1
|
Karatayev O, Collier AD, Targoff SR, Leibowitz SF. Neurological Disorders Induced by Drug Use: Effects of Adolescent and Embryonic Drug Exposure on Behavioral Neurodevelopment. Int J Mol Sci 2024; 25:8341. [PMID: 39125913 PMCID: PMC11313660 DOI: 10.3390/ijms25158341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/10/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024] Open
Abstract
Clinical studies demonstrate that the risk of developing neurological disorders is increased by overconsumption of the commonly used drugs, alcohol, nicotine and cannabis. These drug-induced neurological disorders, which include substance use disorder (SUD) and its co-occurring emotional conditions such as anxiety and depression, are observed not only in adults but also with drug use during adolescence and after prenatal exposure to these drugs, and they are accompanied by long-lasting disturbances in brain development. This report provides overviews of clinical and preclinical studies, which confirm these adverse effects in adolescents and the offspring prenatally exposed to the drugs and include a more in-depth description of specific neuronal systems, their neurocircuitry and molecular mechanisms, affected by drug exposure and of specific techniques used to determine if these effects in the brain are causally related to the behavioral disturbances. With analysis of further studies, this review then addresses four specific questions that are important for fully understanding the impact that drug use in young individuals can have on future pregnancies and their offspring. Evidence demonstrates that the adverse effects on their brain and behavior can occur: (1) at low doses with short periods of drug exposure during pregnancy; (2) after pre-conception drug use by both females and males; (3) in subsequent generations following the initial drug exposure; and (4) in a sex-dependent manner, with drug use producing a greater risk in females than males of developing SUDs with emotional conditions and female offspring after prenatal drug exposure responding more adversely than male offspring. With the recent rise in drug use by adolescents and pregnant women that has occurred in association with the legalization of cannabis and increased availability of vaping tools, these conclusions from the clinical and preclinical literature are particularly alarming and underscore the urgent need to educate young women and men about the possible harmful effects of early drug use and to seek novel therapeutic strategies that might help to limit drug use in young individuals.
Collapse
Affiliation(s)
| | | | | | - Sarah F. Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, USA; (O.K.); (S.R.T.)
| |
Collapse
|
2
|
Collier AD, Abdulai AR, Leibowitz SF. Utility of the Zebrafish Model for Studying Neuronal and Behavioral Disturbances Induced by Embryonic Exposure to Alcohol, Nicotine, and Cannabis. Cells 2023; 12:2505. [PMID: 37887349 PMCID: PMC10605371 DOI: 10.3390/cells12202505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
It is estimated that 5% of pregnant women consume drugs of abuse during pregnancy. Clinical research suggests that intake of drugs during pregnancy, such as alcohol, nicotine and cannabis, disturbs the development of neuronal systems in the offspring, in association with behavioral disturbances early in life and an increased risk of developing drug use disorders. After briefly summarizing evidence in rodents, this review focuses on the zebrafish model and its inherent advantages for studying the effects of embryonic exposure to drugs of abuse on behavioral and neuronal development, with an emphasis on neuropeptides known to promote drug-related behaviors. In addition to stimulating the expression and density of peptide neurons, as in rodents, zebrafish studies demonstrate that embryonic drug exposure has marked effects on the migration, morphology, projections, anatomical location, and peptide co-expression of these neurons. We also describe studies using advanced methodologies that can be applied in vivo in zebrafish: first, to demonstrate a causal relationship between the drug-induced neuronal and behavioral disturbances and second, to discover underlying molecular mechanisms that mediate these effects. The zebrafish model has great potential for providing important information regarding the development of novel and efficacious therapies for ameliorating the effects of early drug exposure.
Collapse
Affiliation(s)
| | | | - Sarah F. Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
3
|
Syed OA, Tsang B, Gerlai R. The zebrafish for preclinical psilocybin research. Neurosci Biobehav Rev 2023; 153:105381. [PMID: 37689090 DOI: 10.1016/j.neubiorev.2023.105381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 09/11/2023]
Abstract
In this review, we discuss the possible utility of zebrafish in research on psilocybin, a psychedelic drug whose recreational use as well as possible clinical application are gaining increasing interest. First, we review behavioral tests with zebrafish, focussing on anxiety and social behavior, which have particular relevance in the context of psilocybin research. Next, we briefly consider methods of genetic manipulations with which psilocybin's phenotypical effects and underlying mechanisms may be investigated in zebrafish. We briefly review the known mechanisms of psilocybin, and also discuss what we know about its safety and toxicity profile. Last, we discuss examples of how psilocybin may be employed for testing treatment efficacy in preclinical research for affective disorders in zebrafish. We conclude that zebrafish has a promising future in preclinical research on psychedelic drugs.
Collapse
Affiliation(s)
- Omer A Syed
- Department of Biology, University of Toronto Mississauga, Canada.
| | - Benjamin Tsang
- Department of Cell & Systems Biology, University of Toronto, Canada.
| | - Robert Gerlai
- Department of Cell & Systems Biology, University of Toronto, Canada; Department of Psychology, University of Toronto Mississauga, Canada.
| |
Collapse
|
4
|
Acute Administration of Ethanol and of a D1-Receptor Antagonist Affects the Behavior and Neurochemistry of Adult Zebrafish. Biomedicines 2022; 10:biomedicines10112878. [DOI: 10.3390/biomedicines10112878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
Alcohol abuse represents major societal problems, an unmet medical need resulting from our incomplete understanding of the mechanisms underlying alcohol’s actions in the brain. To uncover these mechanisms, animal models have been proposed. Here, we explore the effects of acute alcohol administration in zebrafish, a promising animal model in alcohol research. One mechanism via which alcohol may influence behavior is the dopaminergic neurotransmitter system. As a proof-of-concept analysis, we study how D1 dopamine-receptor antagonism may alter the effects of acute alcohol on the behavior of adult zebrafish and on whole brain levels of neurochemicals. We conduct these analyses using a quasi-inbred strain, AB, and a genetically heterogeneous population SFWT. Our results uncover significant alcohol x D1-R antagonist interaction and main effects of these factors in shoaling, but only additive effects of these factors in measures of exploratory behavior. We also find interacting and main effects of alcohol and the D1-R antagonist on dopamine and DOPAC levels, but only alcohol effects on serotonin. We also uncover several strain dependent effects. These results demonstrate that acute alcohol may act through dopaminergic mechanisms for some but not all behavioral phenotypes, a novel discovery, and also suggest that strain differences may, in the future, help us identify molecular mechanisms underlying acute alcohol effects.
Collapse
|
5
|
Abozaid A, Hung J, Tsang B, Motlana K, Al-Ani R, Gerlai R. Behavioral effects of acute ethanol in larval zebrafish (D. rerio) depend on genotype and volume of experimental well. Prog Neuropsychopharmacol Biol Psychiatry 2022; 112:110411. [PMID: 34363865 DOI: 10.1016/j.pnpbp.2021.110411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 01/10/2023]
Abstract
Ethanol consumption is a worldwide problem. Sensitivity to acute effects of ethanol influences the development of chronic ethanol abuse and ethanol dependence. Environmental and genetic factors have been found to contribute to differential effects of acute ethanol. Animal models have been employed to investigate these factors. An increasingly frequently utilized animal model in ethanol research is the zebrafish. A large proportion of ethanol studies with zebrafish have been conducted with adult zebrafish. However, high throughput drug and mutation screens are particularly well adapted to larval zebrafish. These studies are often carried out using the 96-well-plate that allows monitoring large numbers of fish efficiently. Here, we investigate the effects of acute (30 min long) ethanol exposure in 8-day post-fertilization (dpf) old zebrafish. We compare four genetically distinct populations (strains) of zebrafish, measuring numerous parameters of their swim path in two well sizes, i.e., in the 96-well-plate (small volume wells) and in the 6-well-plate (large volume wells). In general, we found that the highest dose of ethanol (1% vol/vol) reduced swim speed, increased duration of immobility, increased turn angle, and increased intra-individual variance of turn angle, while the intermediate dose (0.5%) had a less strong effect, compared to control. However, we also found that these ethanol effects were strain dependent and, in general, were better detected in the larger volume well. We conclude that larval zebrafish are appropriate for quantification of acute ethanol effects and also for the analysis of environmental and genetic factors that influence these effects. We also speculate that using larger wells will likely increase sensitivity of detection and precision in screening applications.
Collapse
Affiliation(s)
- Amira Abozaid
- Department of Psychology, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | - Joshua Hung
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | - Benjamin Tsang
- Department of Psychology, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada; Department of Critical Care Medicine, Hospital for Sick Children, Toronto, Canada; Institute of Psychiatry, Psychology & Neuroscience, Kings College London, London, United Kingdom
| | - Keza Motlana
- Department of Psychology, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | - Reem Al-Ani
- Department of Psychology, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, Canada.
| |
Collapse
|
6
|
Butkevich IP, Mikhailenko VA, Vershinina EA, Barr GA. The Long-Term Effects of Neonatal Inflammatory Pain on Cognitive Function and Stress Hormones Depend on the Heterogeneity of the Adolescent Period of Development in Male and Female Rats. Front Behav Neurosci 2021; 15:691578. [PMID: 34366805 PMCID: PMC8334561 DOI: 10.3389/fnbeh.2021.691578] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/21/2021] [Indexed: 11/21/2022] Open
Abstract
Exposure to stress at an early age programs the HPA axis which can lead to cognitive deficits in adults. However, it is not known whether these deficits emerge in adulthood or are expressed earlier in life. The aims of the study were to investigate (1) the immediate effects of early injury-induced stress in one-day-old (P1) and repeated stress on at P1 and P2 rat pups on plasma corticosterone levels; and (2) examine the subsequent long-term effects of this early stress on spatial learning and memory, and stress reactivity in early P26-34 and late P45-53 adolescent male and female rats. Intra-plantar injection of formalin induced prolonged and elevated levels of corticosterone in pups and impaired spatial learning and short- and long-term memory in late adolescent males and long-term memory in early adolescent females. There were sex differences in late adolescence in both learning and short-term memory. Performance on the long-term memory task was better than that on the short-term memory task for all early adolescent male and female control and stressed animals. Short-term memory was better in the late age control rats of both sexes and for formalin treated females as compared with the early age rats. These results are consistent with an impaired function of structures involved in memory (the hippocampus, amygdala, prefrontal cortex) after newborn pain. However, activation of the HPA axis by neonatal pain did not directly correlate with spatial learning and memory outcomes and the consequences of neonatal pain remain are likely multi-determined.
Collapse
Affiliation(s)
- Irina P. Butkevich
- Laboratory of Ontogenesis of the Nervous System, Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Viktor A. Mikhailenko
- Laboratory of Ontogenesis of the Nervous System, Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Elena A. Vershinina
- Department of Information Technologies and Mathematical Modeling, Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Gordon A. Barr
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia and the Perelman School of Medicine, Philadelphia, PA, United States
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
7
|
Schaidhauer FG, Caetano HA, da Silva GP, da Silva RS. Contributions of Zebrafish Studies on the Behavioural Consequences of Early Alcohol Exposure: A Systematic Review. Curr Neuropharmacol 2021; 20:579-593. [PMID: 33913405 DOI: 10.2174/1570159x19666210428114317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/17/2021] [Accepted: 04/22/2021] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND The consequences of mild to severe exposure to alcohol during brain development is still a matter of debate and scientific investigation. The long-term behavioural effects of ethanol exposure have been related to impaired social skills and cognition. Zebrafish have become a suitable animal model to investigate the effects of early ethanol exposure because it is very feasible to promote drug delivery during early development. OBJECTIVE The goal of the current report is to review existing behavioural studies addressing the impact of early alcohol exposure using zebrafish to determine whether these models resemble the behavioural effects of early alcohol exposure in humans. METHODS A comprehensive search of biomedical databases was performed using the operation order: "ZEBRAFISH AND BEHAV* AND (ETHANOL OR ALCOHOL)". The eligibility of studies was determined using the PICOS strategy, contemplating the population as zebrafish, intervention as exposure to ethanol, comparison with a non-exposed control animal, and outcomes as behavioural parameters. RESULTS The systematic search returned 29 scientific articles as eligible. The zebrafish is presented as a versatile animal model that is useful to study FASD short and long-term behaviour impairments, such as anxiety, impaired sociability, aggressiveness, learning problems, memory impairment, seizure susceptibility, sleep disorders, motivational problems, and addiction. CONCLUSION This systematic review serves to further promote the use of zebrafish as a model system to study the pathophysiological and behavioural consequences of early alcohol exposure.
Collapse
Affiliation(s)
- Flávia Gheller Schaidhauer
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Higor Arruda Caetano
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Guilherme Pietro da Silva
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rosane Souza da Silva
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|