1
|
d’Almeida OC, Sampaio JM, Ferreira S, Silva ED, Castelo-Branco M. Long term adult visual plasticity after the developmental critical period in genetically determined peripheral visual loss. Heliyon 2025; 11:e41970. [PMID: 40028558 PMCID: PMC11867287 DOI: 10.1016/j.heliyon.2025.e41970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 12/14/2024] [Accepted: 01/13/2025] [Indexed: 03/05/2025] Open
Abstract
Adult neural plasticity within the visual system remains controversial. Starkly opposing views still remain on the ability of the visual system to reorganize in adulthood. Most attempts have focused on testing reorganization upon central visual loss. However, central loss triggers immediate adaptive strategies such as the emergence of new retinal preferential fixation loci, which may preclude plasticity. Moreover, plasticity may be further reduced in later ageing periods. Here we addressed this issue by studying visual plasticity in a genetically determined retinal disorder, Retinitis Pigmentosa, in which peripheral visual loss emerges not long after the critical period, in teenage years. We performed a case-control study with one-to-one matching and used an artificial scotoma approach which carefully simulated the defective visual field of each RP patient on a normal-sighted control. We used as outcomes population receptive field measures to probe long-term plasticity using fMRI retinotopy. We found evidence for reorganization based on pRF size metrics and explained variance of reorganized visual field maps. In sum, visual cortical plasticity triggered by peripheral visual loss occurs beyond the critical period of visual maturation.
Collapse
Affiliation(s)
- Otília C. d’Almeida
- Univ Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), Coimbra, Portugal
- Univ Coimbra, Faculty of Medicine, Coimbra, Portugal
| | - Joana M. Sampaio
- Univ Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), Coimbra, Portugal
| | - Sónia Ferreira
- Univ Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), Coimbra, Portugal
| | - Eduardo D. Silva
- Univ Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), Coimbra, Portugal
| | - Miguel Castelo-Branco
- Univ Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), Coimbra, Portugal
- Univ Coimbra, Faculty of Medicine, Coimbra, Portugal
- Univ Maastricht, Faculty of Psychology, Maastricht, the Netherlands
| |
Collapse
|
2
|
Haupt M, Graumann M, Teng S, Kaltenbach C, Cichy R. The transformation of sensory to perceptual braille letter representations in the visually deprived brain. eLife 2024; 13:RP98148. [PMID: 39630852 PMCID: PMC11616995 DOI: 10.7554/elife.98148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Experience-based plasticity of the human cortex mediates the influence of individual experience on cognition and behavior. The complete loss of a sensory modality is among the most extreme such experiences. Investigating such a selective, yet extreme change in experience allows for the characterization of experience-based plasticity at its boundaries. Here, we investigated information processing in individuals who lost vision at birth or early in life by probing the processing of braille letter information. We characterized the transformation of braille letter information from sensory representations depending on the reading hand to perceptual representations that are independent of the reading hand. Using a multivariate analysis framework in combination with functional magnetic resonance imaging (fMRI), electroencephalography (EEG), and behavioral assessment, we tracked cortical braille representations in space and time, and probed their behavioral relevance. We located sensory representations in tactile processing areas and perceptual representations in sighted reading areas, with the lateral occipital complex as a connecting 'hinge' region. This elucidates the plasticity of the visually deprived brain in terms of information processing. Regarding information processing in time, we found that sensory representations emerge before perceptual representations. This indicates that even extreme cases of brain plasticity adhere to a common temporal scheme in the progression from sensory to perceptual transformations. Ascertaining behavioral relevance through perceived similarity ratings, we found that perceptual representations in sighted reading areas, but not sensory representations in tactile processing areas are suitably formatted to guide behavior. Together, our results reveal a nuanced picture of both the potentials and limits of experience-dependent plasticity in the visually deprived brain.
Collapse
Affiliation(s)
- Marleen Haupt
- Department of Education and Psychology, Freie Universität BerlinBerlinGermany
| | - Monika Graumann
- Department of Education and Psychology, Freie Universität BerlinBerlinGermany
- Berlin School of Mind and Brain, Faculty of Philosophy, Humboldt-Universität zu BerlinBerlinGermany
| | - Santani Teng
- Smith-Kettlewell Eye Research InstituteSan FranciscoUnited States
| | - Carina Kaltenbach
- Department of Education and Psychology, Freie Universität BerlinBerlinGermany
| | - Radoslaw Cichy
- Department of Education and Psychology, Freie Universität BerlinBerlinGermany
- Berlin School of Mind and Brain, Faculty of Philosophy, Humboldt-Universität zu BerlinBerlinGermany
- Bernstein Center for Computational Neuroscience BerlinBerlinGermany
| |
Collapse
|
3
|
Lettieri G, Handjaras G, Cappello EM, Setti F, Bottari D, Bruno V, Diano M, Leo A, Tinti C, Garbarini F, Pietrini P, Ricciardi E, Cecchetti L. Dissecting abstract, modality-specific and experience-dependent coding of affect in the human brain. SCIENCE ADVANCES 2024; 10:eadk6840. [PMID: 38457501 PMCID: PMC10923499 DOI: 10.1126/sciadv.adk6840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/06/2024] [Indexed: 03/10/2024]
Abstract
Emotion and perception are tightly intertwined, as affective experiences often arise from the appraisal of sensory information. Nonetheless, whether the brain encodes emotional instances using a sensory-specific code or in a more abstract manner is unclear. Here, we answer this question by measuring the association between emotion ratings collected during a unisensory or multisensory presentation of a full-length movie and brain activity recorded in typically developed, congenitally blind and congenitally deaf participants. Emotional instances are encoded in a vast network encompassing sensory, prefrontal, and temporal cortices. Within this network, the ventromedial prefrontal cortex stores a categorical representation of emotion independent of modality and previous sensory experience, and the posterior superior temporal cortex maps the valence dimension using an abstract code. Sensory experience more than modality affects how the brain organizes emotional information outside supramodal regions, suggesting the existence of a scaffold for the representation of emotional states where sensory inputs during development shape its functioning.
Collapse
Affiliation(s)
- Giada Lettieri
- Crossmodal Perception and Plasticity Laboratory, Institute of Research in Psychology & Institute of Neuroscience, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
- Social and Affective Neuroscience Group, MoMiLab, IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Giacomo Handjaras
- Social and Affective Neuroscience Group, MoMiLab, IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Elisa M. Cappello
- Social and Affective Neuroscience Group, MoMiLab, IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Francesca Setti
- Sensorimotor Experiences and Mental Representations Group, MoMiLab, IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Davide Bottari
- Sensorimotor Experiences and Mental Representations Group, MoMiLab, IMT School for Advanced Studies Lucca, Lucca, Italy
- Sensory Experience Dependent Group, MoMiLab, IMT School for Advanced Studies Lucca, Lucca, Italy
| | | | - Matteo Diano
- Department of Psychology, University of Turin, Turin, Italy
| | - Andrea Leo
- Department of of Translational Research and Advanced Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Carla Tinti
- Department of Psychology, University of Turin, Turin, Italy
| | | | - Pietro Pietrini
- Forensic Neuroscience and Psychiatry Group, MoMiLab, IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Emiliano Ricciardi
- Sensorimotor Experiences and Mental Representations Group, MoMiLab, IMT School for Advanced Studies Lucca, Lucca, Italy
- Sensory Experience Dependent Group, MoMiLab, IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Luca Cecchetti
- Social and Affective Neuroscience Group, MoMiLab, IMT School for Advanced Studies Lucca, Lucca, Italy
| |
Collapse
|
4
|
Fakheir Y, Khalil R. The effects of abnormal visual experience on neurodevelopmental disorders. Dev Psychobiol 2023; 65:e22408. [PMID: 37607893 DOI: 10.1002/dev.22408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/14/2023] [Accepted: 06/13/2023] [Indexed: 08/24/2023]
Abstract
Normal visual development is supported by intrinsic neurobiological mechanisms and by appropriate stimulation from the environment, both of which facilitate the maturation of visual functions. However, an offset of this balance can give rise to visual disorders. Therefore, understanding the factors that support normal vision during development and in the mature brain is important, as vision guides movement, enables social interaction, and allows children to recognize and understand their environment. In this paper, we review fundamental mechanisms that support the maturation of visual functions and discuss and draw links between the perceptual and neurobiological impairments in autism spectrum disorder (ASD) and schizophrenia. We aim to explore how this is evident in the case of ASD, and how perceptual and neurobiological deficits further degrade social ability. Furthermore, we describe the altered perceptual experience of those with schizophrenia and evaluate theories of the underlying neural deficits that alter perception.
Collapse
Affiliation(s)
- Yara Fakheir
- Department of Biology, Chemistry, and Environmental Sciences, American University of Sharjah, Sharjah, UAE
| | - Reem Khalil
- Department of Biology, Chemistry, and Environmental Sciences, American University of Sharjah, Sharjah, UAE
| |
Collapse
|
5
|
Setti F, Handjaras G, Bottari D, Leo A, Diano M, Bruno V, Tinti C, Cecchetti L, Garbarini F, Pietrini P, Ricciardi E. A modality-independent proto-organization of human multisensory areas. Nat Hum Behav 2023; 7:397-410. [PMID: 36646839 PMCID: PMC10038796 DOI: 10.1038/s41562-022-01507-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 12/05/2022] [Indexed: 01/18/2023]
Abstract
The processing of multisensory information is based upon the capacity of brain regions, such as the superior temporal cortex, to combine information across modalities. However, it is still unclear whether the representation of coherent auditory and visual events requires any prior audiovisual experience to develop and function. Here we measured brain synchronization during the presentation of an audiovisual, audio-only or video-only version of the same narrative in distinct groups of sensory-deprived (congenitally blind and deaf) and typically developed individuals. Intersubject correlation analysis revealed that the superior temporal cortex was synchronized across auditory and visual conditions, even in sensory-deprived individuals who lack any audiovisual experience. This synchronization was primarily mediated by low-level perceptual features, and relied on a similar modality-independent topographical organization of slow temporal dynamics. The human superior temporal cortex is naturally endowed with a functional scaffolding to yield a common representation across multisensory events.
Collapse
Affiliation(s)
- Francesca Setti
- MoMiLab, IMT School for Advanced Studies Lucca, Lucca, Italy
| | | | - Davide Bottari
- MoMiLab, IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Andrea Leo
- Department of Translational Research and Advanced Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Matteo Diano
- Department of Psychology, University of Turin, Turin, Italy
| | - Valentina Bruno
- Manibus Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Carla Tinti
- Department of Psychology, University of Turin, Turin, Italy
| | - Luca Cecchetti
- MoMiLab, IMT School for Advanced Studies Lucca, Lucca, Italy
| | | | - Pietro Pietrini
- MoMiLab, IMT School for Advanced Studies Lucca, Lucca, Italy
| | | |
Collapse
|
6
|
Manini B, Vinogradova V, Woll B, Cameron D, Eimer M, Cardin V. Sensory experience modulates the reorganization of auditory regions for executive processing. Brain 2022; 145:3698-3710. [PMID: 35653493 PMCID: PMC9586534 DOI: 10.1093/brain/awac205] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/20/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Crossmodal plasticity refers to the reorganization of sensory cortices in the absence of their typical main sensory input. Understanding this phenomenon provides insights into brain function and its potential for change and enhancement. Using functional MRI, we investigated how early deafness influences crossmodal plasticity and the organization of executive functions in the adult human brain. Deaf (n = 25; age: mean = 41.68, range = 19-66, SD = 14.38; 16 female, 9 male) and hearing (n = 20; age: mean = 37.50, range = 18-66, SD = 16.85; 15 female, 5 male) participants performed four visual tasks tapping into different components of executive processing: task switching, working memory, planning and inhibition. Our results show that deaf individuals specifically recruit 'auditory' regions during task switching. Neural activity in superior temporal regions, most significantly in the right hemisphere, are good predictors of behavioural performance during task switching in the group of deaf individuals, highlighting the functional relevance of the observed cortical reorganization. Our results show executive processing in typically sensory regions, suggesting that the development and ultimate role of brain regions are influenced by perceptual environmental experience.
Collapse
Affiliation(s)
- Barbara Manini
- Deafness, Cognition and Language Research Centre and Department of Experimental Psychology, UCL, London WC1H 0PD, UK
| | | | - Bencie Woll
- Deafness, Cognition and Language Research Centre and Department of Experimental Psychology, UCL, London WC1H 0PD, UK
| | - Donnie Cameron
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK
| | - Martin Eimer
- Department of Psychological Sciences, Birkbeck, University of London, London WC1E 7HX, UK
| | - Velia Cardin
- Deafness, Cognition and Language Research Centre and Department of Experimental Psychology, UCL, London WC1H 0PD, UK
| |
Collapse
|
7
|
Bednaya E, Pavani F, Ricciardi E, Pietrini P, Bottari D. Oscillatory signatures of Repetition Suppression and Novelty Detection reveal altered induced visual responses in early deafness. Cortex 2021; 142:138-153. [PMID: 34265736 DOI: 10.1016/j.cortex.2021.05.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 04/01/2021] [Accepted: 05/17/2021] [Indexed: 12/26/2022]
Abstract
The ability to differentiate between repeated and novel events represents a fundamental property of the visual system. Neural responses are typically reduced upon stimulus repetition, a phenomenon called Repetition Suppression (RS). On the contrary, following a novel visual stimulus, the neural response is generally enhanced, a phenomenon referred to as Novelty Detection (ND). Here, we aimed to investigate the impact of early deafness on the oscillatory signatures of RS and ND brain responses. To this aim, electrophysiological data were acquired in early deaf and hearing control individuals during processing of repeated and novel visual events unattended by participants. By studying evoked and induced oscillatory brain activities, as well as inter-trial phase coherence, we linked response modulations to feedback and/or feedforward processes. Results revealed selective experience-dependent changes on both RS and ND mechanisms. Compared to hearing controls, early deaf individuals displayed: (i) greater attenuation of the response following stimulus repetition, selectively in the induced theta-band (4-7 Hz); (ii) reduced desynchronization following the onset of novel visual stimuli, in the induced alpha and beta bands (8-12 and 13-25 Hz); (iii) comparable modulation of evoked responses and inter-trial phase coherence. The selectivity of the effects in the induced responses parallels findings observed in the auditory cortex of deaf animal models following intracochlear electric stimulation. The present results support the idea that early deafness alters induced oscillatory activity and the functional tuning of basic visual processing.
Collapse
Affiliation(s)
- Evgenia Bednaya
- Molecular Mind Laboratory, IMT School for Advanced Studies Lucca, Italy
| | - Francesco Pavani
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Italy; Department of Psychology and Cognitive Science, University of Trento, Italy
| | | | - Pietro Pietrini
- Molecular Mind Laboratory, IMT School for Advanced Studies Lucca, Italy
| | - Davide Bottari
- Molecular Mind Laboratory, IMT School for Advanced Studies Lucca, Italy.
| |
Collapse
|
8
|
Bottari D, Berto M. Three factors to characterize plastic potential transitions in the visual system. Neurosci Biobehav Rev 2021; 126:444-446. [PMID: 33857578 DOI: 10.1016/j.neubiorev.2021.03.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/08/2021] [Accepted: 03/19/2021] [Indexed: 11/28/2022]
Abstract
A comprehensive understanding of brain-environment interactions is elusive even at the sensory level as neural plasticity waxes and wanes across the lifespan. Temporary and permanent visual deprivations remain pivotal approaches for studying the degree of experience-dependent plasticity of sensory functions. Natural models and experimental manipulations of visual experiences have contributed to uncovering some of the guiding principles that characterize transitions of plastic potentials in the human visual system. The existing literature regarding the neural plasticity associated with visual systems has been extensively discussed by two recent reviews articles (Röder et al., 2020; Castaldi et al., 2020) which provided an overview of different models of study and methods of investigations, gathering insights on both developing and adult brains. Here, we propose a framework of three main factors to characterize how the driving forces shaping visual circuits mutate, both quantitatively and qualitatively, between early development and adulthood.
Collapse
Affiliation(s)
- Davide Bottari
- Molecular Mind Lab, IMT School for Advanced Studies Lucca, Italy.
| | - Martina Berto
- Molecular Mind Lab, IMT School for Advanced Studies Lucca, Italy
| |
Collapse
|
9
|
Amadeo MB, Campus C, Gori M. Years of Blindness Lead to "Visualize" Space Through Time. Front Neurosci 2020; 14:812. [PMID: 32848573 PMCID: PMC7418563 DOI: 10.3389/fnins.2020.00812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/10/2020] [Indexed: 11/29/2022] Open
Abstract
Spatial representation has been widely studied in early blindness, whereas research about late blindness is still limited. We recently demonstrated that the early (50-90 ms) event-related potential (ERP) response observed in sighted people during a spatial bisection task, is altered in early blind people and is influenced by the amount of time spent without vision in late blind individuals. Specifically, in late blind people a shorter period of blindness is associated with strong contralateral activation in occipital cortex and good performance during the spatial task-similar to that of sighted people. In contrast, non-lateralized occipital activation and lower performance characterize late blind individuals who have experienced a longer period of blindness-similar to that of early blind people. However, the same early occipital response activated in sighted individuals by spatial cues has been found to be activated by temporal cues in early blind individuals. Here, we investigate whether a similar temporal attraction can explain the neural and behavioral changes observed after many years of blindness in late blind people. An EEG recording was taken during a spatial bisection task where coherent and conflicting spatio-temporal information was presented. In participants with long blindness duration, the early recruitment of both visual and auditory areas is sensitive to temporal instead of spatial coordinates. These findings highlight some limits of neuroplasticity. Perceptual advantages from cross-sensory calibration during development seem to be subsequently lost following years of visual deprivation. This result has important implications for clinical outcomes following late blindness, highlighting the importance of timing in intervention and rehabilitation programs that activate compensatory strategies soon after sensory loss.
Collapse
Affiliation(s)
- Maria Bianca Amadeo
- Unit for Visually Impaired People, Istituto Italiano di Tecnologia, Genova, Italy
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, Università degli Studi di Genova, Genova, Italy
| | - Claudio Campus
- Unit for Visually Impaired People, Istituto Italiano di Tecnologia, Genova, Italy
| | - Monica Gori
- Unit for Visually Impaired People, Istituto Italiano di Tecnologia, Genova, Italy
| |
Collapse
|