1
|
Micheletti S, Romagnoli L, Loi E, Cusano N, Fazzi E. The eyes have it: Neurobiological roots, developmental trajectories, and social significance of mutual gaze in early parent-infant interactions. Neurosci Biobehav Rev 2025; 175:106220. [PMID: 40409441 DOI: 10.1016/j.neubiorev.2025.106220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 04/24/2025] [Accepted: 05/20/2025] [Indexed: 05/25/2025]
Abstract
Mutual Gaze (MG) plays a crucial role in early interactions, yet there is no clear terminological or conceptual definition, highlighting the need for consensus on its onset, development, and clinical implications. This review aims to provide new insights into the extent and the way in which MG develops during early mother-infant interactions, both typically and atypically, and how it may be associated with the child's future social, cognitive, and behavioral development. A PICO format was employed, a systematic literature search was conducted, and 28 studies were selected for this review. These studies varied in their terminological definitions of MG, sample sizes, participants' characteristics, and methodologies. Results were analyzed through thematic analysis, leading to the identification of four main themes: neuro-biological correlates of MG, developmental modifications in MG during the first year of life, the involvement of MG in social interaction, and MG in atypical neurodevelopment. The findings showed that MG is regulated by underlying neuro-biological processes, leading to specific behavioral and interactive modalities, which evolve over time during the first year and are positively associated with attentional control and emotional self-regulation. Additionally, MG exhibits distinct behavioral characteristics in certain neurodevelopmental conditions, such as preterm infants and those with Autism Spectrum Disorder (ASD), and may serve as a potential behavioral marker of ASD in infants older than 6 months, although further data are needed to draw definitive conclusions.
Collapse
Affiliation(s)
- Serena Micheletti
- Unit of Child Neurology and Psychiatry, ASST Spedali Civili of Brescia, Brescia, Italy.
| | - Lorenzo Romagnoli
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.
| | - Erika Loi
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.
| | - Nicoletta Cusano
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.
| | - Elisa Fazzi
- Unit of Child Neurology and Psychiatry, ASST Spedali Civili of Brescia, Brescia, Italy; Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.
| |
Collapse
|
2
|
Liu S, Li X, Jiang S, Liu D, Wang J. A Review of Advances in Multimodal Treatment Strategies for Chronic Disorders of Consciousness Following Severe Traumatic Brain Injury. Int J Gen Med 2025; 18:771-786. [PMID: 39967766 PMCID: PMC11834669 DOI: 10.2147/ijgm.s502086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/30/2025] [Indexed: 02/20/2025] Open
Abstract
Background Chronic disorders of consciousness (cDoC) resulting from severe traumatic brain injury (sTBI) are associated with significant challenges in treatment and recovery. This review explores multimodal interventions aimed at improving patient outcomes. Methods A systematic review was conducted on peer-reviewed studies from PubMed and Google Scholar published between 2000 and 2023. The review included clinical trials, observational studies, and case series that assessed interventions for improving consciousness and cognitive function in patients with cDoC following sTBI. Interventions considered included pharmacological treatments, non-invasive neuromodulation, rehabilitation therapies, and traditional medicine approaches. Results The review identifies several promising interventions. Hyperbaric oxygen therapy (HBOT), when combined with physical rehabilitation and non-invasive brain stimulation techniques like transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), has shown positive effects on consciousness and cognitive recovery. Non-invasive neuromodulation techniques have been linked to improvements in cortical activity and consciousness, with taVNS emerging as a novel approach. Additionally, traditional Chinese medicine, particularly herbal therapies, has demonstrated complementary benefits when integrated with modern rehabilitation methods. Personalized treatment strategies based on clinical characteristics, biomarkers, and genetic data were found to enhance recovery. Notably, integrating these modalities into personalized care protocols has shown enhanced efficacy, suggesting that individualized approaches are critical for improving outcomes. Conclusion Multimodal therapies show promise in enhancing recovery in cDoC patients after sTBI, but further research is needed to optimize treatment protocols and standardize clinical practices. The integration of traditional and modern therapies represents a potentially effective strategy for improving patient outcomes.
Collapse
Affiliation(s)
- Shuyan Liu
- Department of Orthopedics, Shenzhen Children’s Hospital, Shenzhen, Guangdong, People’s Republic of China
| | - Xueqing Li
- Department of Nursing, Shenzhen Children’s Hospital, Shenzhen, Guangdong, People’s Republic of China
| | - Shi Jiang
- Department of Orthopedics, Shenzhen Children’s Hospital, Shenzhen, Guangdong, People’s Republic of China
| | - Dan Liu
- Department of Orthopedics, Shenzhen Children’s Hospital, Shenzhen, Guangdong, People’s Republic of China
| | - Jinghua Wang
- Department of Orthopedics, Shenzhen Children’s Hospital, Shenzhen, Guangdong, People’s Republic of China
| |
Collapse
|
3
|
Singh J, Wilkins G, Goodman-Vincent E, Chishti S, Bonilla Guerrero R, Fiori F, Ameenpur S, McFadden L, Zahavi Z, Santosh P. Using Precision Medicine to Disentangle Genotype-Phenotype Relationships in Twins with Rett Syndrome: A Case Report. Curr Issues Mol Biol 2024; 46:8424-8440. [PMID: 39194714 DOI: 10.3390/cimb46080497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/20/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
Rett syndrome (RTT) is a paediatric neurodevelopmental disorder spanning four developmental stages. This multi-system disorder offers a unique window to explore genotype-phenotype relationships in a disease model. However, genetic prognosticators of RTT have limited clinical value due to the disorder's heterogeneity on multiple levels. This case report used a precision medicine approach to better understand the clinical phenotype of RTT twins with an identical pathogenic MECP2 mutation and discordant neurodevelopmental profiles. Targeted genotyping, objective physiological monitoring of heart rate variability (HRV) parameters, and clinical severity were assessed in a RTT twin pair (5 years 7 months old) with an identical pathogenic MECP2 mutation. Longitudinal assessment of autonomic HRV parameters was conducted using the Empatica E4 wristband device, and clinical severity was assessed using the RTT-anchored Clinical Global Impression Scale (RTT-CGI) and the Multi-System Profile of Symptoms Scale (MPSS). Genotype data revealed impaired BDNF function for twin A when compared to twin B. Twin A also had poorer autonomic health than twin B, as indicated by lower autonomic metrics (autonomic inflexibility). Hospitalisation, RTT-CGI-S, and MPSS subscale scores were used as measures of clinical severity, and these were worse in twin A. Treatment using buspirone shifted twin A from an inflexible to a flexible autonomic profile. This was mirrored in the MPSS scores, which showed a reduction in autonomic and cardiac symptoms following buspirone treatment. Our findings showed that a combination of a co-occurring rs6265 BDNF polymorphism, and worse autonomic and clinical profiles led to a poorer prognosis for twin A compared to twin B. Buspirone was able to shift a rigid autonomic profile to a more flexible one for twin A and thereby prevent cardiac and autonomic symptoms from worsening. The clinical profile for twin A represents a departure from the disorder trajectory typically observed in RTT and underscores the importance of wider genotype profiling and longitudinal objective physiological monitoring alongside measures of clinical symptoms and severity when assessing genotype-phenotype relationships in RTT patients with identical pathogenic mutations. A precision medicine approach that assesses genetic and physiological risk factors can be extended to other neurodevelopmental disorders to monitor risk when genotype-phenotype relationships are not so obvious.
Collapse
Affiliation(s)
- Jatinder Singh
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
- Centre for Interventional Paediatric Psychopharmacology and Rare Diseases (CIPPRD), South London and Maudsley NHS Foundation Trust, London SE5 8AZ, UK
- Centre for Interventional Paediatric Psychopharmacology (CIPP) Rett Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Georgina Wilkins
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
- Centre for Interventional Paediatric Psychopharmacology and Rare Diseases (CIPPRD), South London and Maudsley NHS Foundation Trust, London SE5 8AZ, UK
- Centre for Interventional Paediatric Psychopharmacology (CIPP) Rett Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Ella Goodman-Vincent
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
- Centre for Interventional Paediatric Psychopharmacology and Rare Diseases (CIPPRD), South London and Maudsley NHS Foundation Trust, London SE5 8AZ, UK
- Centre for Interventional Paediatric Psychopharmacology (CIPP) Rett Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Samiya Chishti
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
- Centre for Interventional Paediatric Psychopharmacology and Rare Diseases (CIPPRD), South London and Maudsley NHS Foundation Trust, London SE5 8AZ, UK
- Centre for Interventional Paediatric Psychopharmacology (CIPP) Rett Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | | | - Federico Fiori
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
- Centre for Interventional Paediatric Psychopharmacology and Rare Diseases (CIPPRD), South London and Maudsley NHS Foundation Trust, London SE5 8AZ, UK
- Centre for Interventional Paediatric Psychopharmacology (CIPP) Rett Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Shashidhar Ameenpur
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
- Centre for Interventional Paediatric Psychopharmacology and Rare Diseases (CIPPRD), South London and Maudsley NHS Foundation Trust, London SE5 8AZ, UK
- Centre for Interventional Paediatric Psychopharmacology (CIPP) Rett Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Leighton McFadden
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
- Centre for Interventional Paediatric Psychopharmacology and Rare Diseases (CIPPRD), South London and Maudsley NHS Foundation Trust, London SE5 8AZ, UK
- Centre for Interventional Paediatric Psychopharmacology (CIPP) Rett Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Zvi Zahavi
- Myogenes Limited, Borehamwood WD6 4PJ, UK
| | - Paramala Santosh
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
- Centre for Interventional Paediatric Psychopharmacology and Rare Diseases (CIPPRD), South London and Maudsley NHS Foundation Trust, London SE5 8AZ, UK
- Centre for Interventional Paediatric Psychopharmacology (CIPP) Rett Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| |
Collapse
|
4
|
Schoch K, McConkie-Rosell A, Walley N, Bhambhani V, Feyma T, Pizoli CE, Smith EC, Tan QKG, Shashi V. Parental perspectives of episodic irritability in an ultra-rare genetic disorder associated with NACC1. Orphanet J Rare Dis 2023; 18:269. [PMID: 37667351 PMCID: PMC10476425 DOI: 10.1186/s13023-023-02891-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/25/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND A recurrent de novo variant (c.892C>T) in NACC1 causes a neurodevelopmental disorder with epilepsy, cataracts, feeding difficulties, and delayed brain myelination (NECFM). An unusual and consistently reported feature is episodic extreme irritability and inconsolability. We now characterize these episodes, their impact on the family, and ascertain treatments that may be effective. Parents of 14 affected individuals provided narratives describing the irritability episodes, including triggers, behavioral and physiological changes, and treatments. Simultaneously, parents of 15 children completed the Non-communicating Children's Pain Checklist-Revised (NCCPC-R), a measure to assess pain in non-verbal children. RESULTS The episodes of extreme irritability include a prodromal, peak, and resolving phase, with normal periods in between. The children were rated to have extreme pain-related behaviors on the NCCPC-R scale, although it is unknown whether the physiologic changes described by parents are caused by pain. Attempted treatments included various classes of medications, with psychotropic and sedative medications being most effective (7/15). Nearly all families (13/14) describe how the episodes have a profound impact on their lives. CONCLUSIONS NECFM caused by the recurrent variant c.892C>T is associated with a universal feature of incapacitating episodic irritability of unclear etiology. Further understanding of the pathophysiology can lead to more effective therapeutic strategies.
Collapse
Affiliation(s)
- Kelly Schoch
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Allyn McConkie-Rosell
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Nicole Walley
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Vikas Bhambhani
- Division of Genetics and Genomic Medicine, Children's Hospital and Clinics of Minnesota, Minneapolis, MN, USA
| | - Timothy Feyma
- Gillette Children's Specialty Healthcare, Saint Paul, MN, USA
| | - Carolyn E Pizoli
- Division of Neurology, Department of Pediatrics, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Edward C Smith
- Division of Neurology, Department of Pediatrics, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Queenie K-G Tan
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Vandana Shashi
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
5
|
Singh J, Goodman-Vincent E, Santosh P. Evidence Synthesis of Gene Therapy and Gene Editing from Different Disorders-Implications for Individuals with Rett Syndrome: A Systematic Review. Int J Mol Sci 2023; 24:ijms24109023. [PMID: 37240368 DOI: 10.3390/ijms24109023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/06/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
This systematic review and thematic analysis critically evaluated gene therapy trials in amyotrophic lateral sclerosis, haemoglobinopathies, immunodeficiencies, leukodystrophies, lysosomal storage disorders and retinal dystrophies and extrapolated the key clinical findings to individuals with Rett syndrome (RTT). The PRISMA guidelines were used to search six databases during the last decade, followed by a thematic analysis to identify the emerging themes. Thematic analysis across the different disorders revealed four themes: (I) Therapeutic time window of gene therapy; (II) Administration and dosing strategies for gene therapy; (III) Methods of gene therapeutics and (IV) Future areas of clinical interest. Our synthesis of information has further enriched the current clinical evidence base and can assist in optimising gene therapy and gene editing studies in individuals with RTT, but it would also benefit when applied to other disorders. The findings suggest that gene therapies have better outcomes when the brain is not the primary target. Across different disorders, early intervention appears to be more critical, and targeting the pre-symptomatic stage might prevent symptom pathology. Intervention at later stages of disease progression may benefit by helping to clinically stabilise patients and preventing disease-related symptoms from worsening. If gene therapy or editing has the desired outcome, older patients would need concerted rehabilitation efforts to reverse their impairments. The timing of intervention and the administration route would be critical parameters for successful outcomes of gene therapy/editing trials in individuals with RTT. Current approaches also need to overcome the challenges of MeCP2 dosing, genotoxicity, transduction efficiencies and biodistribution.
Collapse
Affiliation(s)
- Jatinder Singh
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
- Centre for Interventional Paediatric Psychopharmacology and Rare Diseases (CIPPRD), South London and Maudsley NHS Foundation Trust, London SE5 8AZ, UK
- Centre for Interventional Paediatric Psychopharmacology (CIPP) Rett Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London and South London and Maudsley NHS Foundation Trust, London SE5 8AZ, UK
| | - Ella Goodman-Vincent
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
- Centre for Interventional Paediatric Psychopharmacology and Rare Diseases (CIPPRD), South London and Maudsley NHS Foundation Trust, London SE5 8AZ, UK
- Centre for Interventional Paediatric Psychopharmacology (CIPP) Rett Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London and South London and Maudsley NHS Foundation Trust, London SE5 8AZ, UK
| | - Paramala Santosh
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
- Centre for Interventional Paediatric Psychopharmacology and Rare Diseases (CIPPRD), South London and Maudsley NHS Foundation Trust, London SE5 8AZ, UK
- Centre for Interventional Paediatric Psychopharmacology (CIPP) Rett Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London and South London and Maudsley NHS Foundation Trust, London SE5 8AZ, UK
| |
Collapse
|
6
|
An Observational Study of Heart Rate Variability Using Wearable Sensors Provides a Target for Therapeutic Monitoring of Autonomic Dysregulation in Patients with Rett Syndrome. Biomedicines 2022; 10:biomedicines10071684. [PMID: 35884989 PMCID: PMC9312701 DOI: 10.3390/biomedicines10071684] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/29/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022] Open
Abstract
Rett Syndrome (RTT) is a complex neurodevelopmental disorder that has multi-system involvement with co-occurring epilepsy, breathing problems and autonomic dysregulation. Autonomic dysregulation can increase the risk of cardiorespiratory vulnerability in this patient group. Assessment of heart rate variability (HRV) provides an overview of autonomic health in RTT and offers insight into how the sympathetic and parasympathetic components of the nervous system function. However, to our knowledge, no study has evaluated HRV in Rett patients to assess how the dynamics of autonomic function vary with age and changes during the day and/or night. Using non-invasive wearable sensors, we measured HRV in 45 patients with RTT and examined the time and frequency domain sympathetic and parasympathetic indices. Among the HRV indices assessed, heart rate decreases with age and is lower in the night across all ages studied. The sympathetic index (SDNN) and the parasympathetic indices (RMSSD and pNN50) are not seen to change with age. Nevertheless, these indices were all higher during the day when compared to the night. Our findings appear to show that Rett patients are less adaptable to autonomic changes during the night. In the clinical setting, this might be more relevant for patients with severe psychopathology.
Collapse
|
7
|
Singh J, Lanzarini E, Nardocci N, Santosh P. Movement disorders in patients with Rett syndrome: A systematic review of evidence and associated clinical considerations. Psychiatry Clin Neurosci 2021; 75:369-393. [PMID: 34472659 PMCID: PMC9298304 DOI: 10.1111/pcn.13299] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/28/2021] [Accepted: 08/20/2021] [Indexed: 12/18/2022]
Abstract
AIM This systematic review identified and thematically appraised clinical evidence of movement disorders in patients with Rett syndrome (RTT). METHOD Using PRISMA criteria, six electronic databases were searched from inception to April 2021. A thematic analysis was then undertaken on the extracted data to identify potential themes. RESULTS Following the thematic analysis, six themes emerged: (i) clinical features of abnormal movement behaviors; (ii) mutational profile and its impact on movement disorders; (iii) symptoms and stressors that impact on movement disorders; (iv) possible underlying neurobiological mechanisms; (v) quality of life and movement disorders; and (vi) treatment of movement disorders. Current guidelines for managing movement disorders in general were then reviewed to provide possible treatment recommendations for RTT. CONCLUSION Our study offers an enriched data set for clinical investigations and treatment of fine and gross motor issues in RTT. A detailed understanding of genotype-phenotype relationships of movement disorders allows for more robust genetic counseling for families but can also assist healthcare professionals in terms of monitoring disease progression in RTT. The synthesis also showed that environmental enrichment would be beneficial for improving some aspects of movement disorders. The cerebellum, basal ganglia, alongside dysregulation of the cortico-basal ganglia-thalamo-cortical loop, are likely anatomical targets. A review of treatments for movement disorders also helped to provide recommendations for treating and managing movement disorders in patients with RTT.
Collapse
Affiliation(s)
- Jatinder Singh
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Centre for Interventional Paediatric Psychopharmacology and Rare Diseases, South London and Maudsley NHS Foundation Trust, London, UK.,Centre for Personalised Medicine in Rett Syndrome, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Evamaria Lanzarini
- Child and Adolescent Neuropsychiatry Unit, Infermi Hospital, Rimini, Italy
| | - Nardo Nardocci
- Department of Paediatric Neurology, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Paramala Santosh
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Centre for Interventional Paediatric Psychopharmacology and Rare Diseases, South London and Maudsley NHS Foundation Trust, London, UK.,Centre for Personalised Medicine in Rett Syndrome, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
8
|
Singh J, Lanzarini E, Santosh P. Autonomic Characteristics of Sudden Unexpected Death in Epilepsy in Children-A Systematic Review of Studies and Their Relevance to the Management of Epilepsy in Rett Syndrome. Front Neurol 2021; 11:632510. [PMID: 33613425 PMCID: PMC7892970 DOI: 10.3389/fneur.2020.632510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/28/2020] [Indexed: 01/21/2023] Open
Abstract
Aim: To systematically identify and critically appraise studies that investigate the autonomic characteristics of Sudden Unexpected Death in Epilepsy (SUDEP) in the pediatric population. We also wanted to explore how this information would be relevant to the management of epilepsy in patients with Rett Syndrome. Method: Using PRISMA guidelines, a systematic review of PubMed, Scopus, Cochrane, PsycINFO, Embase, and Web of Science databases was performed to identify eligible studies. After extracting data from the included studies, a thematic analysis was undertaken to identify emerging themes. A quality appraisal was also done to assess the quality of the included studies. Results: The systematic search revealed 41 records, and 15 full-text articles on the autonomic characteristics of SUDEP in children were included in the final analysis. Following thematic analysis, three themes were identified (I) modulation in sympathovagal tone, (II) pre- and post-ictal autonomic changes, and (III) other markers of autonomic dysregulation in children with epilepsy. Modulation in sympathovagal tone emerged as the theme with the highest frequency followed by pre- and post-ictal autonomic changes. While the themes provide additional insight into the management of epilepsy in the Rett Syndrome population, the quality of evidence concerning the autonomic characteristics of SUDEP in the pediatric population was low and underscores the importance of much needed research in this area. Conclusion: The mechanism of SUDEP in the pediatric population is complex and involves an interplay between several components of the autonomic nervous system. While direct clinical inferences regarding pediatric SUDEP could not be made, the thematic analysis does suggest that in vulnerable populations such as Rett Syndrome, where there is already a pervasive autonomic dysregulation, pro-active surveillance of the autonomic profile in this patient group would be useful to better manage epilepsy and reduce the SUDEP risk.
Collapse
Affiliation(s)
- Jatinder Singh
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Centre for Interventional Paediatric Psychopharmacology and Rare Diseases, South London and Maudsley NHS Foundation Trust, London, United Kingdom.,Centre for Personalised Medicine in Rett Syndrome, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Evamaria Lanzarini
- Child and Adolescent Neuropsychiatry Unit, Infermi Hospital, Rimini, Italy
| | - Paramala Santosh
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Centre for Interventional Paediatric Psychopharmacology and Rare Diseases, South London and Maudsley NHS Foundation Trust, London, United Kingdom.,Centre for Personalised Medicine in Rett Syndrome, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|