1
|
Finke JB, Klucken T. Trait sexual motivation shapes cue reactivity in visual, but not auditory, sexual reward learning: Psychophysiological and computational evidence. Biol Psychol 2025; 198:109046. [PMID: 40355040 DOI: 10.1016/j.biopsycho.2025.109046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 05/05/2025] [Accepted: 05/06/2025] [Indexed: 05/14/2025]
Abstract
Beyond their incentive value, visual sexual stimuli are thought to have intrinsically rewarding properties that may contribute to the rising prevalence of problematic pornography use. However, whether excessive consumption of visual sexual stimuli fits classic models of addiction and involves reinforcement-based learning remains controversial. To address this question, the present study focused on the interplay of individual differences in trait sexual desire (specifically, the drive to engage in solitary sexuality) with stimulus modality in appetitive Pavlovian conditioning. 62 heterosexual participants (final sample, 36 women) underwent two sessions of differential conditioning, spaced one week apart. During one learning session, neutral cues were reinforced (50 %) by presentation of visual sexual stimuli, while auditory sexual stimuli served as unconditioned stimuli during the other session. Indexing both sexual arousal and appetitive learning, pupil dilation (as well as startle modulation) was used to track the acquisition of conditioned responses. Results revealed that solitary sexuality was associated with blunted differential pupillary responses to cues predicting visual (yet not auditory) sexual stimuli and less sensitization across trials, presumably reflecting reduced anticipatory arousal (consistent with self-report findings) and/or altered processing of uncertainty. At the same time, both enhanced startle habituation and valence ratings suggest that the preference for erotica was unaffected in individuals high in solitary sexuality. Fitted computational models provide additional evidence for a link to divergent learning trajectories. Taken together, our findings underscore the special nature of visual sexual stimuli (compared to auditory sexual stimuli) and support the view that excessive consumption may reflect a dispositional reward deficiency that drives individuals to seek out more intense stimulation.
Collapse
Affiliation(s)
- Johannes B Finke
- Department of Clinical Psychology & Psychotherapy, University of Siegen, Siegen, Germany.
| | - Tim Klucken
- Department of Clinical Psychology & Psychotherapy, University of Siegen, Siegen, Germany
| |
Collapse
|
2
|
Petrenko M, Coenen L, Doubliez A, Ernst TM, Nio E, Diekmann N, Uengoer M, Cheng S, Merz CJ, Timmann D, Batsikadze G. Appetitive and aversive classical conditioning: Self-reports and physiological responses. Behav Brain Res 2025; 484:115509. [PMID: 40023255 DOI: 10.1016/j.bbr.2025.115509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 03/04/2025]
Abstract
Understanding the neural mechanisms underlying appetitive and aversive conditioning has important clinical implications because maladaptive associative learning processes are thought to contribute to various mental disorders, including anxiety, mood and eating disorders, as well as addiction and chronic pain. Since brain areas related to appetitive and aversive conditioning overlap with one another, but are probably also distinct, it is of interest to directly compare appetitive and aversive conditioning in behavioral and imaging studies. To what extent do behavioral outcome recordings in appetitive and aversive conditioning tasks match? We compared self-reports and physiological responses (skin conductance responses and pupil size) using commonly applied appetitive and aversive unconditioned stimuli (US) in 40 young and healthy participants (20 women). Different to animal studies, secondary reinforcers, particularly monetary rewards, are most commonly used as appetitive US in humans. Therefore, the first study compared self-reports and physiological assessments that were elicited by electric shock and three monetary rewards (one Euro, two Euros and five Euros). In the second study, differential aversive and appetitive conditioning were performed on two consecutive days with order being randomized between participants. Since outcome measures of electric shock best matched the one Euro reward, one Euro was used as US in the appetitive conditioning paradigm. In both studies, physiological responses were significantly lower towards appetitive conditioned stimuli (CS) and US compared to aversive CS and US (all p-values < 0.001). Self-reports, on the other hand, showed much fewer differences in response magnitude and differential CS responding comparing appetitive and aversive CS and US. Overall, self-reports of valence were higher towards monetary rewards compared to the electrical stimulus considering both responses to the US in study 1 and CS in study 2 (p-values < 0.001). Our findings show that full comparability between behavioral outcomes can probably not be achieved in appetitive and aversive conditioning paradigms since outcomes might easily diverge. Future studies comparing the neural responses in processing of aversive and appetitive stimuli using brain imaging, electroencephalography or other neurobiological methods need to control for possible differences in response magnitudes and learning rates.
Collapse
Affiliation(s)
- Mykola Petrenko
- Department of Neurology and Center for Translational Neuro, and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Hufelandstraße 55, Essen 45147, Germany.
| | - Lena Coenen
- Department of Neurology and Center for Translational Neuro, and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Hufelandstraße 55, Essen 45147, Germany
| | - Alice Doubliez
- Department of Neurology and Center for Translational Neuro, and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Hufelandstraße 55, Essen 45147, Germany
| | - Thomas M Ernst
- Department of Neurology and Center for Translational Neuro, and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Hufelandstraße 55, Essen 45147, Germany
| | - Enzo Nio
- Department of Neurology and Center for Translational Neuro, and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Hufelandstraße 55, Essen 45147, Germany
| | - Nicolas Diekmann
- Institute for Neural Computation, Faculty of Computer Science, Ruhr University Bochum, Bochum, Germany
| | - Metin Uengoer
- Department of Psychology, Philipps-University of Marburg, Gutenberg-Str. 18, Marburg 35032, Germany
| | - Sen Cheng
- Institute for Neural Computation, Faculty of Computer Science, Ruhr University Bochum, Bochum, Germany
| | - Christian J Merz
- Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Dagmar Timmann
- Department of Neurology and Center for Translational Neuro, and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Hufelandstraße 55, Essen 45147, Germany
| | - Giorgi Batsikadze
- Department of Neurology and Center for Translational Neuro, and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Hufelandstraße 55, Essen 45147, Germany
| |
Collapse
|
3
|
Xia Y, Liu H, Kälin OK, Gerster S, Bach DR. Measuring Human Pavlovian Reward Conditioning and Memory Retention After Consolidation. Psychophysiology 2025; 62:e70058. [PMID: 40285327 PMCID: PMC12032384 DOI: 10.1111/psyp.70058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 03/18/2025] [Accepted: 04/04/2025] [Indexed: 04/29/2025]
Abstract
While a body of literature has addressed the quantification of aversive Pavlovian conditioning in humans, Pavlovian reward conditioning with primary reinforcers and its recall after overnight consolidation remain understudied. In particular, few studies have directly compared different conditioned response types and their retrodictive validity. Here, we sought to fill this gap by investigating heart period responses (HPR), skin conductance responses (SCR), pupil size responses (PSR), and respiration amplitude responses (RAR). We conducted two independent experiments (N1 = 37, N2 = 34) with a learning phase and a recall phase 7 days later. A visual conditioned stimulus (CS+) predicted fruit juice reward (unconditioned stimulus, US), while a second CS- predicted US absence. In experiment 1, model-based analysis of HPR distinguished CS+/CS-, both during learning (Hedge's g = 0.56) and recall (g = 0.40). Furthermore, model-based analysis of PSR distinguished CS+/CS- in early trials during recall (g = 0.69). As an out-of-sample generalization test, experiment 2 confirmed the result for HPR during learning (g = 0.78) and recall (g = 0.55), as well as for PSR during recall (g = 0.41). In contrast, peak-scoring analysis of PSR yielded low retrodictive validity. We conclude that in our Pavlovian reward conditioning paradigm, HPR is a valid measure of reward learning, while both HPR and PSR validly index the retention of reward memory.
Collapse
Affiliation(s)
- Yanfang Xia
- Computational Psychiatry Research, Department of Psychiatry, Psychotherapy, and PsychosomaticsPsychiatric University Hospital Zurich, University of ZurichZurichSwitzerland
- University of Bonn, Transdisciplinary Research Area Life and Health, Centre for Artificial Intelligence and Neuroscience, University of BonnBonnGermany
- Donders Institute for Brain, Cognition and BehaviourRadboud University NijmegenNijmegenthe Netherlands
- Department of PsychiatryRadboud University Medical CentreNijmegenthe Netherlands
| | - Huaiyu Liu
- Department of Imaging Neuroscience, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Oliver K. Kälin
- Computational Psychiatry Research, Department of Psychiatry, Psychotherapy, and PsychosomaticsPsychiatric University Hospital Zurich, University of ZurichZurichSwitzerland
| | - Samuel Gerster
- Computational Psychiatry Research, Department of Psychiatry, Psychotherapy, and PsychosomaticsPsychiatric University Hospital Zurich, University of ZurichZurichSwitzerland
| | - Dominik R. Bach
- Computational Psychiatry Research, Department of Psychiatry, Psychotherapy, and PsychosomaticsPsychiatric University Hospital Zurich, University of ZurichZurichSwitzerland
- University of Bonn, Transdisciplinary Research Area Life and Health, Centre for Artificial Intelligence and Neuroscience, University of BonnBonnGermany
- Department of Imaging Neuroscience, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| |
Collapse
|
4
|
Mansell W, Wellsted N, Marinovic W. Is pupil size an index of insight, analysis, and/or uncertainty? An extended replication study of problem-solving to take account of combined strategies, timing and accuracy. Biol Psychol 2025; 196:109023. [PMID: 40180113 DOI: 10.1016/j.biopsycho.2025.109023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/27/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
Research indicates that greater pupil dilation distinguishes insight from analytic problem solving, but it remains unclear how time-to-solution and the potential use of combined strategies influence this finding. To address this, we asked participants in the current study to categorise each trial as one of three strategies, and we examined the interaction between strategy type, accuracy and time-to-solution to predict pupil dilation. English-speaking students (n = 38) were asked to solve 120 compound word association problems, while pupil dilation was recorded. Subsequently, participants were asked to report which of the three problem-solving strategies (analytic, insight, combined) they had used to find each solution, without being if their answers were correct. A Bayesian linear mixed model analysis revealed an interaction between time-to-solution and strategy. More specifically, pupil dilation indexed an insight strategy for early solutions, but indicated an analytic strategy for late solutions, with combined strategies falling in between. In addition, correct trials were associated with greater pupil dilation. We conclude that, even within the same task, pupil dilation may separately indicate (1) the extended mental effort of problem analysis, (2) the immediate onset of insight, and (3) the feeling of uncertainty experienced when a correct answer is unvalidated by feedback. Future research should rule out other explanations such as whether pupil dilation is an index of change in affect, and test hypothetical closed-loop models of problem-solving directly through individualised model fitting.
Collapse
Affiliation(s)
- Warren Mansell
- School of Population Health, Curtin University, Perth, Australia.
| | - Natalie Wellsted
- School of Population Health, Curtin University, Perth, Australia
| | - Welber Marinovic
- School of Population Health, Curtin University, Perth, Australia
| |
Collapse
|
5
|
Castellotti S, Castaldi E, Blini E, Arrighi R. Pupil size as a biomarker of cognitive (dys)functions: Toward a physiologically informed screening of mental states. Acta Psychol (Amst) 2025; 253:104720. [PMID: 39799929 DOI: 10.1016/j.actpsy.2025.104720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/16/2024] [Accepted: 01/09/2025] [Indexed: 01/15/2025] Open
Abstract
The objective assessment of cognitive processes is of critical importance to understanding the mechanisms underlying various mental functions and dysfunctions. In recent years, the technological innovations related to the eye-tracking industry made the time right to organically integrate pupillometry in the assessment of cognitive profiles. Here, we review evidence showing that pupillometry offers a uniquely sensitive biomarker of the functioning of several distinct networks, cognitive functions, emotional states, and individual differences in their instantiation. We outline why and how pupillometry can be effectively exploited to enrich current research and behavioral paradigms, including those designed for clinical testing. By making the cases of anxiety disorders (both generalized and specific - e.g., generalized anxiety vs. math anxiety) and substance use disorders, we then exemplify how pupillometry can be leveraged to obtain clinically meaningful variables. We finally conclude by arguing that measuring pupil size has the potential to complement more traditional, but coarse assessment methods, to return a more graded, objective, and physiologically informed picture of cognitive functioning.
Collapse
Affiliation(s)
- Serena Castellotti
- Department of Neuroscience, Psychology, Pharmacology and Child Health (NEUROFARBA), University of Florence, Florence, Italy; Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.
| | - Elisa Castaldi
- Department of Neuroscience, Psychology, Pharmacology and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Elvio Blini
- Department of Neuroscience, Psychology, Pharmacology and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Roberto Arrighi
- Department of Neuroscience, Psychology, Pharmacology and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| |
Collapse
|
6
|
Battaglia S, Nazzi C, Lonsdorf TB, Thayer JF. Neuropsychobiology of fear-induced bradycardia in humans: progress and pitfalls. Mol Psychiatry 2024; 29:3826-3840. [PMID: 38862673 PMCID: PMC11609102 DOI: 10.1038/s41380-024-02600-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/17/2024] [Accepted: 05/07/2024] [Indexed: 06/13/2024]
Abstract
In the last century, the paradigm of fear conditioning has greatly evolved in a variety of scientific fields. The techniques, protocols, and analysis methods now most used have undergone a progressive development, theoretical and technological, improving the quality of scientific productions. Fear-induced bradycardia is among these techniques and represents the temporary deceleration of heart beats in response to negative outcomes. However, it has often been used as a secondary measure to assess defensive responding to threat, along other more popular techniques. In this review, we aim at paving the road for its employment as an additional tool in fear conditioning experiments in humans. After an overview of the studies carried out throughout the last century, we describe more recent evidence up to the most contemporary research insights. Lastly, we provide some guidelines concerning the best practices to adopt in human fear conditioning studies which aim to investigate fear-induced bradycardia.
Collapse
Affiliation(s)
- Simone Battaglia
- Center for Studies and Research in Cognitive Neuroscience, Department of Psychology, University of Bologna, Bologna, Italy
- Department of Psychology, University of Torino, Torino, Italy
| | - Claudio Nazzi
- Center for Studies and Research in Cognitive Neuroscience, Department of Psychology, University of Bologna, Bologna, Italy
| | - Tina B Lonsdorf
- Department of Systems Neuroscience, University Medical Center Hamburg Eppendorf, Hamburg, Germany
- Department of Psychology, Section for Biological Psychology and Cognitive Neuroscience, University of Bielefeld, Bielefeld, Germany
| | - Julian F Thayer
- Department of Psychological Science, 4201 Social and Behavioral Sciences Gateway, University of California, Irvine, CA, USA.
- Department of Psychology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
7
|
Blini E, Arrighi R, Anobile G. Pupillary manifolds: uncovering the latent geometrical structures behind phasic changes in pupil size. Sci Rep 2024; 14:27306. [PMID: 39516679 PMCID: PMC11549318 DOI: 10.1038/s41598-024-78772-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
The size of the pupils reflects directly the balance of different branches of the autonomic nervous system. This measure is inexpensive, non-invasive, and has provided invaluable insights on a wide range of mental processes, from attention to emotion and executive functions. Two outstanding limitations of current pupillometry research are the lack of consensus in the analytical approaches, which vary wildly across research groups and disciplines, and the fact that, unlike other neuroimaging techniques, pupillometry lacks the dimensionality to shed light on the different sources of the observed effects. In other words, pupillometry provides an integrated readout of several distinct networks, but it is unclear whether each has a specific fingerprint, stemming from its function or physiological substrate. Here we show that phasic changes in pupil size are inherently low-dimensional, with modes that are highly consistent across behavioral tasks of very different nature, suggesting that these changes occur along pupillary manifolds that are highly constrained by the underlying physiological structures rather than functions. These results provide not only a unified approach to analyze pupillary data, but also the opportunity for physiology and psychology to refer to the same processes by tracing the sources of the reported changes in pupil size in the underlying biology.
Collapse
Affiliation(s)
- Elvio Blini
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Via di San Salvi 12, Building 26, Florence, Italy.
| | - Roberto Arrighi
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Via di San Salvi 12, Building 26, Florence, Italy
| | - Giovanni Anobile
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Via di San Salvi 12, Building 26, Florence, Italy
| |
Collapse
|
8
|
Burke DA, Taylor A, Jeong H, Lee S, Wu B, Floeder JR, K Namboodiri VM. Reward timescale controls the rate of behavioural and dopaminergic learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.31.535173. [PMID: 37034619 PMCID: PMC10081323 DOI: 10.1101/2023.03.31.535173] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Learning the causes of rewards is necessary for survival. Thus, it is critical to understand the mechanisms of such a vital biological process. Cue-reward learning is controlled by mesolimbic dopamine and improves with spacing of cue-reward pairings. However, whether a mathematical rule governs such improvements in learning rate, and if so, whether a unifying mechanism captures this rule and dopamine dynamics during learning remain unknown. Here, we investigate the behavioral, algorithmic, and dopaminergic mechanisms governing cue-reward learning rate. Across a range of conditions in mice, we show a strong, mathematically proportional relationship between both behavioral and dopaminergic learning rates and the duration between rewards. Due to this relationship, removing up to 19 out of 20 cue-reward pairings over a fixed duration has no influence on overall learning. These findings are explained by a dopamine-based model of retrospective learning, thereby providing a unified account of the biological mechanisms of learning.
Collapse
Affiliation(s)
- Dennis A Burke
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Annie Taylor
- Neuroscience Graduate Program, University of California, San Francisco, CA, USA
| | - Huijeong Jeong
- Department of Neurology, University of California, San Francisco, CA, USA
| | - SeulAh Lee
- Department of Neurology, University of California, San Francisco, CA, USA
- University of California, Berkeley, CA, USA
| | - Brenda Wu
- Department of Neurology, University of California, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, CA, USA
| | - Joseph R Floeder
- Neuroscience Graduate Program, University of California, San Francisco, CA, USA
| | - Vijay Mohan K Namboodiri
- Department of Neurology, University of California, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, CA, USA
- Weill Institute for Neurosciences, Kavli Institute for Fundamental Neuroscience, Center for Integrative Neuroscience, University of California, San Francisco, CA, USA
| |
Collapse
|
9
|
Badioli M, Degni LAE, Dalbagno D, Danti C, Starita F, di Pellegrino G, Benassi M, Garofalo S. Unraveling the influence of Pavlovian cues on decision-making: A pre-registered meta-analysis on Pavlovian-to-instrumental transfer. Neurosci Biobehav Rev 2024; 164:105829. [PMID: 39074674 DOI: 10.1016/j.neubiorev.2024.105829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/15/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
Amidst the replicability crisis, promoting transparency and rigor in research becomes imperative. The Pavlovian-to-Instrumental Transfer (PIT) paradigm is increasingly used in human studies to offer insights into how Pavlovian cues, by anticipating rewards or punishments, influence decision-making and potentially contribute to the development of clinical conditions. However, research on this topic faces challenges, including methodological variability and the need for standardized approaches, which can undermine the quality and robustness of experimental findings. Hence, we conducted a meta-analysis to unravel the methodological, task-related, individual, training, and learning factors that can modulate PIT. By scrutinizing these factors, the present meta-analysis reviews the current literature on human PIT, provides practical guidelines for future research to enhance study outcomes and refine methodologies, and identifies knowledge gaps that can serve as a direction for future studies aiming to advance the comprehension of how Pavlovian cues shape decision-making.
Collapse
Affiliation(s)
- Marco Badioli
- Department of Psychology, University of Bologna, Italy
| | | | | | - Claudio Danti
- Department of Psychology, University of Bologna, Italy
| | | | | | | | - Sara Garofalo
- Department of Psychology, University of Bologna, Italy.
| |
Collapse
|
10
|
Jentsch VL, Wolf OT, Otto T, Merz CJ. The impact of physical exercise on the consolidation of fear extinction memories. Psychophysiology 2023; 60:e14373. [PMID: 37350416 DOI: 10.1111/psyp.14373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/11/2023] [Accepted: 06/05/2023] [Indexed: 06/24/2023]
Abstract
Based on the mechanisms of fear extinction, exposure therapy is the most common treatment for anxiety disorders. However, extinguished fear responses can reemerge even after successful treatment. Novel interventions enhancing exposure therapy efficacy are therefore critically needed. Physical exercise improves learning and memory and was also shown to enhance extinction processes. This study tested whether physical exercise following fear extinction training improves the consolidation of extinction memories. Sixty healthy men underwent a differential fearconditioning paradigm with fear acquisition training on day 1 and fear extinction training followed by an exercise or resting control intervention on day 2. On day 3, retrieval and reinstatement were tested including two additional but perceptually similar stimuli to explore the generalization of exercise effects. Exercise significantly increased heart rate, salivary alpha amylase, and cortisol, indicating successful exercise manipulation. Contrary to our expectations, exercise did not enhance but rather impaired extinction memory retrieval on the next day, evidenced by significantly stronger differential skin conductance responses (SCRs) and pupil dilation (PD). Importantly, although conditioned fear responses were successfully acquired, they did not fully extinguish, explaining why exercise might have boosted the consolidation of the original fear memory trace instead. Additionally, stronger differential SCRs and PD toward the novel stimuli suggest that the memory enhancing effects of exercise also generalized to perceptually similar stimuli. Together, these findings indicate that physical exercise can facilitate both the long-term retrievability and generalization of extinction memories, but presumably only when extinction was successful in the first place.
Collapse
Affiliation(s)
- Valerie L Jentsch
- Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Oliver T Wolf
- Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Tobias Otto
- Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Christian J Merz
- Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
11
|
Ziereis A, Schacht A. Gender congruence and emotion effects in cross-modal associative learning: Insights from ERPs and pupillary responses. Psychophysiology 2023; 60:e14380. [PMID: 37387451 DOI: 10.1111/psyp.14380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 05/01/2023] [Accepted: 06/17/2023] [Indexed: 07/01/2023]
Abstract
Social and emotional cues from faces and voices are highly relevant and have been reliably demonstrated to attract attention involuntarily. However, there are mixed findings as to which degree associating emotional valence to faces occurs automatically. In the present study, we tested whether inherently neutral faces gain additional relevance by being conditioned with either positive, negative, or neutral vocal affect bursts. During learning, participants performed a gender-matching task on face-voice pairs without explicit emotion judgments of the voices. In the test session on a subsequent day, only the previously associated faces were presented and had to be categorized regarding gender. We analyzed event-related potentials (ERPs), pupil diameter, and response times (RTs) of N = 32 subjects. Emotion effects were found in auditory ERPs and RTs during the learning session, suggesting that task-irrelevant emotion was automatically processed. However, ERPs time-locked to the conditioned faces were mainly modulated by the task-relevant information, that is, the gender congruence of the face and voice, but not by emotion. Importantly, these ERP and RT effects of learned congruence were not limited to learning but extended to the test session, that is, after removing the auditory stimuli. These findings indicate successful associative learning in our paradigm, but it did not extend to the task-irrelevant dimension of emotional relevance. Therefore, cross-modal associations of emotional relevance may not be completely automatic, even though the emotion was processed in the voice.
Collapse
Affiliation(s)
- Annika Ziereis
- Department for Cognition, Emotion and Behavior, Affective Neuroscience and Psychophysiology Laboratory, Institute of Psychology, Georg-August-University of Göttingen, Göttingen, Germany
| | - Anne Schacht
- Department for Cognition, Emotion and Behavior, Affective Neuroscience and Psychophysiology Laboratory, Institute of Psychology, Georg-August-University of Göttingen, Göttingen, Germany
| |
Collapse
|
12
|
Ney LJ, O'Donohue M, Wang Y, Richardson M, Vasarhelyi A, Lipp OV. The next frontier: Moving human fear conditioning research online. Biol Psychol 2023; 184:108715. [PMID: 37852526 DOI: 10.1016/j.biopsycho.2023.108715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023]
Abstract
Fear conditioning is a significant area of research that has featured prominently among the topics published in Biological Psychology over the last 50 years. This work has greatly contributed to our understanding of human anxiety and stressor-related disorders. While mainly conducted in the laboratory, recently, there have been initial attempts to conduct fear conditioning experiments online, with around 10 studies published on the subject, primarily in the last two years. These studies have demonstrated the potential of online fear conditioning research, although challenges to ensure that this research meets the same methodological standards as in-person experimentation remain, despite recent progress. We expect that in the coming years new outcome measures will become available online including the measurement of eye-tracking, pupillometry and probe reaction time and that compliance monitoring will be improved. This exciting new approach opens new possibilities for large-scale data collection among hard-to-reach populations and has the potential to transform the future of fear conditioning research.
Collapse
Affiliation(s)
- Luke J Ney
- School of Psychology and Counselling, Faculty of Health, Queensland University of Australia, Brisbane, Australia
| | - Matthew O'Donohue
- School of Psychology and Counselling, Faculty of Health, Queensland University of Australia, Brisbane, Australia
| | - Yi Wang
- School of Psychology and Counselling, Faculty of Health, Queensland University of Australia, Brisbane, Australia
| | - Mikaela Richardson
- School of Psychology and Counselling, Faculty of Health, Queensland University of Australia, Brisbane, Australia
| | - Adam Vasarhelyi
- School of Psychology and Counselling, Faculty of Health, Queensland University of Australia, Brisbane, Australia
| | - Ottmar V Lipp
- School of Psychology and Counselling, Faculty of Health, Queensland University of Australia, Brisbane, Australia.
| |
Collapse
|
13
|
Cuve HCJ, Harper J, Catmur C, Bird G. Coherence and divergence in autonomic-subjective affective space. Psychophysiology 2023; 60:e14262. [PMID: 36740720 PMCID: PMC10909527 DOI: 10.1111/psyp.14262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 01/01/2023] [Accepted: 01/13/2023] [Indexed: 02/07/2023]
Abstract
A central tenet of many theories of emotion is that emotional states are accompanied by distinct patterns of autonomic activity. However, experimental studies of coherence between subjective and autonomic responses during emotional states provide little evidence of coherence. Crucially, previous studies investigating coherence have either adopted univariate approaches or made limited use of multivariate analytic approaches by investigating subjective and autonomic responses separately. The current study addressed this question using a multivariate dimensional approach to build a common autonomic-subjective affective space incorporating subjective responses and three different autonomic signals (heart rate, skin conductance response, and pupil diameter), measured during an emotion-inducing task, in 51 participants. Results showed that autonomic and subjective responses could be adequately described in a two-dimensional affective space. The first dimension included contributions from subjective and autonomic responses, indicating coherence, while contributions to the second dimension were almost exclusively of autonomic covariance. Thus, while there was a degree of coherence between autonomic and subjective emotional responses, there was substantial structure in autonomic responses that did not covary with subjective emotional experience. This study, therefore, contributes new insights into the relationship between subjective and autonomic emotional responses, and provides a framework for future multimodal emotion research, enabling both hypothesis- and data-driven testing.
Collapse
Affiliation(s)
- Hélio Clemente José Cuve
- Department of Experimental PsychologyUniversity of OxfordOxfordUK
- School of Psychological ScienceUniversity of BristolBristolUK
| | - Joseph Harper
- Department of Experimental PsychologyUniversity of OxfordOxfordUK
| | - Caroline Catmur
- Department of Psychology, Institute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
| | - Geoffrey Bird
- Department of Experimental PsychologyUniversity of OxfordOxfordUK
- School of PsychologyUniversity of BirminghamBirminghamUK
| |
Collapse
|
14
|
Yang X, Fridman AJ, Unsworth N, Casement MD. Pupillary motility responses to affectively salient stimuli in individuals with depression or elevated risk of depression: A systematic review and meta-analysis. Neurosci Biobehav Rev 2023; 148:105125. [PMID: 36924842 DOI: 10.1016/j.neubiorev.2023.105125] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/16/2023] [Accepted: 03/08/2023] [Indexed: 03/17/2023]
Abstract
Elaborative affective processing is observed in depression, and pupillary reactivity, a continuous, sensitive, and reliable indicator of physiological arousal and neurocognitive processing, is increasingly utilized in studies of depression-related characteristics. As a first attempt to quantitively summarize existing evidence on depression-related pupillary reactivity alterations, this review and meta-analysis evaluated the direction, magnitude, and specificity of pupillary indices of affective processing towards positively, negatively, and neutrally-valenced stimuli among individuals diagnosed with depression or with elevated risk of depression. Studies on pupillary responses to affective stimuli in the target groups were identified in PsycINFO and PubMed databases. Twenty-two articles met inclusion criteria for the qualitative review and 16 for the quantitative review. Three-level frequentist and Bayesian models were applied to summarize pooled effects from baseline-controlled stimuli-induced average changes in pupillary responses. In general, compared to non-depressed individuals, individuals with depression or elevated risk of depression exhibited higher pupillary reactivity (d =0.15) towards negatively-valenced stimuli during affective processing. Pupillary motility towards negatively-valenced stimuli may be a promising trait-like marker for depression vulnerability.
Collapse
Affiliation(s)
- Xi Yang
- Department of Psychology, University of Oregon, 1451 Onyx St, Eugene, OR US 97403, USA.
| | - Andrew J Fridman
- Department of Psychology, University of Oregon, 1451 Onyx St, Eugene, OR US 97403, USA.
| | - Nash Unsworth
- Department of Psychology, University of Oregon, 1451 Onyx St, Eugene, OR US 97403, USA.
| | - Melynda D Casement
- Department of Psychology, University of Oregon, 1451 Onyx St, Eugene, OR US 97403, USA.
| |
Collapse
|
15
|
Finke JB, Stalder T, Klucken T. Pupil dilation tracks divergent learning processes in aware versus unaware Pavlovian conditioning. Psychophysiology 2023:e14288. [PMID: 36906907 DOI: 10.1111/psyp.14288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 09/22/2022] [Accepted: 02/18/2023] [Indexed: 03/13/2023]
Abstract
Evidence regarding unaware differential fear conditioning in humans is mixed and even less is known about the effects of contingency awareness on appetitive conditioning. Phasic pupil dilation responses (PDR) might be more sensitive for capturing implicit learning than other measures, such as skin conductance responses (SCR). Here, we report data from two delay conditioning experiments utilizing PDR (alongside SCR and subjective assessments) to investigate the role of contingency awareness in aversive and appetitive conditioning. In both experiments, valence of unconditioned stimuli (UCS) was varied within participants by administering aversive (mild electric shocks) and appetitive UCSs (monetary rewards). Preceding visual stimuli (CSs) predicted either the reward, the shock (65% reinforcement), or neither UCS. In Exp. 1, participants were fully instructed about CS-UCS contingencies, whereas in Exp. 2, no such information was given. PDR and SCR demonstrated successful differential conditioning in Exp. 1 and in (learned) aware participants in Exp. 2. In non-instructed participants who remained fully unaware of contingencies (Exp. 2), differential modulation of early PDR (immediately after CS onset) by appetitive cues emerged. Associations with model-derived learning parameters further suggest that early PDR in unaware participants mainly reflect implicit learning of expected outcome value, whereas early PDR in aware (instructed/learned-aware) participants presumably index attentional processes (related to uncertainty/prediction error processing). Similar, but less clear results emerged for later PDR (preceding UCS onset). Our data argue in favor of a dual-process account of associative learning, suggesting that value-related processing can take place irrespective of mechanisms involved in conscious memory formation.
Collapse
Affiliation(s)
- Johannes B Finke
- Department of Clinical Psychology & Psychotherapy, University of Siegen, Siegen, Germany
| | - Tobias Stalder
- Department of Clinical Psychology & Psychotherapy, University of Siegen, Siegen, Germany
| | - Tim Klucken
- Department of Clinical Psychology & Psychotherapy, University of Siegen, Siegen, Germany
| |
Collapse
|
16
|
Yamada K, Toda K. Pupillary dynamics of mice performing a Pavlovian delay conditioning task reflect reward-predictive signals. Front Syst Neurosci 2022; 16:1045764. [PMID: 36567756 PMCID: PMC9772849 DOI: 10.3389/fnsys.2022.1045764] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Pupils can signify various internal processes and states, such as attention, arousal, and working memory. Changes in pupil size have been associated with learning speed, prediction of future events, and deviations from the prediction in human studies. However, the detailed relationships between pupil size changes and prediction are unclear. We explored pupil size dynamics in mice performing a Pavlovian delay conditioning task. A head-fixed experimental setup combined with deep-learning-based image analysis enabled us to reduce spontaneous locomotor activity and to track the precise dynamics of pupil size of behaving mice. By setting up two experimental groups, one for which mice were able to predict reward in the Pavlovian delay conditioning task and the other for which mice were not, we demonstrated that the pupil size of mice is modulated by reward prediction and consumption, as well as body movements, but not by unpredicted reward delivery. Furthermore, we clarified that pupil size is still modulated by reward prediction even after the disruption of body movements by intraperitoneal injection of haloperidol, a dopamine D2 receptor antagonist. These results suggest that changes in pupil size reflect reward prediction signals. Thus, we provide important evidence to reconsider the neuronal circuit involved in computing reward prediction error. This integrative approach of behavioral analysis, image analysis, pupillometry, and pharmacological manipulation will pave the way for understanding the psychological and neurobiological mechanisms of reward prediction and the prediction errors essential to learning and behavior.
Collapse
Affiliation(s)
- Kota Yamada
- Department of Psychology, Keio University, Tokyo, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Koji Toda
- Department of Psychology, Keio University, Tokyo, Japan
| |
Collapse
|
17
|
Roesmann K, Wessing I, Kraß S, Leehr EJ, Klucken T, Straube T, Junghöfer M. Developmental aspects of fear generalization - A MEG study on neurocognitive correlates in adolescents versus adults. Dev Cogn Neurosci 2022; 58:101169. [PMID: 36356485 PMCID: PMC9649997 DOI: 10.1016/j.dcn.2022.101169] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/16/2022] [Accepted: 10/27/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Fear generalization is pivotal for the survival-promoting avoidance of potential danger, but, if too pronounced, it promotes pathological anxiety. Similar to adult patients with anxiety disorders, healthy children tend to show overgeneralized fear responses. OBJECTIVE This study aims to investigate neuro-developmental aspects of fear generalization in adolescence - a critical age for the development of anxiety disorders. METHODS We compared healthy adolescents (14-17 years) with healthy adults (19-34 years) regarding their fear responses towards tilted Gabor gratings (conditioned stimuli, CS; and slightly differently titled generalization stimuli, GS). In the conditioning phase, CS were paired (CS+) or remained unpaired (CS-) with an aversive stimulus (unconditioned stimuli, US). In the test phase, behavioral, peripheral and neural responses to CS and GS were captured by fear- and UCS expectancy ratings, a perceptual discrimination task, pupil dilation and source estimations of event-related magnetic fields. RESULTS Closely resembling adults, adolescents showed robust generalization gradients of fear ratings, pupil dilation, and estimated neural source activity. However, in the UCS expectancy ratings, adolescents revealed shallower generalization gradients indicating overgeneralization. Moreover, adolescents showed stronger visual cortical activity after as compared to before conditioning to all stimuli. CONCLUSION Various aspects of fear learning and generalization appear to be mature in healthy adolescents. Yet, cognitive aspects might show a slower course of development.
Collapse
Affiliation(s)
- Kati Roesmann
- Institute for Clinical Psychology and Psychotherapy, University of Siegen, Obergraben 23, 57072 Siegen, Germany; Institute for Biomagnetism and Biosignalanalysis, University Hospital Münster, Malmedyweg 15, 48149 Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Fliednerstr. 21, 48149 Muenster, Germany.
| | - Ida Wessing
- Institute for Biomagnetism and Biosignalanalysis, University Hospital Münster, Malmedyweg 15, 48149 Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Fliednerstr. 21, 48149 Muenster, Germany; Department of Child and Adolescent Psychiatry, University Hospital Muenster, Schmeddingstraße 50, 48149 Muenster, Germany
| | - Sophia Kraß
- Institute for Biomagnetism and Biosignalanalysis, University Hospital Münster, Malmedyweg 15, 48149 Münster, Germany
| | - Elisabeth J Leehr
- Institute for Translational Psychiatry, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A9a, 48149 Münster, Germany
| | - Tim Klucken
- Institute for Clinical Psychology and Psychotherapy, University of Siegen, Obergraben 23, 57072 Siegen, Germany
| | - Thomas Straube
- Institute of Medical Psychology and Systems Neuroscience, University Hospital Münster, Von-Esmarch-Str. 52, 48149 Münster, Germany
| | - Markus Junghöfer
- Institute for Biomagnetism and Biosignalanalysis, University Hospital Münster, Malmedyweg 15, 48149 Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Fliednerstr. 21, 48149 Muenster, Germany
| |
Collapse
|
18
|
No trait anxiety influences on early and late differential neuronal responses to aversively conditioned faces across three different tasks. COGNITIVE, AFFECTIVE, & BEHAVIORAL NEUROSCIENCE 2022; 22:1157-1171. [PMID: 35352267 PMCID: PMC9458573 DOI: 10.3758/s13415-022-00998-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 03/10/2022] [Indexed: 11/08/2022]
Abstract
AbstractThe human brain's ability to quickly detect dangerous stimuli is crucial in selecting appropriate responses to possible threats. Trait anxiety has been suggested to moderate these processes on certain processing stages. To dissociate such different information-processing stages, research using classical conditioning has begun to examine event-related potentials (ERPs) in response to fear-conditioned (CS +) faces. However, the impact of trait anxiety on ERPs to fear-conditioned faces depending on specific task conditions is unknown. In this preregistered study, we measured ERPs to faces paired with aversive loud screams (CS +) or neutral sounds (CS −) in a large sample (N = 80) under three different task conditions. Participants had to discriminate face-irrelevant perceptual information, the gender of the faces, or the CS category. Results showed larger amplitudes in response to aversively conditioned faces for all examined ERPs, whereas interactions with the attended feature occurred for the P1 and the early posterior negativity (EPN). For the P1, larger CS + effects were observed during the perceptual distraction task, while the EPN was increased for CS + faces when deciding about the CS association. Remarkably, we found no significant correlations between ERPs and trait anxiety. Thus, fear-conditioning potentiates all ERP amplitudes, some processing stages being further modulated by the task. However, the finding that these ERP differences were not affected by individual differences in trait anxiety does not support theoretical accounts assuming increased threat processing or reduced threat discrimination depending on trait anxiety.
Collapse
|
19
|
Dhamija P, Wong A, Gilboa A. Early Auditory Event Related Potentials Distinguish Higher-Order From First-Order Aversive Conditioning. Front Behav Neurosci 2022; 16:751274. [PMID: 35221944 PMCID: PMC8879319 DOI: 10.3389/fnbeh.2022.751274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 01/03/2022] [Indexed: 11/17/2022] Open
Abstract
Stimuli in reality rarely co-occur with primary reward or punishment to allow direct associative learning of value. Instead, value is thought to be inferred through complex higher-order associations. Rodent research has demonstrated that the formation and maintenance of first-order and higher-order associations are supported by distinct neural substrates. In this study, we explored whether this pattern of findings held true for humans. Participants underwent first-order and subsequent higher-order conditioning using an aversive burst of white noise or neutral tone as the unconditioned stimuli. Four distinct tones, initially neutral, served as first-order and higher-order conditioned stimuli. Autonomic and neural responses were indexed by pupillometry and evoked response potentials (ERPs) respectively. Conditioned aversive values of first-order and higher-order stimuli led to increased autonomic responses, as indexed by pupil dilation. Distinct temporo-spatial auditory evoked response potentials were elicited by first-order and high-order conditioned stimuli. Conditioned first-order responses peaked around 260 ms and source estimation suggested a primary medial prefrontal and amygdala source. Conversely, conditioned higher-order responses peaked around 120 ms with an estimated source in the medial temporal lobe. Interestingly, pupillometry responses to first-order conditioned stimuli were diminished after higher order training, possibly signifying concomitant incidental extinction, while responses to higher-order stimuli remained. This suggests that once formed, higher order associations are at least partially independent of first order conditioned representations. This experiment demonstrates that first-order and higher-order conditioned associations have distinct neural signatures, and like rodents, the medial temporal lobe may be specifically involved with higher-order conditioning.
Collapse
Affiliation(s)
- Prateek Dhamija
- Department of Psychology, University of Toronto, Toronto, ON, Canada
- Rotman Research Institute, Baycrest, Toronto, ON, Canada
- *Correspondence: Prateek Dhamija,
| | - Allison Wong
- Department of Psychology, University of Toronto, Toronto, ON, Canada
- Rotman Research Institute, Baycrest, Toronto, ON, Canada
| | - Asaf Gilboa
- Department of Psychology, University of Toronto, Toronto, ON, Canada
- Rotman Research Institute, Baycrest, Toronto, ON, Canada
- Asaf Gilboa,
| |
Collapse
|
20
|
Visser RM, Bathelt J, Scholte HS, Kindt M. Robust BOLD Responses to Faces But Not to Conditioned Threat: Challenging the Amygdala's Reputation in Human Fear and Extinction Learning. J Neurosci 2021; 41:10278-10292. [PMID: 34750227 PMCID: PMC8672698 DOI: 10.1523/jneurosci.0857-21.2021] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 11/21/2022] Open
Abstract
Most of our knowledge about human emotional memory comes from animal research. Based on this work, the amygdala is often labeled the brain's "fear center", but it is unclear to what degree neural circuitries underlying fear and extinction learning are conserved across species. Neuroimaging studies in humans yield conflicting findings, with many studies failing to show amygdala activation in response to learned threat. Such null findings are often treated as resulting from MRI-specific problems related to measuring deep brain structures. Here we test this assumption in a mega-analysis of three studies on fear acquisition (n = 98; 68 female) and extinction learning (n = 79; 53 female). The conditioning procedure involved the presentation of two pictures of faces and two pictures of houses: one of each pair was followed by an electric shock [a conditioned stimulus (CS+)], the other one was never followed by a shock (CS-), and participants were instructed to learn these contingencies. Results revealed widespread responses to the CS+ compared with the CS- in the fear network, including anterior insula, midcingulate cortex, thalamus, and bed nucleus of the stria terminalis, but not the amygdala, which actually responded stronger to the CS- Results were independent of spatial smoothing, and of individual differences in trait anxiety and conditioned pupil responses. In contrast, robust amygdala activation distinguished faces from houses, refuting the idea that a poor signal could account for the absence of effects. Moving forward, we suggest that, apart from imaging larger samples at higher resolution, alternative statistical approaches may be used to identify cross-species similarities in fear and extinction learning.SIGNIFICANCE STATEMENT The science of emotional memory provides the foundation of numerous theories on psychopathology, including stress and anxiety disorders. This field relies heavily on animal research, which suggests a central role of the amygdala in fear learning and memory. However, this finding is not strongly corroborated by neuroimaging evidence in humans, and null findings are too easily explained away by methodological limitations inherent to imaging deep brain structures. In a large nonclinical sample, we find widespread BOLD activation in response to learned fear, but not in the amygdala. A poor signal could not account for the absence of effects. While these findings do not disprove the involvement of the amygdala in human fear learning, they challenge its typical portrayals and illustrate the complexities of translational science.
Collapse
Affiliation(s)
- Renée M Visser
- Department of Psychology, University of Amsterdam, 1018 WT, Amsterdam, The Netherlands
| | - Joe Bathelt
- Department of Psychology, Royal Holloway University of London, Egham TW20 0EX, United Kingdom
| | - H Steven Scholte
- Department of Psychology, University of Amsterdam, 1018 WT, Amsterdam, The Netherlands
| | - Merel Kindt
- Department of Psychology, University of Amsterdam, 1018 WT, Amsterdam, The Netherlands
| |
Collapse
|