-deficit hyperactivity disorder. Hum Brain Mapp 2020; 41:4876-4891. [PMID: 32813290 PMCID: PMC7643386 DOI: 10.1002/hbm.25164] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/25/2020] [Accepted: 07/29/2020] [Indexed: 01/01/2023] Open
Abstract
The development of treatments for attention impairments is hampered by limited knowledge about the malleability of underlying neural functions. We conducted the first randomized controlled trial to determine the modulations of brain activity associated with working memory (WM) training in adults with attention-deficit hyperactivity disorder (ADHD). At baseline, we assessed the aberrant functional brain activity in the n-back WM task by comparing 44 adults with ADHD with 18 healthy controls using fMRI. Participants with ADHD were then randomized to train on an adaptive dual n-back task or an active control task. We tested whether WM training elicits redistribution of brain activity as observed in healthy controls, and whether it might further restore aberrant activity related to ADHD. As expected, activity in areas of the default-mode (DMN), salience (SN), sensory-motor (SMN), frontoparietal (FPN), and subcortical (SCN) networks was decreased in participants with ADHD at pretest as compared with healthy controls, especially when the cognitive load was high. WM training modulated widespread FPN and SN areas, restoring some of the aberrant activity. Training effects were mainly observed as decreased brain activity during the trained task and increased activity during the untrained task, suggesting different neural mechanisms for trained and transfer tasks.
Collapse
Affiliation(s)
- Juha Salmi
- Department of Neuroscience and Biomedical EngineeringAalto UniversityEspooFinland
- Department of Psychology and Speech‐Language PathologyUniversity of TurkuTurkuFinland
- Turku Institute for Advanced StudiesUniversity of TurkuTurkuFinland
| | - Anna Soveri
- Department of Clinical MedicineUniversity of TurkuTurkuFinland
| | - Viljami Salmela
- Department of Psychology and LogopedicsUniversity of HelsinkiHelsinkiFinland
- AMI Centre, Aalto NeuroimagingAalto UniversityEspooFinland
| | - Kimmo Alho
- Department of Psychology and LogopedicsUniversity of HelsinkiHelsinkiFinland
- AMI Centre, Aalto NeuroimagingAalto UniversityEspooFinland
| | - Sami Leppämäki
- Department of PsychiatryHelsinki University HospitalHelsinkiFinland
| | - Pekka Tani
- Department of PsychiatryHelsinki University HospitalHelsinkiFinland
| | - Anniina Koski
- Department of PsychiatryHelsinki University HospitalHelsinkiFinland
| | - Susanne M. Jaeggi
- School of EducationUniversity of California IrvineIrvineCaliforniaUSA
- Department of Cognitive SciencesUniversity of California IrvineIrvineCaliforniaUSA
| | - Matti Laine
- Department of PsychologyÅbo Akademi UniversityTurkuFinland
- Brain and Mind CenterUniversity of TurkuTurkuFinland
| |
Collapse
|
37
|
Pappa K, Biswas V, Flegal KE, Evans JJ, Baylan S. Working memory updating training promotes plasticity & behavioural gains: A systematic review & meta-analysis. Neurosci Biobehav Rev 2020; 118:209-235. [PMID: 32738262 DOI: 10.1016/j.neubiorev.2020.07.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/17/2020] [Accepted: 07/23/2020] [Indexed: 11/18/2022]
Abstract
AIMS Recent reviews yield contradictory findings regarding the efficacy of working memory training and transfer to untrained tasks. We reviewed working memory updating (WMU) training studies and examined cognitive and neural outcomes on training and transfer tasks. METHODS Database searches for adult brain imaging studies of WMU training were conducted. Training-induced neural changes were assessed qualitatively, and meta-analyses were performed on behavioural training and transfer effects. RESULTS A large behavioural training effect was found for WMU training groups compared to control groups. There was a moderate near transfer effect on tasks in the same cognitive domain, and a non-significant effect for far transfer to other cognitive domains. Functional neuroimaging changes for WMU training tasks revealed consistent frontoparietal activity decreases while both decreases and increases were found for subcortical regions. CONCLUSIONS WMU training promotes plasticity and has potential applications in optimizing interventions for neurological populations. Future research should focus on the mechanisms and factors underlying plasticity and generalisation of training gains.
Collapse
Affiliation(s)
- Katerina Pappa
- Institute of Health and Wellbeing, University of Glasgow, United Kingdom.
| | - Viveka Biswas
- Institute of Neuroscience and Psychology, University of Glasgow, United Kingdom
| | - Kristin E Flegal
- Institute of Neuroscience and Psychology, University of Glasgow, United Kingdom
| | - Jonathan J Evans
- Institute of Health and Wellbeing, University of Glasgow, United Kingdom
| | - Satu Baylan
- Institute of Health and Wellbeing, University of Glasgow, United Kingdom
| |
Collapse
|
38
|
Iordan AD, Cooke KA, Moored KD, Katz B, Buschkuehl M, Jaeggi SM, Polk TA, Peltier SJ, Jonides J, Reuter-Lorenz PA. Neural correlates of working memory training: Evidence for plasticity in older adults. Neuroimage 2020; 217:116887. [PMID: 32376302 PMCID: PMC7755422 DOI: 10.1016/j.neuroimage.2020.116887] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/26/2020] [Accepted: 04/26/2020] [Indexed: 10/24/2022] Open
Abstract
Brain activity typically increases with increasing working memory (WM) load, regardless of age, before reaching an apparent ceiling. However, older adults exhibit greater brain activity and reach ceiling at lower loads than younger adults, possibly reflecting compensation at lower loads and dysfunction at higher loads. We hypothesized that WM training would bolster neural efficiency, such that the activation peak would shift towards higher memory loads after training. Pre-training, older adults showed greater recruitment of the WM network than younger adults across all loads, with decline at the highest load. Ten days of adaptive training on a verbal WM task improved performance and led to greater brain responsiveness at higher loads for both groups. For older adults the activation peak shifted rightward towards higher loads. Finally, training increased task-related functional connectivity in older adults, both within the WM network and between this task-positive network and the task-negative/default-mode network. These results provide new evidence for functional plasticity with training in older adults and identify a potential signature of improvement at the neural level.
Collapse
Affiliation(s)
- Alexandru D Iordan
- Department of Psychology, University of Michigan, 530 Church St, Ann Arbor, MI, 48109, United States.
| | - Katherine A Cooke
- Department of Psychology, University of Michigan, 530 Church St, Ann Arbor, MI, 48109, United States
| | - Kyle D Moored
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, 615 N Wolfe St, Baltimore, MD, 21205, United States
| | - Benjamin Katz
- Department of Human Development and Family Science, Virginia Tech, 295 W Campus Dr, Blacksburg, VA, 24061, United States
| | - Martin Buschkuehl
- MIND Research Institute, 5281 California Ave., Suite 300, Irvine, CA, 92617, United States
| | - Susanne M Jaeggi
- School of Education, University of California, Irvine, 3200 Education Bldg, Irvine, CA, 92697, United States
| | - Thad A Polk
- Department of Psychology, University of Michigan, 530 Church St, Ann Arbor, MI, 48109, United States
| | - Scott J Peltier
- Functional MRI Laboratory, Department of Biomedical Engineering, University of Michigan, 2360 Bonisteel Blvd, Ann Arbor, MI, 48109, United States
| | - John Jonides
- Department of Psychology, University of Michigan, 530 Church St, Ann Arbor, MI, 48109, United States
| | - Patricia A Reuter-Lorenz
- Department of Psychology, University of Michigan, 530 Church St, Ann Arbor, MI, 48109, United States.
| |
Collapse
|
39
|
Weicker J, Hudl N, Hildebrandt H, Obrig H, Schwarzer M, Villringer A, Thöne-Otto A. The effect of high vs. low intensity neuropsychological treatment on working memory in patients with acquired brain injury. Brain Inj 2020; 34:1051-1060. [PMID: 32511937 DOI: 10.1080/02699052.2020.1773536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
AIM To evaluate the combined effect of compensation therapy and functional training on working memory (WM) in patients with acquired injury and chronic cognitive deficits by investigating the dose-response relationship and specificity of transfer effects. RESEARCH DESIGN Double-blind randomized controlled trial. METHODS All patients underwent 4 weeks of compensation therapy in a day-care setting. In addition, they received either 20 sessions of computer-based WM training (n = 11) or attention training (n = 9). Transfer effects on cognition and their functional relevance in daily life were assessed before treatment, after 2 weeks (10 additional training sessions), and after 4 weeks (20 additional training sessions) of therapy. RESULTS The combined treatment led to significant improvements in WM performance, verbal memory, and self-reported changes in daily life. The amount of training was identified to modulate efficacy: Significant improvements showed only in the later training phase. We observed no differences between the two training schemes (WM vs. attentional training). CONCLUSIONS Even in the chronic phase after brain lesion WM performance can be enhanced by the combination of compensation therapy and computerized cognitive training when applied intensely; both a more general attention and a specific WM training regimen are effective.
Collapse
Affiliation(s)
- Juliane Weicker
- Clinic of Cognitive Neurology, University of Leipzig , Leipzig, Germany.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences , Leipzig, Germany
| | - Nicole Hudl
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences , Leipzig, Germany.,Professorship of Sports Psychology, Chemnitz University of Technology , Chemnitz, Germany
| | - Helmut Hildebrandt
- Department of Psychology, Carl Von Ossietzky University of Oldenburg , Oldenburg, Germany
| | - Hellmuth Obrig
- Clinic of Cognitive Neurology, University of Leipzig , Leipzig, Germany.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences , Leipzig, Germany
| | - Magdalena Schwarzer
- Department of Psychology, Carl Von Ossietzky University of Oldenburg , Oldenburg, Germany
| | - Arno Villringer
- Clinic of Cognitive Neurology, University of Leipzig , Leipzig, Germany.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences , Leipzig, Germany
| | | |
Collapse
|
40
|
Au J, Gibson BC, Bunarjo K, Buschkuehl M, Jaeggi SM. Quantifying the Difference between Active and Passive Control Groups in Cognitive Interventions Using two Meta-Analytical Approaches. JOURNAL OF COGNITIVE ENHANCEMENT 2020; 4:192-210. [PMID: 34337311 PMCID: PMC8320766 DOI: 10.1007/s41465-020-00164-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 01/13/2020] [Indexed: 12/13/2022]
Abstract
Despite promising reports of broad cognitive benefit in studies of cognitive training, it has been argued that the reliance of many studies on no-intervention control groups (passive controls) make these reports difficult to interpret because placebo effects cannot be ruled out. Although researchers have recently been trying to incorporate more active controls, in which participants engage in an alternate intervention, previous work has been contentious as to whether this actually yields meaningfully different results. To better understand the influence of passive and active control groups on cognitive interventions, we conducted two meta-analyses to estimate their relative effect sizes. While the first one broadly surveyed the literature by compiling data from 34 meta-analyses, the second one synthesized data from 42 empirical studies that simultaneously employed both types of controls. Both analyses showed no meaningful performance difference between passive and active controls, suggesting that current active control placebo paradigms might not be appropriately designed to reliably capture these non-specific effects or that these effects are minimal in this literature.
Collapse
Affiliation(s)
- Jacky Au
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, 92617
| | - Benjamin C. Gibson
- Department of Psychology, University of New Mexico, Albuquerque, NM, 87131
| | - Kimberly Bunarjo
- MIND Research Institute, Irvine, CA, 92617
- School of Education, University of California, Irvine, Irvine, CA, 92697
| | | | - Susanne M. Jaeggi
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, 92617
- School of Education, University of California, Irvine, Irvine, CA, 92697
| |
Collapse
|
41
|
Locating neural transfer effects of n-back training on the central executive: a longitudinal fMRI study. Sci Rep 2020; 10:5226. [PMID: 32251354 PMCID: PMC7089996 DOI: 10.1038/s41598-020-62067-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 03/04/2020] [Indexed: 01/18/2023] Open
Abstract
The large number of behavioral studies testing whether working memory training improves performance on an untrained task have yielded inconclusive results. Moreover, some studies have investigated the possible neural changes during the performance of untrained tasks after training. Here, we studied the transfer from n-back training to the Paced Auditory Serial Addition Test (PASAT), two different tasks that use the central executive system to maintain verbal stimuli. Participants completed fMRI sessions at baseline, immediately after one week of training, and at the five-week follow-up. Although behavioral transfer effects were not obtained, training was associated with decreased activation in the anterior dorsolateral prefrontal cortex (DLPFC; BA 9/46) while performing the PASAT that remained stable five weeks later. Consistent with our hypothesis, the changes in the anterior DLFPC largely overlapped with the n-back task fMRI activations. In conclusion, working memory training improves efficiency in brain areas involved in the trained task that may affect untrained tasks, specifically in brain areas responsible for the same cognitive processes.
Collapse
|
42
|
Neurophysiological indices of the transfer of cognitive training gains to untrained tasks. Neurobiol Learn Mem 2020; 171:107205. [PMID: 32145406 DOI: 10.1016/j.nlm.2020.107205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 02/11/2020] [Accepted: 03/02/2020] [Indexed: 11/20/2022]
Abstract
Targeted training of working memory (WM) may improve performance and modulate brain function in untrained cognitive modalities. Demanding cognitive training protocols that do not target WM may also improve performance on untrained cognitive tests, but the delineation between transfer effects that are unique to WM training and effects that are shared among different cognitive training modalities has not been well-established. To address this, we examined the effects of twenty sessions of either WM training (visual n-back task with letter stimuli) or selective attention training (visual search task with letter array stimuli) on brain function during untrained WM and cognitive control tasks. Event-related potentials (ERPs) were obtained at baseline (pretest) and after the training period (posttest) for two untrained tasks - a Spatial 3-back task measuring spatial WM, and a Go/NoGo Flanker task measuring cognitive control. The n-back training group had more pronounced pretest-to-posttest performance improvements on the Spatial 3-back task compared to the search training group. N-back training was also associated with pretest-to-posttest enhancement of N1 amplitude and reduced N2 latency on trials of the task in which where there was a stimulus match, as well as enhancement of a late positive potential (550-750 msec post-stimulus) for all trials of the task. These ERP effects suggest that n-back training resulted in enhancement of attention to spatial locations, earlier onset of conflict monitoring processes, and changes in the engagement of neural activity during the retention interval, respectively. Both groups had faster reaction time on Go trials of the Go/NoGo Flanker task at posttest compared to pretest. Relatively subtle training-related effects were observed for N2 amplitude on this task, in line with the notion that training (particularly n-back training) was associated with improved conflict monitoring. Further, search training resulted in earlier onset of P2 and P3 latency at posttest compared to pretest. Taken together, the ERP findings for both tasks identify specific cognitive processes that are associated with transfer to untrained tasks after distinct forms of cognitive training.
Collapse
|
43
|
Ophey A, Giehl K, Rehberg S, Eggers C, Reker P, van Eimeren T, Kalbe E. Effects of working memory training in patients with Parkinson's disease without cognitive impairment: A randomized controlled trial. Parkinsonism Relat Disord 2020; 72:13-22. [PMID: 32078917 DOI: 10.1016/j.parkreldis.2020.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 01/11/2023]
Abstract
OBJECTIVE To determine the feasibility and evaluate effects of a computerized working memory (WM) training (WMT) in patients with Parkinson's Disease (PD) on cognitive and clinical outcomes. METHODS 76 patients with PD without cognitive impairment were randomized to either the WMT group (n = 37), who participated in a 5-week adaptive WMT, or a passive waiting-list control group (CG, n = 39). Patients underwent clinical and neuropsychological examination at baseline, after training, and at 3-months follow-up, with verbal WM and non-verbal WM as primary outcomes. Outcome assessors were blinded for group allocation. RESULTS All WMT participants completed the training successfully and reported high levels of motivation for and satisfaction with the training. Repeated-measures, linear mixed-effects models revealed positive training effects for the WMT group compared to the CG in verbal working memory with a small relative effect size 0.39 [95%CI 0.05; 0.76] for the 3-months follow-up only. No other reliable training effects in cognitive and clinical variables were found for either point of time. CONCLUSIONS In this randomized controlled trial, WMT was feasible and yielded some evidence for 3-months follow-up training gains in patients with PD. WMT might be an effective intervention to prevent cognitive decline in this patient group, however, more longitudinal studies with longer follow-up periods and more sensitive assessment tools will have to proof this concept. TRIAL REGISTRATION German Clinical Trials Register (DRKS00009379).
Collapse
Affiliation(s)
- Anja Ophey
- Department of Medical Psychology
- Neuropsychology & Gender Studies, Center for Neuropsychological Diagnostic and Intervention (CeNDI), Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpenerstr. 62, 50937, Cologne, Germany.
| | - Kathrin Giehl
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpenerstr. 62, 50937, Cologne, Germany.
| | - Sarah Rehberg
- Department of Medical Psychology
- Neuropsychology & Gender Studies, Center for Neuropsychological Diagnostic and Intervention (CeNDI), Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpenerstr. 62, 50937, Cologne, Germany.
| | - Carsten Eggers
- Department of Neurology, University Hospital of Marburg, Marburg, Germany; Center for Mind, Brain and Behavior - CMBB, Universities of Marburg and Gießen, Baldingerstraße, 35043, Marburg, Germany.
| | - Paul Reker
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpenerstr. 62, 50937, Cologne, Germany.
| | - Thilo van Eimeren
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpenerstr. 62, 50937, Cologne, Germany; Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpenerstr. 62, 50937, Cologne, Germany; German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Straße 27, 53127, Bonn, Germany.
| | - Elke Kalbe
- Department of Medical Psychology
- Neuropsychology & Gender Studies, Center for Neuropsychological Diagnostic and Intervention (CeNDI), Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpenerstr. 62, 50937, Cologne, Germany.
| |
Collapse
|
44
|
Zhao W, Huang L, Li Y, Zhang Q, Chen X, Fu W, Du B, Deng X, Ji F, Xiang YT, Wang C, Li X, Dong Q, Chen C, Jaeggi SM, Li J. Evidence for the contribution of COMT gene Val158/108Met polymorphism (rs4680) to working memory training-related prefrontal plasticity. Brain Behav 2020; 10:e01523. [PMID: 31917897 PMCID: PMC7010579 DOI: 10.1002/brb3.1523] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 11/28/2019] [Accepted: 12/07/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Genetic factors have been suggested to affect the efficacy of working memory training. However, few studies have attempted to identify the relevant genes. METHODS In this study, we first performed a randomized controlled trial (RCT) to identify brain regions that were specifically affected by working memory training. Sixty undergraduate students were randomly assigned to either the adaptive training group (N = 30) or the active control group (N = 30). Both groups were trained for 20 sessions during 4 weeks and received fMRI scans before and after the training. Afterward, we combined the data from the 30 participants in the RCT study who received adaptive training with data from 71 additional participants who also received the same adaptive training but were not part of the RCT study (total N = 101) to test the contribution of the COMT Val158/108Met polymorphism to the interindividual difference in the training effect within the identified brain regions. RESULTS In the RCT study, we found that the adaptive training significantly decreased brain activation in the left prefrontal cortex (TFCE-FWE corrected p = .030). In the genetic study, we found that compared with the Val allele homozygotes, the Met allele carriers' brain activation decreased more after the training at the left prefrontal cortex (TFCE-FWE corrected p = .025). CONCLUSIONS This study provided evidence for the neural effect of a visual-spatial span training and suggested that genetic factors such as the COMT Val158/108Met polymorphism may have to be considered in future studies of such training.
Collapse
Affiliation(s)
- Wan Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Ling Huang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yang Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Qiumei Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,School of Mental Health, Jining Medical University, Jining, China
| | - Xiongying Chen
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders & Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Wenjin Fu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Boqi Du
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xiaoxiang Deng
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Feng Ji
- School of Mental Health, Jining Medical University, Jining, China
| | - Yu-Tao Xiang
- Faculty of Health Sciences, University of Macau, Taipa, China
| | - Chuanyue Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders & Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Xiaohong Li
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders & Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Qi Dong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Chuansheng Chen
- Department of Psychological Science, University of California, Irvine, CA, USA
| | - Susanne M Jaeggi
- School of Education & Department of Cognitive Sciences, University of California, Irvine, CA, USA
| | - Jun Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| |
Collapse
|
45
|
Quan M, Zhao T, Tang Y, Luo P, Wang W, Qin Q, Li T, Wang Q, Fang J, Jia J. Effects of gene mutation and disease progression on representative neural circuits in familial Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2020; 12:14. [PMID: 31937364 PMCID: PMC6961388 DOI: 10.1186/s13195-019-0572-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/23/2019] [Indexed: 02/08/2023]
Abstract
Background Although structural and functional changes of the striatum and hippocampus are present in familial Alzheimer’s disease, little is known about the effects of specific gene mutation or disease progression on their related neural circuits. This study was to evaluate the effects of known pathogenic gene mutation and disease progression on the striatum- and hippocampus-related neural circuits, including frontostriatal and hippocampus-posterior cingulate cortex (PCC) pathways. Methods A total of 102 healthy mutation non-carriers, 40 presymptomatic mutation carriers (PMC), and 30 symptomatic mutation carriers (SMC) of amyloid precursor protein (APP), presenilin 1 (PS1), or presenilin 2 gene, with T1 structural MRI, diffusion tensor imaging, and resting-state functional MRI were included. Representative neural circuits and their key nodes were obtained, including bilateral caudate-rostral middle frontal gyrus (rMFG), putamen-rMFG, and hippocampus-PCC. Volumes, diffusion indices, and functional connectivity of circuits were compared between groups and correlated with neuropsychological and clinical measures. Results In PMC, APP gene mutation carriers showed impaired diffusion indices of caudate-rMFG and putamen-rMFG circuits; PS1 gene mutation carriers showed increased fiber numbers of putamen-rMFG circuit. SMC showed increased diffusivity of the left hippocampus-PCC circuit and volume reduction of all regions as compared with PMC. Imaging measures especially axial diffusivity of the representative circuits were correlated with neuropsychological measures. Conclusions APP and PS1 gene mutations affect frontostriatal circuits in a different manner in familial Alzheimer’s disease; disease progression primarily affects the structure of hippocampus-PCC circuit. The structural connectivity of both frontostriatal and hippocampus-PCC circuits is associated with general cognitive function. Such findings may provide further information about the imaging biomarkers for early identification and prognosis of familial Alzheimer’s disease, and pave the way for early diagnosis, gene- or circuit-targeted treatment, and even prevention. Electronic supplementary material The online version of this article (10.1186/s13195-019-0572-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Meina Quan
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, People's Republic of China.,Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, People's Republic of China.,Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, People's Republic of China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, People's Republic of China
| | - Tan Zhao
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, People's Republic of China.,Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, People's Republic of China.,Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, People's Republic of China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, People's Republic of China
| | - Yi Tang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, People's Republic of China.,Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, People's Republic of China.,Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, People's Republic of China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, People's Republic of China
| | - Ping Luo
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, People's Republic of China.,Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, People's Republic of China.,Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, People's Republic of China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, People's Republic of China
| | - Qi Qin
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, People's Republic of China.,Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, People's Republic of China.,Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, People's Republic of China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, People's Republic of China
| | - Tingting Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, People's Republic of China.,Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, People's Republic of China.,Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, People's Republic of China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, People's Republic of China
| | - Qigeng Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, People's Republic of China.,Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, People's Republic of China.,Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, People's Republic of China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, People's Republic of China
| | - Jiliang Fang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, People's Republic of China. .,Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, People's Republic of China. .,Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, People's Republic of China. .,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, People's Republic of China.
| |
Collapse
|
46
|
Chang H, Rosenberg-Lee M, Qin S, Menon V. Faster learners transfer their knowledge better: Behavioral, mnemonic, and neural mechanisms of individual differences in children's learning. Dev Cogn Neurosci 2019; 40:100719. [PMID: 31710975 PMCID: PMC6974913 DOI: 10.1016/j.dcn.2019.100719] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 10/03/2019] [Accepted: 10/12/2019] [Indexed: 01/23/2023] Open
Abstract
Why some children learn, and transfer their knowledge to novel problems, better than others remains an important unresolved question in the science of learning. Here we developed an innovative tutoring program and data analysis approach to investigate individual differences in neurocognitive mechanisms that support math learning and "near" transfer to novel, but structurally related, problems in elementary school children. Following just five days of training, children performed recently trained math problems more efficiently, with greater use of memory-retrieval-based strategies. Crucially, children who learned faster during training performed better not only on trained problems but also on novel problems, and better discriminated trained and novel problems in a subsequent recognition memory task. Faster learners exhibited increased similarity of neural representations between trained and novel problems, and greater differentiation of functional brain circuits engaged by trained and novel problems. These results suggest that learning and near transfer are characterized by parallel learning-rate dependent local integration and large-scale segregation of functional brain circuits. Our findings demonstrate that speed of learning and near transfer are interrelated and identify the neural mechanisms by which faster learners transfer their knowledge better. Our study provides new insights into the behavioral, mnemonic, and neural mechanisms underlying children's learning.
Collapse
Affiliation(s)
- Hyesang Chang
- Department of Psychiatry & Behavioral Sciences, Stanford, CA 94305, United States.
| | - Miriam Rosenberg-Lee
- Department of Psychiatry & Behavioral Sciences, Stanford, CA 94305, United States; Department of Psychology, Rutgers University, Newark, NJ 07102, United States
| | - Shaozheng Qin
- Department of Psychiatry & Behavioral Sciences, Stanford, CA 94305, United States; State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Faculty of Psychology at Beijing Normal University, Beijing, China
| | - Vinod Menon
- Department of Psychiatry & Behavioral Sciences, Stanford, CA 94305, United States; Department of Neurology & Neurological Sciences, Stanford, CA 94305, United States; Stanford Neurosciences Institute, Stanford University School of Medicine, Stanford, CA 94305, United States.
| |
Collapse
|
47
|
Working memory updating training modulates a cascade of event-related potentials depending on task load. Neurobiol Learn Mem 2019; 166:107085. [DOI: 10.1016/j.nlm.2019.107085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 08/09/2019] [Accepted: 08/31/2019] [Indexed: 01/30/2023]
|
48
|
Emch M, Ripp I, Wu Q, Yakushev I, Koch K. Neural and Behavioral Effects of an Adaptive Online Verbal Working Memory Training in Healthy Middle-Aged Adults. Front Aging Neurosci 2019; 11:300. [PMID: 31736741 PMCID: PMC6838657 DOI: 10.3389/fnagi.2019.00300] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/18/2019] [Indexed: 12/22/2022] Open
Abstract
Neural correlates of working memory (WM) training remain a matter of debate, especially in older adults. We used functional magnetic resonance imaging (fMRI) together with an n-back task to measure brain plasticity in healthy middle-aged adults following an 8-week adaptive online verbal WM training. Participants performed 32 sessions of this training on their personal computers. In addition, we assessed direct effects of the training by applying a verbal WM task before and after the training. Participants (mean age 55.85 ± 4.24 years) were pseudo-randomly assigned to the experimental group (n = 30) or an active control group (n = 27). Training resulted in an activity decrease in regions known to be involved in verbal WM (i.e., fronto-parieto-cerebellar circuitry and subcortical regions), indicating that the brain became potentially more efficient after the training. These activation decreases were associated with a significant performance improvement in the n-back task inside the scanner reflecting considerable practice effects. In addition, there were training-associated direct effects in the additional, external verbal WM task (i.e., HAWIE-R digit span forward task), and indicating that the training generally improved performance in this cognitive domain. These results led us to conclude that even at advanced age cognitive training can improve WM capacity and increase neural efficiency in specific regions or networks.
Collapse
Affiliation(s)
- Mónica Emch
- Department of Neuroradiology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Technical University of Munich, Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität, Martinsried, Germany
| | - Isabelle Ripp
- TUM-Neuroimaging Center, Technical University of Munich, Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität, Martinsried, Germany
- Department of Nuclear Medicine, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Qiong Wu
- Department of Neuroradiology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Technical University of Munich, Munich, Germany
| | - Igor Yakushev
- TUM-Neuroimaging Center, Technical University of Munich, Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität, Martinsried, Germany
- Department of Nuclear Medicine, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Kathrin Koch
- Department of Neuroradiology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Technical University of Munich, Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität, Martinsried, Germany
| |
Collapse
|
49
|
Wang C, Xu T, Geng F, Hu Y, Wang Y, Liu H, Chen F. Training on Abacus-Based Mental Calculation Enhances Visuospatial Working Memory in Children. J Neurosci 2019; 39:6439-6448. [PMID: 31209171 PMCID: PMC6697396 DOI: 10.1523/jneurosci.3195-18.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 06/05/2019] [Accepted: 06/11/2019] [Indexed: 12/11/2022] Open
Abstract
Abacus-based mental calculation (AMC) involves temporary storage and manipulation of an imaginary abacus closely related to the function of visuospatial working memory (VSWM). The present study thus investigated the effects of AMC training on VSWM and its neural correlates. A total of 144 human subjects (67 boys) were assigned to AMC or control groups at their entry to primary school. The AMC group received 2 h AMC training per week for 5 school years, whereas the control group spent the time in activities, such as conventional calculation and reading. Raven's Intelligence Test was administered both before and after training. Two arithmetic tests and a VSWM task were conducted after training. Among these participants, fMRI data were collected from 64 children for the VSWM task. Behavioral results indicated that the AMC group outperformed controls on both arithmetic and VSWM tasks, but not on Raven's Intelligence Test. While the two groups activated similar regions during the VSWM task, the AMC group showed greater activation than the controls in frontal, parietal, and occipital areas. Interestingly, the activation of right middle frontal gyrus mediated the relation between the arithmetic ability and the VSWM performance in the AMC group, suggesting that the frontal region may be the neural substrate underlying the transfer effect from AMC training to VSWM. Although the transfer effects seem quite limited considering the length and intensity of the training, these findings suggest that long-term AMC training not only improves arithmetic ability but also has a potential positive effect on VSWM.SIGNIFICANCE STATEMENT Plasticity of working memory is one of the most rapidly expanding research fields in the developmental and cognitive sciences. Previous studies suggest that abacus-based mental calculation (AMC) relies on a visuospatial imaginary strategy, which is closely related to visuospatial working memory (VSWM). However, the impacts of AMC training on VSWM and the underlying neural basis remain unclear. Here, we found that AMC training enhanced VSWM in children, which was accompanied by altered activation in frontal, parietal, and occipital areas. Moreover, we observed that activation in right middle frontal gyrus played a significant mediation role in the transfer of AMC training to VSWM. These findings provide a new perspective to VSWM training and also advance our understanding of related brain plasticity.
Collapse
Affiliation(s)
- Chunjie Wang
- Bio-X Laboratory, Department of Physics, Zhejiang University, Hangzhou 310027, China
- State Key Laboratory of Modern Optical Instrumentation, Department of Optical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Tianyong Xu
- Bio-X Laboratory, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Fengji Geng
- Department of Curriculum and Learning Sciences, College of Education, Zhejiang University, Hangzhou 310027, China
| | - Yuzheng Hu
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310027, China, and
| | - Yunqi Wang
- School of International Studies, Zhejiang University, Hangzhou 310058, China
| | - Huafeng Liu
- State Key Laboratory of Modern Optical Instrumentation, Department of Optical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Feiyan Chen
- Bio-X Laboratory, Department of Physics, Zhejiang University, Hangzhou 310027, China,
| |
Collapse
|
50
|
Sattari N, Whitehurst LN, Ahmadi M, Mednick SC. Does working memory improvement benefit from sleep in older adults? Neurobiol Sleep Circadian Rhythms 2019; 6:53-61. [PMID: 31236520 PMCID: PMC6586603 DOI: 10.1016/j.nbscr.2019.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/17/2018] [Accepted: 01/01/2019] [Indexed: 01/15/2023] Open
Abstract
Working Memory (WM), is an important factor influencing many higher-order cognitive functions that decline with age. Repetitive training appears to increase WM, yet the mechanisms underlying this improvement are not understood. Sleep has been shown to benefit long-term memory formation and may also play a role in WM enhancement in young adults. However, considering age-related decline in sleep, it is uninvestigated whether sleep will facilitate WM in older adults. In the present work, we investigated the impact of a nap, quiet wakefulness (QW) and active wakefulness (AW) on within-day training on the Operation Span (OSPAN) task in older adults. Improvement in WM was found following a nap and QW, but not active wake. Furthermore, better WM was associated with shared electrophysiological features, including slow oscillation (SO, 0.5-1 Hz) power in both the nap and QW, and greater coupling between SO and sigma (12-15 Hz) in the nap. In summary, our data suggest that WM improvement in older adults occurs opportunistically during offline periods that afford enhancement in slow oscillation power, and that further benefits may come with cross-frequency coupling of neural oscillations during sleep.
Collapse
Affiliation(s)
- Negin Sattari
- Department of Cognitive Science, University of California Irvine, CA, USA
| | | | - Maryam Ahmadi
- Department of Cognitive Science, University of California Irvine, CA, USA
| | - Sara C. Mednick
- Department of Cognitive Science, University of California Irvine, CA, USA
| |
Collapse
|