1
|
Zhou H, Wang M, Xu T, Zhang X, Zhao X, Tang L, Zhao P, Wang D, Lai J, Wang F, Zhang S, Hu S. Cognitive Remediation in Patients With Bipolar Disorder: A Randomized Trial by Sequential tDCS and Navigated rTMS Targeting the Primary Visual Cortex. CNS Neurosci Ther 2024; 30:e70179. [PMID: 39703101 PMCID: PMC11659637 DOI: 10.1111/cns.70179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/21/2024] [Accepted: 11/29/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Non-invasive brain stimulation (NIBS), such as transcranial direct current stimulation (tDCS) and repetitive transcranial magnetic stimulation (rTMS), has emerged as a promising alternative in the precise treatment of clinical symptoms, such as the cognitive impairment of bipolar disorder (BD). Optimizing the neurocognitive effects by combining tDCS and rTMS to strengthen the clinical outcome is a challenging research issue. OBJECTIVE In this randomized, controlled trial, we first combined tDCS and neuronavigated rTMS targeting the V1 region to explore the efficacy on neurocognitive function in BD patients with depressive episodes. METHODS Eligible individuals (n = 105) were assigned into three groups, Group A (active tDCS-active rTMS), Group B (sham tDCS-active rTMS), and Group C (active tDCS-sham rTMS). All participants received 3-week treatment in which every participant received 15 sessions of stimulation through the study, 5 sessions every week, with tDCS treatment followed by neuronavigated rTMS every session. We evaluated the cognitive, emotional, and safety outcomes at week-0 (w0, baseline), week-3 (w3, immediately post-treatment), and week-8 (w8, follow-up period). The THINC-integrated tool (THINC-it), 17-item Hamilton Depression Rating Scale, and Young Mania Rating Scale were applied for evaluating the cognitive function and emotional state, respectively. Data were analyzed by repeated measure ANOVA and paired t-test. RESULTS Eventually, 32 patients in Group A, 27 in Group B, and 23 in Group C completed the entire treatment. Compared to Groups B and C, Group A showed greater improvement in Symbol Check items (Time and Accuracy) at W3 and Symbol Check Accuracy at W8 (p < 0.01). The W0-W3 analysis indicated a significant improvement in depressive symptoms in both Group A and Group B (p < 0.01). Additionally, neuroimaging data revealed increased activity in the calcarine sulcus in Group A, suggesting potential neuroplastic changes in the visual cortex following the electromagnetic stimulation. CONCLUSIONS These findings provide preliminary evidence that the combination of navigated rTMS with tDCS targeting V1 region may serve as a potential treatment strategy for improving cognitive impairment and depressive symptoms in BD patients. TRIAL REGISTRATION Clinical Trial Registry number: NCT05596461.
Collapse
Affiliation(s)
- Hetong Zhou
- Department of Psychiatry, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Nanhu Brain‐Computer Interface InstituteHangzhouChina
- Zhejiang Key Laboratory of Precision PsychiatryHangzhouChina
| | - Minmin Wang
- Key Laboratory of Biomedical Engineering of Education Ministry, Zhejiang Provincial Key Laboratory of Cardio‐Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, School of Biomedical Engineering and Instrument Science, Qiushi Academy for Advanced StudiesZhejiang UniversityHangzhouChina
- Westlake Institute for OptoelectronicsWestlake UniversityHangzhouChina
| | - Ting Xu
- Department of Psychiatry, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiaomei Zhang
- Department of Psychiatry, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Department of PsychiatryHuzhou Third Municipal HospitalHuzhouChina
| | - Xudong Zhao
- Department of Psychiatry, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Department of PsychiatryHuzhou Third Municipal HospitalHuzhouChina
| | - Lili Tang
- Early Intervention Unit, Department of PsychiatryThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
- Functional Brain Imaging InstituteNanjing Medical UniversityNanjingChina
| | - Pengfei Zhao
- Early Intervention Unit, Department of PsychiatryThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
- Functional Brain Imaging InstituteNanjing Medical UniversityNanjingChina
| | - Dandan Wang
- Department of Psychiatry, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jianbo Lai
- Department of Psychiatry, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Fei Wang
- Early Intervention Unit, Department of PsychiatryThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
- Functional Brain Imaging InstituteNanjing Medical UniversityNanjingChina
- Department of Mental Health, School of Public HealthNanjing Medical UniversityNanjingChina
| | - Shaomin Zhang
- Key Laboratory of Biomedical Engineering of Education Ministry, Zhejiang Provincial Key Laboratory of Cardio‐Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, School of Biomedical Engineering and Instrument Science, Qiushi Academy for Advanced StudiesZhejiang UniversityHangzhouChina
| | - Shaohua Hu
- Department of Psychiatry, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Nanhu Brain‐Computer Interface InstituteHangzhouChina
- Zhejiang Key Laboratory of Precision PsychiatryHangzhouChina
- Brain Research Institute of Zhejiang UniversityHangzhouChina
- Zhejiang Engineering Center for Mathematical Mental HealthHangzhouChina
- The State Key Lab of Brain‐Machine IntelligenceZhejiang UniversityHangzhouChina
- Department of Psychology and Behavioral SciencesZhejiang UniversityHangzhouChina
| |
Collapse
|
2
|
Zhang Y, Song B, Zhao X, Jin Z, Zhang J, Li L. Meta-analysis of experimental factors influencing single-pulse TMS effects on the early visual cortex. Front Neurosci 2024; 18:1351399. [PMID: 38894939 PMCID: PMC11185874 DOI: 10.3389/fnins.2024.1351399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
Background Single-pulse transcranial magnetic stimulation (spTMS) applied to the Early Visual Cortex (EVC) has demonstrated the ability to suppress the perception on visual targets, akin to the effect of visual masking. However, the reported spTMS suppression effects across various studies have displayed inconsistency. Objective We aim to test if the heterogeneity of the spTMS effects can be attributable to variations in experimental factors. Methods We conducted a meta-analysis using data collected from the PubMed and Web of Science databases spanning from 1995 to March 2024. The meta-analysis encompassed a total of 40 independent experiments drawn from 33 original articles. Results The findings unveiled an overall significant spTMS suppression effect on visual perception. Nevertheless, there existed substantial heterogeneity among the experiments. Univariate analysis elucidated that the spTMS effects could be significantly influenced by TMS intensity, visual angle of the stimulus, coil type, and TMS stimulators from different manufacturers. Reliable spTMS suppression effects were observed within the time windows of -80 to 0 ms and 50 to 150 ms. Multivariate linear regression analyses, which included SOA, TMS intensity, visual angle of the stimulus, and coil type, identified SOA as the key factor influencing the spTMS effects. Within the 50 to 150 ms time window, optimal SOAs were identified as 112 ms and 98 ms for objective and subjective performance, respectively. Collectively, multiple experimental factors accounted for 22.9% (r = 0.3353) and 39.9% (r = 0.3724) of the variance in objective and subjective performance, respectively. Comparing univariate and multivariate analyses, it was evident that experimental factors had different impacts on objective performance and subjective performance. Conclusion The present study provided quantitative recommendations for future experiments involving the spTMS effects on visual targets, offering guidance on how to configure experimental factors to achieve the optimal masking effect.
Collapse
Affiliation(s)
| | | | | | | | - Junjun Zhang
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Ling Li
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
3
|
Wang J, Zou L, Jiang X, Wang D, Mao L, Yang X. Visual stimulation rehabilitation for cortical blindness after vertebral artery interventional surgery: A case report and literature review. Int J Surg Case Rep 2023; 110:108753. [PMID: 37651808 PMCID: PMC10509878 DOI: 10.1016/j.ijscr.2023.108753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/02/2023] Open
Abstract
INTRODUCTION AND IMPORTANCE Cortical blindness (CB) after vertebral artery interventional surgery is not a frequently reported complication. In this study, the efficacy of visual stimulation rehabilitation consisting of visual recovery training and repetitive transcranial magnetic stimulation (rTMS) for cortical blindness was investigated by clinical evaluation, ophthalmologic examination, and electroencephalography (EEG). CASE PRESENTATION This study reports on a 55-year-old male who showed partial bilateral posterior cerebral artery cortical branch occlusion after timely embolectomy due to thrombus dislodgement during right vertebral artery opening, stenting resulting in basilar artery tip occlusion. The lesions were mainly located in the right cerebellar hemisphere and bilateral occipital lobes, and the patient suffered from bilateral loss of vision, with only light perception preserved. The patient began to receive visual recovery training and 15 sessions of right occipital high-frequency transcranial magnetic stimulation 5 days after the onset. CLINICAL DISCUSSION After treatment, the patient's capacity to identify things improved, allowing him to watch television, as did the precision and fluency of random hand movements, walking, and self-care. CONCLUSION Visual stimulation rehabilitation composed of visual recovery training and rTMS is a promising therapy option for cortical blindness, and our case report provides clinical experience with vision recovery for patients with cortical blindness.
Collapse
Affiliation(s)
- Juehan Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liliang Zou
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaorui Jiang
- Department of Rehabilitation Medicine, The First People's Hospital of Yuhang District, Hangzhou, China
| | - Daming Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lin Mao
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Xiaofeng Yang
- Emergency and Trauma Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
4
|
Olkoniemi H, Hurme M, Railo H. Neurologically Healthy Humans' Ability to Make Saccades Toward Unseen Targets. Neuroscience 2023; 513:111-125. [PMID: 36702371 DOI: 10.1016/j.neuroscience.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023]
Abstract
Some patients with a visual field loss due to a lesion in the primary visual cortex (V1) can shift their gaze to stimuli presented in their blind visual field. The extent to which a similar "blindsight" capacity is present in neurologically healthy individuals remains unknown. Using retinotopically navigated transcranial magnetic stimulation (TMS) of V1 (Experiment 1) and metacontrast masking (Experiment 2) to suppress conscious vision, we examined neurologically healthy humans' ability to make saccadic eye movements toward visual targets that they reported not seeing. In the TMS experiment, the participants were more likely to initiate a saccade when a stimulus was presented, and they reported not seeing it, than in trials which no stimulus was presented. However, this happened only in a very small proportion (∼8%) of unseen trials, suggesting that saccadic reactions were largely based on conscious perception. In both experiments, saccade landing location was influenced by unconscious information: When the participants denied seeing the target but made a saccade, the saccade was made toward the correct location (TMS: 68%, metacontrast: 63%) more often than predicted by chance. Signal detection theoretic measures suggested that in the TMS experiment, saccades toward unseen targets may have been based on weak conscious experiences. In both experiments, reduced visibility of the target stimulus was associated with slower and less precise gaze shifts. These results suggest that saccades made by neurologically healthy humans may be influenced by unconscious information, although the initiation of saccades is largely based on conscious vision.
Collapse
Affiliation(s)
- Henri Olkoniemi
- Division of Psychology, Faculty of Education and Psychology, University of Oulu, Finland; Department of Psychology and Speech Language Pathology, University of Turku, Finland.
| | - Mikko Hurme
- Department of Psychology and Speech Language Pathology, University of Turku, Finland; Turku Brain and Mind Centre, University of Turku, Finland
| | - Henry Railo
- Department of Psychology and Speech Language Pathology, University of Turku, Finland; Turku Brain and Mind Centre, University of Turku, Finland
| |
Collapse
|
5
|
Werth R. A Scientific Approach to Conscious Experience, Introspection, and Unconscious Processing: Vision and Blindsight. Brain Sci 2022; 12:1305. [PMID: 36291239 PMCID: PMC9599441 DOI: 10.3390/brainsci12101305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/15/2022] [Accepted: 09/25/2022] [Indexed: 11/17/2022] Open
Abstract
Although subjective conscious experience and introspection have long been considered unscientific and banned from psychology, they are indispensable in scientific practice. These terms are used in scientific contexts today; however, their meaning remains vague, and earlier objections to the distinction between conscious experience and unconscious processing, remain valid. This also applies to the distinction between conscious visual perception and unconscious visual processing. Damage to the geniculo-striate pathway or the visual cortex results in a perimetrically blind visual hemifield contralateral to the damaged hemisphere. In some cases, cerebral blindness is not absolute. Patients may still be able to guess the presence, location, shape or direction of movement of a stimulus even though they report no conscious visual experience. This "unconscious" ability was termed "blindsight". The present paper demonstrates how the term conscious visual experience can be introduced in a logically precise and methodologically correct way and becomes amenable to scientific examination. The distinction between conscious experience and unconscious processing is demonstrated in the cases of conscious vision and blindsight. The literature on "blindsight" and its neurobiological basis is reviewed. It is shown that blindsight can be caused by residual functions of neural networks of the visual cortex that have survived cerebral damage, and may also be due to an extrastriate pathway via the midbrain to cortical areas such as areas V4 and MT/V5.
Collapse
Affiliation(s)
- Reinhard Werth
- Social Pediatrics and Adolescent Medicine, Ludwig-Maximilians-University of Munich, Haydnstr. 5, D-80336 München, Germany
| |
Collapse
|
6
|
Hurme M, Railo H. Promise and challenges for discovering transcranial magnetic stimulation induced "numbsense"-Commentary on Ro & Koenig (2021). Conscious Cogn 2021; 98:103265. [PMID: 34971969 DOI: 10.1016/j.concog.2021.103265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/18/2021] [Accepted: 12/20/2021] [Indexed: 11/19/2022]
Abstract
The notion that behavioral responses to stimuli can be mediated by separate unconscious and conscious sensory pathways remains popular, but also hotly debated. Recently, Ro and Koenig (2021) reported that when activity in somatosensory cortex was interfered with transcranial magnetic stimulation (TMS), participants could discriminate tactile stimuli they reported not consciously feeling. The study launches an interesting new area of research, helping to uncover mechanisms of unconscious perception that possibly generalize across different sensory modalities. However, we argue here that the study by Ro and Koenig also has several significant shortcomings, and it fails to provide evidence that pathways bypassing primary somatosensory cortex enable unconscious tactile discrimination. By referring to numerous studies investigating TMS-induced blindsight, we outline challenges in demonstrating unconscious sensory pathways using TMS. By facing to these challenges, research investigating TMS-induced numbsense has potential to stimulate progress in stubborn debates and reveal modality-general mechanisms of unconscious perception.
Collapse
Affiliation(s)
- Mikko Hurme
- Turku Brain and Mind Center, University of Turku, Turku, Finland.
| | - Henry Railo
- Turku Brain and Mind Center, University of Turku, Turku, Finland; Department of Psychology and Speech-Language Pathology, University of Turku, Turku 20014, Finland
| |
Collapse
|
7
|
Koivisto M, Leino K, Pekkarinen A, Karttunen J, Railo H, Hurme M. Transcranial magnetic stimulation (TMS)-induced Blindsight of Orientation is Degraded Conscious Vision. Neuroscience 2021; 475:206-219. [PMID: 34480985 DOI: 10.1016/j.neuroscience.2021.08.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/16/2021] [Accepted: 08/24/2021] [Indexed: 11/17/2022]
Abstract
Patients with blindsight are blind due to an early visual cortical lesion, but they can discriminate stimuli presented to the blind visual field better than chance. Studies using transcranial magnetic stimulation (TMS) of early visual cortex have tried to induce blindsight-like behaviour in neurologically healthy individuals, but the studies have yielded varied results. We hypothesized that previous demonstrations of TMS-induced blindsight may result from degraded awareness of the stimuli due to the use of dichotomous visibility scales in measuring awareness. In the present study, TMS was applied to early visual cortex during an orientation discrimination task and the subjective scale measuring awareness was manipulated: The participants reported their conscious perception either using a dichotomous scale or a 4-point Perceptual Awareness Scale. Although the results with the dichotomous scale replicated previous reports of blindsight-like behaviour, there was no evidence of TMS-induced blindsight for orientation when the participants used the lowest rating of the 4-point graded scale to indicate that they were not aware of the presence of the stimulus. Moreover, signal detection analyses indicated that across participants, the individual's sensitivity to consciously discriminate orientation predicted behaviour on reportedly unconscious trials. These results suggest that blindsight-like discrimination of orientation in neurologically healthy individuals does not occur for completely invisible stimuli, that is, when the observers do not report any kind of consciousness of the stimulus. TMS-induced blindsight for orientation is likely degraded conscious vision.
Collapse
Affiliation(s)
- Mika Koivisto
- Department of Psychology, University of Turku, 20014 Turku, Finland.
| | - Kalle Leino
- Department of Psychology, University of Turku, 20014 Turku, Finland
| | - Aino Pekkarinen
- Department of Psychology, University of Turku, 20014 Turku, Finland
| | - Jaakko Karttunen
- Department of Psychology, University of Turku, 20014 Turku, Finland
| | - Henry Railo
- Department of Psychology, University of Turku, 20014 Turku, Finland
| | - Mikko Hurme
- Department of Psychology, University of Turku, 20014 Turku, Finland
| |
Collapse
|
8
|
Railo H, Piccin R, Lukasik KM. Subliminal perception is continuous with conscious vision and can be predicted from prestimulus electroencephalographic activity. Eur J Neurosci 2021; 54:4985-4999. [PMID: 34128284 DOI: 10.1111/ejn.15354] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 11/30/2022]
Abstract
Individuals are able to discriminate visual stimuli they report not consciously seeing. This phenomenon is known as "subliminal perception." Such capacity is often assumed to be relatively automatic in nature and rely on stimulus-driven activity in low-level cortical areas. Instead, here we asked to what extent neural activity before stimulus presentation influences subliminal perception. We asked participants to discriminate the location of a briefly presented low-contrast visual stimulus and then rate how well they saw the stimulus. Consistent with previous studies, participants correctly discriminated with slightly above chance-level accuracy the location of a stimulus they reported not seeing. Signal detection analyses indicated that while subjects categorized their percepts as "unconscious," their capacity to discriminate these stimuli lay on the same continuum as conscious vision. We show that the accuracy of discriminating the location of a subliminal stimulus could be predicted with relatively high accuracy (AUC = 0.70) based on lateralized electroencephalographic (EEG) activity before the stimulus, the hemifield where the stimulus was presented, and the accuracy of previous trial's discrimination response. Altogether, our results suggest that rather than being a separate unconscious capacity, subliminal perception is based on similar processes as conscious vision.
Collapse
Affiliation(s)
- Henry Railo
- Department of Clinical Neurophysiology, University of Turku, Turku, Finland.,Turku Brain and Mind Centre, University of Turku, Turku, Finland.,Department of Psychology, University of Turku, Turku, Finland
| | - Roberto Piccin
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | | |
Collapse
|