1
|
Ge SY, Hu MM, Li KP, Wu CQ, Xu GH, Dong L. Comparative efficacy of common rehabilitation treatments for patients with neuropathic pain after spinal cord injury: a systematic review and network meta-analysis. Neurol Sci 2025:10.1007/s10072-025-08120-y. [PMID: 40167861 DOI: 10.1007/s10072-025-08120-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/12/2025] [Indexed: 04/02/2025]
Abstract
BACKGROUND Neuropathic pain is a prevalent complication following spinal cord injury, imposing severe physical and psychological burdens on affected individuals. It often hinders complete physical and mental recovery. Despite numerous rehabilitation interventions being explored and implemented, the optimal treatment strategy for neuropathic pain post-spinal cord injury remains a subject of ongoing debate. To address this uncertainty, a comprehensive network meta-analysis is imperative. This analysis aims to compare the effectiveness of various rehabilitation interventions and guide clinical staff in selecting the most efficacious treatment to alleviate patients' physical and psychological distress. METHODS Embase, PubMed, Scopus, Web of Science, CNKI, Wan Fang, Vip Journal Integration Platform and Sinomed were searched from the establishment of the database to 13 June 2024. Employing ROB 2.0 and Stata 18.0 for literature selection, quality evaluation and meta-analysis, the effectiveness of various rehabilitation interventions was assessed. These interventions were evaluated using network-level and cumulative level surface under the cumulative ranking area analysis. RESULTS The review included 31 studies involving 1820 patients. According to the cumulative ranking area ranking of 17 therapies, the best three interventions for reducing pain are repetitive transcranial magnetic stimulation, acupuncture, and intermittent theta burst stimulation. CONCLUSIONS The intermittent theta burst stimulation treatment demonstrated superior efficacy in managing pain after spinal cord injury, closely followed by acupuncture and repetitive transcranial magnetic stimulation. This analysis provides a solid foundation for clinical staff to select the appropriate therapeutic approaches.
Collapse
Affiliation(s)
- Si-Yuan Ge
- School of Nursing, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New Area, Shanghai, 201203, China
| | - Miao-Miao Hu
- School of Nursing, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New Area, Shanghai, 201203, China
| | - Kun-Peng Li
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Cai-Qin Wu
- School of Nursing, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New Area, Shanghai, 201203, China
| | - Guo-Hui Xu
- Huadong Hospital Affiliated to Fudan University, 221 West Yan'an Road, Jing'an District, Shanghai, 200040, China.
| | - Lu Dong
- School of Nursing, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New Area, Shanghai, 201203, China.
| |
Collapse
|
2
|
Lacroix A, Martiné-Fabre G, Plansont B, Buisson A, Guignandon S, Rozette M, Caire F, Calvet B. Predictors for quality of life improvement following rTMS treatment in neuropathic pain patients. Neurol Sci 2025; 46:1359-1367. [PMID: 39602015 DOI: 10.1007/s10072-024-07813-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/08/2024] [Indexed: 11/29/2024]
Abstract
OBJECTIVES Recently, Repetitive Transcranial Magnetic Stimulation (rTMS) has gained attention for its potential in relieving neuropathic pain (NP). NP encompasses central and peripheral neuralgia, characterized by sensory abnormalities and spontaneous pain. Pharmacological treatments often provide partial relief with significant side effects, making rTMS an attractive alternative. This study aimed to assess the efficacy of rTMS in treating NP and its impact on quality of life over three months. METHODS A total of 51 patients with drug-resistant NP were included, undergoing 15 sessions of rTMS targeting motor cortex areas over three weeks. Clinical response was evaluated using various psychometric scales, including VAS for pain and PGIC. Quality of life was assessed using the SF-36 questionnaire. RESULTS Results showed significant clinical improvements in pain severity and quality of life following rTMS treatment. Predictive factors of quality of life improvement were identified, with mental health being crucial across all NP areas. Notably, patients with cerebral NP showed improvements linked to physical dimensions, emphasizing tailored treatment approaches. CONCLUSIONS This study underscores the efficacy of rTMS in managing NP, highlighting sustained improvements in pain severity and quality of life. The findings offer valuable insights for personalized treatment approaches and optimizing patient outcomes in NP management.
Collapse
Affiliation(s)
- Aurélie Lacroix
- EpiMaCT - Epidemiology of chronic diseases in tropical zone, Institute of Epidemiology and Tropical Neurology, Inserm U1094, IRD UMR270, Univ. Limoges, CHU Limoges, OmegaHealth, Limoges, France.
- Research and Innovation Unit, Esquirol Hospital, 15 rue du Docteur Marcland, Limoges cedex, 87025, France.
| | - Gaëlle Martiné-Fabre
- Pain Center, CHU Limoges, Limoges, France
- Pain Center, Polyclinic Chénieux, Limoges, France
| | - Brigitte Plansont
- Research and Innovation Unit, Esquirol Hospital, 15 rue du Docteur Marcland, Limoges cedex, 87025, France
| | - Alexandre Buisson
- Research and Innovation Unit, Esquirol Hospital, 15 rue du Docteur Marcland, Limoges cedex, 87025, France
| | - Sandrine Guignandon
- Research and Innovation Unit, Esquirol Hospital, 15 rue du Docteur Marcland, Limoges cedex, 87025, France
| | | | - François Caire
- Department of Neurosurgery, CHU Limoges, Limoges, France
| | - Benjamin Calvet
- EpiMaCT - Epidemiology of chronic diseases in tropical zone, Institute of Epidemiology and Tropical Neurology, Inserm U1094, IRD UMR270, Univ. Limoges, CHU Limoges, OmegaHealth, Limoges, France
- Research and Innovation Unit, Esquirol Hospital, 15 rue du Docteur Marcland, Limoges cedex, 87025, France
| |
Collapse
|
3
|
Kim JK, You J, Son S, Suh I, Lim JY. Comparison of intermittent theta burst stimulation and high-frequency repetitive transcranial magnetic stimulation on spinal cord injury-related neuropathic pain: A sham-controlled study. J Spinal Cord Med 2025; 48:241-247. [PMID: 37982995 PMCID: PMC11864029 DOI: 10.1080/10790268.2023.2277964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2023] Open
Abstract
OBJECTIVE To compare the effects of intermittent theta burst stimulation (iTBS) and high-frequency repetitive transcranial magnetic stimulation (rTMS) on spinal cord injury-related neuropathic pain with sham controls, using neuropathic pain-specific evaluation tools. DESIGN A randomized, double-blind, sham-controlled trial. SETTING Rehabilitation medicine department of a university hospital. PARTICIPANTS Thirty-three patients with spinal cord injury-related neuropathic pain. INTERVENTIONS Patients were randomly allocated to one of three groups (real iTBS, real rTMS, and sham rTMS). Each patient underwent five sessions of assigned stimulation. OUTCOME MEASURES Before and after completion of the five sessions, patients were evaluated using the self-completed Leeds Assessment of Neuropathic Symptoms and Signs, Numeric Rating Scale, Neuropathic Pain Symptom Inventory, and Neuropathic Pain Scale. RESULTS Real iTBS and real rTMS reduced pain levels after stimulation according to all the evaluation tools, and the changes were significant when compared to the values of the sham rTMS group. No significant differences were found between the real iTBS and real rTMS groups. CONCLUSION Both iTBS and rTMS were effective in reducing spinal cord injury-related neuropathic pain. When safety, convenience, and compliance are considered, iTBS would have an advantage over rTMS in clinical situations with spinal cord injury-related neuropathic pain.Trial Registration: This trial was registered with the Clinical Research Information Service (registration no. KCT0004976).
Collapse
Affiliation(s)
- Jong Keun Kim
- Department of Rehabilitation Medicine, Daejeon Eulji University Hospital, Eulji University School of Medicine, Daejeon, Republic of Korea
| | - JaeIn You
- Department of Rehabilitation Medicine, Daejeon Eulji University Hospital, Eulji University School of Medicine, Daejeon, Republic of Korea
| | - Sangpil Son
- Department of Rehabilitation Medicine, Daejeon Eulji University Hospital, Eulji University School of Medicine, Daejeon, Republic of Korea
| | - InHyuk Suh
- Department of Rehabilitation Medicine, Daejeon Eulji University Hospital, Eulji University School of Medicine, Daejeon, Republic of Korea
| | - Jong Youb Lim
- Department of Rehabilitation Medicine, Daejeon Eulji University Hospital, Eulji University School of Medicine, Daejeon, Republic of Korea
- Department of Rehabilitation Medicine, Uijeongbu Eulji University Hospital, Eulji University School of Medicine, Uijeongbu, Republic of Korea
| |
Collapse
|
4
|
Duarte-Moreira RJ, Shirahige L, Rodriguez-Prieto IE, Alves MM, Lopes TDS, Baptista RF, Hazime FA, Zana Y, Kubota GT, de Andrade DC, Yeng LT, Teixeira MJ, Dáquer ECMDA, Sá KN, Monte-Silva K, Baptista AF. Evidence-Based Umbrella Review of Non-Invasive Neuromodulation in Chronic Neuropathic Pain. Eur J Pain 2025; 29:e4786. [PMID: 39835682 DOI: 10.1002/ejp.4786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/19/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND AND OBJECTIVE Non-invasive neuromodulation techniques (NIN), such as transcranial Direct Current Stimulation (tDCS) and repetitive Transcranial Magnetic Stimulation (rTMS), have been extensively researched for their potential to alleviate pain by reversing neuroplastic changes associated with neuropathic pain (NP), a prevalent and complex condition. However, treating NP remains challenging due to the numerous variables involved, such as different techniques, dosages and aetiologies. It is necessary to provide insights for clinicians and public healthcare managers to support clinical decision-making. This umbrella review aims to consolidate existing evidence on the effectiveness of various NIN in managing chronic NP. DATABASES AND DATA TREATMENT A systematic search was conducted in the PubMed/MEDLINE database, including meta-analyses of controlled trials comparing NIN techniques with sham interventions for NP treatment. The quality of included studies was assessed using the AMSTAR-2 tool and the GRADE system, with effect sizes adjusted to the standard mean difference (SMD). RESULTS The review included 22 meta-analyses comprising 8151 participants from 214 controlled trials. The most investigated NIN techniques were tDCS and rTMS, with primary targets being the motor cortex and dorsolateral prefrontal cortex. The findings suggest that excitatory protocols, particularly high-frequency rTMS and anodal tDCS, are effective in reducing pain intensity in individuals with NP. However, the overall quality of evidence was rated low, primarily due to heterogeneity among studies and small sample sizes. CONCLUSION NIN techniques show promise in managing NP, with potential benefits in pain reduction. However, further high-quality research is needed to establish optimal protocols and long-term effects. SIGNIFICANCE STATEMENT This paper consolidates the evidence regarding non-invasive neuromodulation for the treatment of neuropathic pain, including differentiating the most effective techniques based on the aetiology of pain, and provides clinicians with easy access to this critical information. It also highlights key aspects that require further research in the field of non-invasive neuromodulation and neuropathic pain.
Collapse
Affiliation(s)
| | - Lívia Shirahige
- Applied Neuroscience Laboratory, Universidade Federal de Pernambuco, Recife, Brazil
| | - Indira Enith Rodriguez-Prieto
- Facultad de Enfermería y Rehabilitación, Grupo de Investigación Movimiento Corporal Humano, Universidad de La Sabana, Chía, Cundinamarca, Colombia
| | - Maércio Maia Alves
- Center for Mathematics, Computation and Cognition, Federal University of ABC, São Bernardo do Campo, SP, Brazil
| | - Tiago da Silva Lopes
- Center for Mathematics, Computation and Cognition, Federal University of ABC, São Bernardo do Campo, SP, Brazil
| | - Rachel Fontes Baptista
- Laboratório interdisciplinar de pesquisa e intervenção Social, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Fuad Ahmad Hazime
- Biomedical Postgraduate Program, Parnaíba Delta Federal University, Parnaíba, Piauí, Brazil
| | - Yossi Zana
- Center for Mathematics, Computation and Cognition, Federal University of ABC, São Bernardo do Campo, SP, Brazil
| | - Gabriel Taricani Kubota
- Pain Center, Department of Neurology, University of Sao Paulo Medical School, São Paulo, SP, Brazil
| | - Daniel Ciampi de Andrade
- Pain Center, Department of Neurology, University of Sao Paulo Medical School, São Paulo, SP, Brazil
| | - Lin Tchia Yeng
- Pain Center, Department of Neurology, University of Sao Paulo Medical School, São Paulo, SP, Brazil
| | - Manoel Jacobsen Teixeira
- Pain Center, Department of Neurology, University of Sao Paulo Medical School, São Paulo, SP, Brazil
| | | | - Katia Nunes Sá
- Escola Bahiana de Medicina e Saúde Pública, Salvador, BA, Brazil
| | - Kátia Monte-Silva
- Applied Neuroscience Laboratory, Universidade Federal de Pernambuco, Recife, Brazil
- Laboratory of Medical Investigations 54 (LIM-54), Hospital das Clínicas, Faculdade de Medicina da USP, São Paulo, Brazil
| | - Abrahão Fontes Baptista
- Center for Mathematics, Computation and Cognition, Federal University of ABC, São Bernardo do Campo, SP, Brazil
- Laboratory of Medical Investigations 54 (LIM-54), Hospital das Clínicas, Faculdade de Medicina da USP, São Paulo, Brazil
| |
Collapse
|
5
|
Foglia SD, Drapeau CC, Ramdeo KR, Adams FC, Soppitt DB, Rehsi RS, Shanthanna H, Nelson AJ. Repetitive Transcranial Magnetic Stimulation for the Treatment of Complex Regional Pain Syndrome: A Pilot Study. J Pain Res 2025; 18:367-377. [PMID: 39867537 PMCID: PMC11760760 DOI: 10.2147/jpr.s496519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/24/2024] [Indexed: 01/28/2025] Open
Abstract
Purpose Complex regional pain syndrome (CRPS) is a debilitating chronic pain condition characterized by sensory, motor, and autonomic dysfunction with a world-wide prevalence of 26.2 per 100,000 people per year and is 3 to 4 times more prevalent in females. Repetitive transcranial magnetic stimulation (rTMS) has shown to be beneficial for pain relief in neuropathic pain and initial evidence in CRPS is promising, but studies are limited. The objective of this study was to investigate the feasibility of using rTMS in CRPS patients, to improve pain intensity and quality of life. Patients and Methods Six participants (5 lower limb, 1 upper limb, 42 ± 9 yr) took part in an open-label rTMS study comprised of a 9-week intervention and 6-month follow-up. Participants took part in a 4-week induction period (5 days per week) followed by a 5-week tapering period whereby the frequency of rTMS sessions per week was reduced. rTMS was delivered at 10 hz for 2000 pulses at 80% of resting motor threshold over the primary motor cortex. Feasibility was assessed as compliance of attending treatment sessions. Clinical outcomes included pain intensity using the numerical ratings scale, Pain Catastrophizing scale-EN-SF, PROMIS-29 v2.0 profile, and Rainbow Pain Scale. Results All participants tolerated the study procedures and 83% of participants completed the 9-week intervention, deeming the protocol feasible. At six months follow-up, data was obtained from 3 individuals. Exploratory analysis revealed a significant reduction in pain intensity (~20%) immediately following the intervention. Categorical improvements in allodynia were observed in four patients immediately following the intervention. Conclusion This study demonstrates that rTMS delivered over 9 weeks is feasible and well tolerated in individuals living with CRPS. However, there are challenges in collecting follow-up data for six months and appropriate measures must be taken in randomized controlled trials to ensure follow-up retention.
Collapse
Affiliation(s)
- Stevie D Foglia
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
| | - Chloe C Drapeau
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Karishma R Ramdeo
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Faith C Adams
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Daniel B Soppitt
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Ravjot S Rehsi
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Harsha Shanthanna
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
- Department of Anesthesia, McMaster University, Hamilton, ON, Canada
| | - Aimee J Nelson
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
6
|
Ge C, Masalehdan T, Shojaei Baghini M, Duran Toro V, Signorelli L, Thomson H, Gregurec D, Heidari H. Microfabrication Technologies for Nanoinvasive and High-Resolution Magnetic Neuromodulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404254. [PMID: 39445520 PMCID: PMC11633526 DOI: 10.1002/advs.202404254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/23/2024] [Indexed: 10/25/2024]
Abstract
The increasing demand for precise neuromodulation necessitates advancements in techniques to achieve higher spatial resolution. Magnetic stimulation, offering low signal attenuation and minimal tissue damage, plays a significant role in neuromodulation. Conventional transcranial magnetic stimulation (TMS), though noninvasive, lacks the spatial resolution and neuron selectivity required for spatially precise neuromodulation. To address these limitations, the next generation of magnetic neurostimulation technologies aims to achieve submillimeter-resolution and selective neuromodulation with high temporal resolution. Invasive and nanoinvasive magnetic neurostimulation are two next-generation approaches: invasive methods use implantable microcoils, while nanoinvasive methods use magnetic nanoparticles (MNPs) to achieve high spatial and temporal resolution of magnetic neuromodulation. This review will introduce the working principles, technical details, coil designs, and potential future developments of these approaches from an engineering perspective. Furthermore, the review will discuss state-of-the-art microfabrication in depth due to its irreplaceable role in realizing next-generation magnetic neuromodulation. In addition to reviewing magnetic neuromodulation, this review will cover through-silicon vias (TSV), surface micromachining, photolithography, direct writing, and other fabrication technologies, supported by case studies, providing a framework for the integration of magnetic neuromodulation and microelectronics technologies.
Collapse
Affiliation(s)
- Changhao Ge
- Microelectronics Lab (meLAB)James Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUK
| | - Tahereh Masalehdan
- Microelectronics Lab (meLAB)James Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUK
| | - Mahdieh Shojaei Baghini
- Microelectronics Lab (meLAB)James Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUK
| | - Vicente Duran Toro
- Biointerfaces lab, Faculty of SciencesFriedrich‐Alexander‐Universität Erlangen‐NürnbergHenkestraße 9191052ErlangenGermany
| | - Lorenzo Signorelli
- Biointerfaces lab, Faculty of SciencesFriedrich‐Alexander‐Universität Erlangen‐NürnbergHenkestraße 9191052ErlangenGermany
| | - Hannah Thomson
- Microelectronics Lab (meLAB)James Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUK
| | - Danijela Gregurec
- Biointerfaces lab, Faculty of SciencesFriedrich‐Alexander‐Universität Erlangen‐NürnbergHenkestraße 9191052ErlangenGermany
| | - Hadi Heidari
- Microelectronics Lab (meLAB)James Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUK
| |
Collapse
|
7
|
Mussigmann T, Bardel B, Casarotto S, Senova S, Rosanova M, Vialatte F, Lefaucheur JP. Classical, spaced, or accelerated transcranial magnetic stimulation of motor cortex for treating neuropathic pain: A 3-arm parallel non-inferiority study. Neurophysiol Clin 2024; 54:103012. [PMID: 39278041 DOI: 10.1016/j.neucli.2024.103012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/21/2024] [Accepted: 08/25/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) of the primary motor cortex (M1) at high frequency (HF) is an effective treatment of neuropathic pain. The classical HF-rTMS protocol (CHF-rTMS) includes a daily session for one week as an induction phase of treatment followed by more spaced sessions. Another type of protocol without an induction phase and based solely on spaced sessions of HF-rTMS (SHF-rTMS) has also been shown to produce neuropathic pain relief. However, CHF-rTMS and SHF-rTMS of M1 have never been compared regarding their analgesic potential. Another type of rTMS paradigm, called accelerated intermittent theta burst stimulation (ACC-iTBS), has recently been proposed for the treatment of depression, the other clinical condition for which HF-rTMS is proposed as an effective therapeutic strategy. ACC-iTBS combines a high number of pulses delivered in short sessions grouped into a few days of stimulation. This type of protocol has never been applied to M1 for the treatment of pain. METHODS/DESIGN The objective of this single-centre randomized study is to compare the efficacy of three different rTMS protocols for the treatment of chronic neuropathic pain: CHF-rTMS, SHF-rTMS, and ACC-iTBS. The CHF-rTMS will consists of 10 stimulation sessions, including 5 daily sessions of 10Hz-rTMS (3,000 pulses per session) over one week, then one session per week for 5 weeks, for a total of 30,000 pulses delivered in 10 stimulation days. The SHF-rTMS protocol will only include 4 sessions of 20Hz-rTMS (1,600 pulses per session), one every 15 days, for a total of 6,400 pulses delivered in 4 stimulation days. The ACC-iTBS protocol will comprise 5 sessions of iTBS (600 pulses per session) completed in half a day for 2 consecutive days, repeated 5 weeks later, for a total of 30,000 pulses delivered in 4 stimulation days. Thus, CHF-rTMS and ACC-iTBS protocols will share a higher total number of TMS pulses (30,000 pulses) compared to SHF-rTMS protocol (6,400 pulses), while CHF-rTMS protocol will include a higher number of stimulation days (10 days) compared to ACC-iTBS and SHF-rTMS protocols (4 days). In all protocols, the M1 target will be defined in the same way and stimulated at the same intensity using a navigated rTMS (nTMS) procedure. The evaluation will be based on clinical outcomes with various scales and questionnaires assessed every week, from two weeks before the 7-week period of therapeutic stimulation until 4 weeks after. Additionally, three sets of neurophysiological outcomes (resting-state electroencephalography (EEG), nTMS-EEG recordings, and short intracortical inhibition measurement with threshold tracking method) will be assessed the week before and after the 7-week period of therapeutic stimulation. DISCUSSION This study will make it possible to compare the analgesic efficacy of the CHF-rTMS and SHF-rTMS protocols and to appraise that of the ACC-iTBS protocol for the first time. This study will also make it possible to determine the respective influence of the total number of pulses and days of stimulation delivered to M1 on the extent of pain relief. Thus, if their analgesic efficacy is not inferior to that of CHF-rTMS, SHF-rTMS and especially the new ACC-iTBS protocol could be an optimal compromise of a more easy-to-perform rTMS protocol for the treatment of patients with chronic neuropathic pain.
Collapse
Affiliation(s)
- Thibaut Mussigmann
- UR 4391, Excitabilité Nerveuse et Thérapeutique, Faculté de Santé, Université Paris Est Créteil, Créteil, France
| | - Benjamin Bardel
- UR 4391, Excitabilité Nerveuse et Thérapeutique, Faculté de Santé, Université Paris Est Créteil, Créteil, France; Unité de Neurophysiologie Clinique, Hôpital Henri Mondor, Assistance Publique Hôpitaux de Paris, Créteil, France
| | - Silvia Casarotto
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy; IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Suhan Senova
- Structure Douleur Chronique, Service de Neurochirurgie, Hôpital Henri Mondor, Assistance Publique Hôpitaux de Paris, Créteil, France; Inserm U955, NeuroPsychiatrie Translationnelle, Institut Mondor de Recherche Biomédicale, Créteil, France
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - François Vialatte
- Institut Pour la Pratique et l'Innovation en PSYchologie appliquée (Institut PI-Psy), Draveil, France
| | - Jean-Pascal Lefaucheur
- UR 4391, Excitabilité Nerveuse et Thérapeutique, Faculté de Santé, Université Paris Est Créteil, Créteil, France; Unité de Neurophysiologie Clinique, Hôpital Henri Mondor, Assistance Publique Hôpitaux de Paris, Créteil, France.
| |
Collapse
|
8
|
Lu J, Huang J, Ye A, Xie C, Bu P, Kang J, Hu J, Wen Y, Huang H. Effect of intermittent theta burst stimulation on upper limb function in stroke patients: a systematic review and meta-analysis. Front Neurol 2024; 15:1450435. [PMID: 39463790 PMCID: PMC11505115 DOI: 10.3389/fneur.2024.1450435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/23/2024] [Indexed: 10/29/2024] Open
Abstract
Background Stroke is a serious health issue that affects individuals, families, and society. Particularly, the upper limb dysfunction caused by stroke significantly reduces the quality of life for patients and may lead to psychological issues. Current treatment modalities are not fully effective in helping patients regain upper limb motor function to optimal levels. Therefore, there is an urgent need to explore new rehabilitation methods to address this issue. Objective The purpose of this meta-analysis and systematic review is to explore the effects of intermittent theta burst stimulation (iTBS) on upper limb function in stroke patients. Methods We searched PubMed, Cochrane Library, Embase, Web of Science, PEDro and China National Knowledge Internet as of April 8, 2024. Retrieved a total of 100 articles. Standardized mean differences (SMDs) and 95% confidence intervals (CI) were calculated. Results The study included a total of 9 trials and involved 224 patients. The results demonstrate that compared to the control group, iTBS therapy significantly improved Fugl-Meyer assessment-upper extremity (FMA-UE) scores (SMD = 0.88; 95% CI = 0.11-1.66; P = 0.03, I 2 = 84%), Action Research Arm Test (ARAT) scores (SMD = 0.83; 95% CI = 0.16-1.50; P = 0.02, I 2 = 57%), and Barthel Index (BI) scores (SMD = 0.93; 95% CI = 0.53-1.32; P < 0.0001, I 2 = 0%) in stroke patients. Conclusions The comprehensive evidence suggests that iTBS has superior effects in improving upper limb function and activities of daily living in stroke patients.
Collapse
Affiliation(s)
- Junyue Lu
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, China
| | - Jiahao Huang
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, China
| | - Anqi Ye
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, China
| | - Chen Xie
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, China
| | - Pan Bu
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, China
| | - Jiliang Kang
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, China
| | - Jiaxuan Hu
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, China
| | - Youliang Wen
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, China
| | - Haoyuan Huang
- Third Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
9
|
Coelho DRA, Gersten M, Jimenez AS, Fregni F, Cassano P, Vieira WF. Treating neuropathic pain and comorbid affective disorders: Preclinical and clinical evidence. Pain Pract 2024; 24:937-955. [PMID: 38572653 DOI: 10.1111/papr.13370] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
INTRODUCTION Neuropathic pain (NP) significantly impacts quality of life and often coexists with affective disorders such as anxiety and depression. Addressing both NP and its psychiatric manifestations requires a comprehensive understanding of therapeutic options. This study aimed to review the main pharmacological and non-pharmacological treatments for NP and comorbid affective disorders to describe their mechanisms of action and how they are commonly used in clinical practice. METHODS A review was conducted across five electronic databases, focusing on pharmacological and non-pharmacological treatments for NP and its associated affective disorders. The following combination of MeSH and title/abstract keywords were used: "neuropathic pain," "affective disorders," "depression," "anxiety," "treatment," and "therapy." Both animal and human studies were included to discuss the underlying therapeutic mechanisms of these interventions. RESULTS Pharmacological interventions, including antidepressants, anticonvulsants, and opioids, modulate neural synaptic transmission to alleviate NP. Topical agents, such as capsaicin, lidocaine patches, and botulinum toxin A, offer localized relief by desensitizing pain pathways. Some of these drugs, especially antidepressants, also treat comorbid affective disorders. Non-pharmacological techniques, including repetitive transcranial magnetic stimulation, transcranial direct current stimulation, and photobiomodulation therapy, modulate cortical activity and have shown promise for NP and mood disorders. CONCLUSIONS The interconnection between NP and comorbid affective disorders necessitates holistic therapeutic strategies. Some pharmacological treatments can be used for both conditions, and non-pharmacological interventions have emerged as promising complementary approaches. Future research should explore novel molecular pathways to enhance treatment options for these interrelated conditions.
Collapse
Affiliation(s)
- David Richer Araujo Coelho
- Division of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
- Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Maia Gersten
- Division of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Felipe Fregni
- Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Boston, Massachusetts, USA
| | - Paolo Cassano
- Division of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Willians Fernando Vieira
- Division of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
Kaluskar P, Bharadwaj D, Iyer KS, Dy C, Zheng M, Brogan DM. A Systematic Review to Compare Electrical, Magnetic, and Optogenetic Stimulation for Peripheral Nerve Repair. JOURNAL OF HAND SURGERY GLOBAL ONLINE 2024; 6:722-739. [PMID: 39381397 PMCID: PMC11456630 DOI: 10.1016/j.jhsg.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/06/2024] [Indexed: 10/10/2024] Open
Abstract
The purpose of this systematic review was to assess the currently available evidence for the use of external stimulation to modulate neural activity and promote peripheral nerve regeneration. The most common external stimulations are electrical stimulation (ES), optogenetic stimulation (OS), and magnetic stimulation (MS). Understanding the comparative effectiveness of these stimulation methods is pivotal in advancing therapeutic interventions for peripheral nerve injuries. This systematic review focused on these three external stimulation modalities as potential strategies to enhance peripheral nerve repair (PNR). We used the Preferred Reporting Items for Systematic Reviews and Meta-Analyses framework to systematically evaluate and compare the efficiency of ES, OS, and MS in PNR. The review included studies published between 2018 and 2023 using ES, OS, or MS for PNR focused on enhancing recovery of peripheral nerve injuries in rodent models identified through PubMed and Google Scholar. The search strategies and inclusion criteria identified 19 studies (13 ES, 4 OS, and 2 MS) for detailed analysis, focusing on critical parameters such as functional recovery, histological outcomes, and electrophysiological data. Although ES demonstrated a consistent improvement in all the analyses, high-frequency repetitive MS (HFr-MS) emerged as a promising modality. HFr-MS demonstrated accelerated PNR, as histological and electrophysiological evidence indicated. In contrast, OS exhibited superior functional recovery outcomes. Notable limitations include constrained MS and OS data sets and the challenge of comparing relative improvements because of methodological diversity in evaluation techniques. Our findings underscore the potential of HFr-MS and OS in PNR while emphasizing the critical need for standardized testing protocols to facilitate meaningful cross-study comparisons. External stimulations have the potential to improve functional recovery in patients with nerve injury.
Collapse
Affiliation(s)
- Priya Kaluskar
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, Australia
- Perron Institute for Neurological and Translational Science, Perth, Australia
- ARC Training Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Sciences, University of Melbourne, Melbourne, Australia
| | - Dhruv Bharadwaj
- Medical School, The University of Western Australia, Nedlands, WA, Australia
| | - K. Swaminathan Iyer
- School of Molecular Sciences, the University of Western Australia, Perth, Australia
- ARC Training Centre for Next-Gen Technologies in Biomedical Analysis, School of Molecular Sciences, the University of Western Australia, Perth, Australia
| | - Christopher Dy
- Orthopaedic Surgery Division of Hand and Microsurgery, Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO
| | - Minghao Zheng
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, Australia
- Perron Institute for Neurological and Translational Science, Perth, Australia
| | - David M. Brogan
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
11
|
Yang Y, Xia C, Xu Z, Hu Y, Huang M, Li D, Zheng Y, Li Y, Xu F, Wang J. rTMS applied to the PFC relieves neuropathic pain and modulates neuroinflammation in CCI rats. Neuroscience 2024; 554:137-145. [PMID: 38992566 DOI: 10.1016/j.neuroscience.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024]
Abstract
The study aimed to assess the analgesic effect of 10 Hz repetitive transcranial magnetic stimulation (rTMS) targeted to the prefrontal cortex (PFC) region on neuropathic pain (NPP) in rats with chronic constriction injury (CCI) of the sciatic nerve, and to investigate the possible underlying mechanism. Rats were randomly divided into three groups: sham operation, CCI, and rTMS. In the latter group, rTMS was applied to the left PFC. Von Frey fibres were used to measure the paw withdrawal mechanical threshold (PWMT). At the end of the treatment, immunofluorescence and western blotting were applied to detect the expression of M1 and M2 polarisation markers in microglia in the left PFC and sciatic nerve. ELISA was further used to detect the concentrations of inflammation-related cytokines. The results showed that CCI caused NPP in rats, reduced the pain threshold, promoted microglial polarisation to the M1 phenotype, and increased the secretion of pro-inflammatory and anti-inflammatory factors. Moreover, 10 Hz rTMS to the PFC was shown to improve NPP induced by CCI, induce microglial polarisation to M2, reduce the secretion of pro-inflammatory factors, and further increase the secretion of anti-inflammatory factors. Our data suggest that 10 Hz rTMS can alleviate CCI-induced neuropathic pain, while the underlying mechanism may potentially be related to the regulation of microglial M1-to-M2-type polarisation to regulate neuroinflammation.
Collapse
Affiliation(s)
- Yue Yang
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
| | - Cuihong Xia
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
| | - Zhangyu Xu
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China; Department of Rehabilitation Medicine, Southwest Medical University, Luzhou, Sichuan, PR China; Rehabilitation Medicine and Engineering Key Laboratory of Luzhou, Luzhou, Sichuan, PR China
| | - Yue Hu
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China; Department of Rehabilitation Medicine, Southwest Medical University, Luzhou, Sichuan, PR China; Rehabilitation Medicine and Engineering Key Laboratory of Luzhou, Luzhou, Sichuan, PR China
| | - Maomao Huang
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China; Department of Rehabilitation Medicine, Southwest Medical University, Luzhou, Sichuan, PR China; Rehabilitation Medicine and Engineering Key Laboratory of Luzhou, Luzhou, Sichuan, PR China
| | - Dan Li
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China; Department of Rehabilitation Medicine, Southwest Medical University, Luzhou, Sichuan, PR China; Rehabilitation Medicine and Engineering Key Laboratory of Luzhou, Luzhou, Sichuan, PR China
| | - Yadan Zheng
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
| | - Yang Li
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
| | - Fangyuan Xu
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China; Department of Rehabilitation Medicine, Southwest Medical University, Luzhou, Sichuan, PR China; Rehabilitation Medicine and Engineering Key Laboratory of Luzhou, Luzhou, Sichuan, PR China.
| | - Jianxiong Wang
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China; Department of Rehabilitation Medicine, Southwest Medical University, Luzhou, Sichuan, PR China; Rehabilitation Medicine and Engineering Key Laboratory of Luzhou, Luzhou, Sichuan, PR China.
| |
Collapse
|
12
|
Sun S, Yin J, Wei H, Zeng Y, Jia H, Jin Y. Long-Term Efficacy and Safety of High-Frequency Spinal Stimulation for Chronic Pain: A Meta-Analysis of Randomized Controlled Trials. Clin J Pain 2024; 40:415-427. [PMID: 38595082 DOI: 10.1097/ajp.0000000000001215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/26/2024] [Indexed: 04/11/2024]
Abstract
OBJECTIVE The aim of our meta-analysis was to systematically assess the enduring effectiveness and safety of high-frequency spinal stimulation (HF-SCS) in the management of chronic pain. METHODS We developed a comprehensive literature search strategy to identify clinical trials investigating the efficacy of high-frequency spinal stimulation for chronic pain. The search was conducted in multiple databases, including Web of Science, Cochrane, PubMed, and Embase, covering the period from 2004 to 2023. The inclusion and exclusion criteria established for this study were applied to screen the eligible literature by carefully reviewing abstracts and, when necessary, examining the full text of selected articles. To assess the quality of the included studies, we utilized the Risk of Bias assessment tool provided by the Cochrane Collaboration. The PRISMA method was followed for the selection of articles, and the quality of the articles was evaluated using the risk assessment table for bias provided by the Cochrane Collaboration. Meta-analysis of the selected studies was performed using Review Manager 5.4 and STATA 16.0. Effect sizes for continuous data were reported as mean differences (MD) or standardized mean differences (SMD), while categorical data were analyzed using relative risks (RR). RESULTS According to our predefined literature screening criteria, a total of seven English-language randomized controlled trials (RCTs) were included in the meta-analysis. The findings from the meta-analysis demonstrated that HF-SCS exhibited superior efficacy in the long-term treatment of chronic pain when compared with the control group (RR=2.44, 95% CI: 1.20-4.96, P =0.01). Furthermore, HF-SCS demonstrated a statistically significant improvement in the Oswestry Disability Index score (mean difference MD=3.77, 95% CI: 1.17-6.38, P =0.005). However, for pain assessment (standardized mean difference SMD=-0.59, 95% CI: -1.28 to 0.10, P =0.09), Patient Global Impression of Improvement (PGI-I) score (MD=0.11, 95% CI: -0.66 to 0.88, P =0.78 for 6 months; MD=0.02, 95% CI: -0.42 to 0.43, P =0.97 for 12 mo), Clinical Global Impression of Improvement (CGI-I) score (MD=-0.58, 95% CI: -1.62 to 0.43, P =0.27 for 6 mo; MD=-0.23, 95% CI: -0.94 to 0.48, P =0.52 for 12 mo), and occurrence of adverse effects (odds ratio [OR]=0.77, 95% CI: 0.23-2.59, P =0.67), HF-SCS did not show statistically sufficient effects compared with the control group. CONCLUSIONS The findings from our comprehensive review and meta-analysis offer encouraging data about the prolonged efficacy and safety of HF-SCS in chronic pain management on some but not all outcomes. Recognizing the constraints of the existing evidence is crucial. Additional clinical trials, meticulously planned and stringent, are essential to bolster the current body of evidence and reach more conclusive findings.
Collapse
Affiliation(s)
- Sisi Sun
- Department of Pain Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | | | | | | | | | | |
Collapse
|
13
|
Dai Q, Xu A, Wang K, Yang Y, Shao Y, Sun Y. The efficacy of repetitive transcranial magnetic stimulation in postherpetic neuralgia: a meta-analysis of randomized controlled trials. Front Neurol 2024; 15:1365445. [PMID: 38919968 PMCID: PMC11196813 DOI: 10.3389/fneur.2024.1365445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 05/30/2024] [Indexed: 06/27/2024] Open
Abstract
Purpose This systematic review and meta-analysis aimed to evaluate the efficacy of repetitive transcranial magnetic stimulation (rTMS) in postherpetic neuralgia (PHN). Methods Through an extensive search in four databases until October 2023, we selected five randomized controlled trials adhering to our specific criteria, involving 257 patients in total. For continuous outcomes, the standardized mean difference (SMD) was calculated. Heterogeneity among the studies was assessed using Cochran's I 2 and Q statistics, adopting a random-effects model for I 2 values over 50%. For assessing potential publication bias, we utilized both funnel plot and Egger's test. Results Our analysis found that rTMS reduced the overall visual analogue scale (VAS) (SMD: -1.52, 95% CI: -2.81 to -0.23, p = 0.02), VAS at 1 month post-treatment (SMD: -2.21, 95% CI: -4.31 to -0.10, p = 0.04), VAS at 3 months post-treatment (SMD: -1.51, 95% CI: -2.81 to -0.22, p = 0.02), as well as patients' global impression of change scale (PGIC) (SMD: -1.48, 95% CI: -2.87 to -0.09, p = 0.04) and short-form McGill pain questionnaire (SF-MPQ) (SMD: -1.25, 95% CI: -2.41 to -0.09, p = 0.03) compared to the sham-rTMS group. Conclusion Our study suggests that rTMS might have a potential alleviating effect on PHN symptoms. However, due to the limited number of studies and variations in rTMS parameters, larger sample studies involving more diverse populations, as well as further clarification of the most appropriate stimulation protocol, are still needed. Systematic review registration https://www.crd.york.ac.uk/prospero/, Identifier ID: CRD42023488420.
Collapse
Affiliation(s)
- Qi Dai
- Department of Rehabilitation Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Aihua Xu
- Department of Rehabilitation Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Kunpeng Wang
- Department of Pain Medicine, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Yang Yang
- Department of Rehabilitation Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Yang Shao
- Department of Rehabilitation Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Yongxin Sun
- Department of Rehabilitation Medicine, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
14
|
Naik A, Bah M, Govande M, Palsgaard P, Dharnipragada R, Shaffer A, Air EL, Cramer SW, Croarkin PE, Arnold PM. Optimal Frequency in Repetitive Transcranial Magnetic Stimulation for the Management of Chronic Pain: A Network Meta-Analysis of Randomized Controlled Trials. World Neurosurg 2024; 184:e53-e64. [PMID: 38185460 DOI: 10.1016/j.wneu.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/01/2024] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
OBJECTIVE Repetitive Transcranial Magnetic Stimulation (rTMS) has been shown to be effective for pain modulation in a variety of pathological conditions causing neuropathic pain. The purpose of this study is to conduct a network meta-analysis (NMA) of randomized control trials to identify the most optimal frequency required to achieve chronic pain modulation using rTMS. METHODS A comprehensive search was conducted in electronic databases to identify randomized controlled trials investigating the efficacy of rTMS for chronic pain management. A total of 24 studies met the inclusion criteria, and a NMA was conducted to identify the most effective rTMS frequency for chronic pain management. RESULTS Our analysis revealed that high frequency rTMS (20 Hz) was the most effective frequency for chronic pain modulation. Patients treated with 20 Hz had lower pain levels than those treated at 5 Hz (mean difference [MD] = -3.11 [95% confidence interval {CI}: -5.61 - -0.61], P = 0.032) and control (MD = -1.99 [95% CI: -3.11 - -0.88], P = 0.023). Similarly, treatment with 10 Hz had lower pain levels compared to 5 Hz (MD = -2.56 [95% CI: -5.05 - -0.07], P = 0.045) and control (MD = -1.44 [95% CI: -2.52 - -0.36], P = 0.031). 20 Hz and 10 Hz were not statistically different. CONCLUSIONS This NMA suggests that high frequency rTMS (20 Hz) is the most optimal frequency for chronic pain modulation. These findings have important clinical implications and can guide healthcare professionals in selecting the most effective frequency for rTMS treatment in patients with chronic pain.
Collapse
Affiliation(s)
- Anant Naik
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, Champaign, Illinois, USA; Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA.
| | - Momodou Bah
- College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Mukul Govande
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, Champaign, Illinois, USA
| | - Peggy Palsgaard
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, Champaign, Illinois, USA
| | - Rajiv Dharnipragada
- Department of Neurosurgery, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Annabelle Shaffer
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, Champaign, Illinois, USA
| | - Ellen L Air
- Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan, USA
| | - Samuel W Cramer
- Department of Neurosurgery, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Paul E Croarkin
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA
| | - Paul M Arnold
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, Champaign, Illinois, USA; Department of Neurosurgery, Carle Foundation Hospital, Urbana, Illinois, USA
| |
Collapse
|
15
|
Aderinto N, Olatunji G, Muili A, Kokori E, Edun M, Akinmoju O, Yusuf I, Ojo D. A narrative review of non-invasive brain stimulation techniques in neuropsychiatric disorders: current applications and future directions. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2024; 60:50. [DOI: 10.1186/s41983-024-00824-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 03/24/2024] [Indexed: 01/03/2025] Open
Abstract
Abstract
Background
Neuropsychiatric disorders significantly burden individuals and society, necessitating the exploration of innovative treatment approaches. Non-invasive brain stimulation techniques have emerged as promising interventions for these disorders, offering potential therapeutic benefits with minimal side effects. This narrative review provides a comprehensive overview of non-invasive brain stimulation techniques' current applications and future directions in managing neuropsychiatric disorders.
Methods
A thorough search of relevant literature was conducted to identify studies investigating non-invasive brain stimulation techniques in neuropsychiatric disorders. The selected studies were critically reviewed, and their findings were synthesised to provide a comprehensive overview of the current state of knowledge in the field.
Results
The review highlights the current applications of non-invasive brain stimulation techniques in neuropsychiatric disorders, including major depressive disorder, Parkinson's disease, schizophrenia, insomnia, and cognitive impairments. It presents evidence supporting the efficacy of these techniques in modulating brain activity, alleviating symptoms, and enhancing cognitive functions. Furthermore, the review addresses challenges such as interindividual variability, optimal target site selection, and standardisation of protocols. It also discusses potential future directions, including exploring novel target sites, personalised stimulation protocols, integrating with other treatment modalities, and identifying biomarkers for treatment response.
Conclusion
Non-invasive brain stimulation techniques offer promising avenues for managing neuropsychiatric disorders. Further research is necessary to optimise stimulation protocols, establish standardised guidelines, and identify biomarkers for treatment response. The findings underscore the potential of non-invasive brain stimulation techniques as valuable additions to the armamentarium of neuropsychiatric treatments.
Collapse
|
16
|
Bonanno M, Papa D, Cerasa A, Maggio MG, Calabrò RS. Psycho-Neuroendocrinology in the Rehabilitation Field: Focus on the Complex Interplay between Stress and Pain. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:285. [PMID: 38399572 PMCID: PMC10889914 DOI: 10.3390/medicina60020285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024]
Abstract
Chronic stress and chronic pain share neuro-anatomical, endocrinological, and biological features. However, stress prepares the body for challenging situations or mitigates tissue damage, while pain is an unpleasant sensation due to nociceptive receptor stimulation. When pain is chronic, it might lead to an allostatic overload in the body and brain due to the chronic dysregulation of the physiological systems that are normally involved in adapting to environmental challenges. Managing stress and chronic pain (CP) in neurorehabilitation presents a significant challenge for healthcare professionals and researchers, as there is no definitive and effective solution for these issues. Patients suffering from neurological disorders often complain of CP, which significantly reduces their quality of life. The aim of this narrative review is to examine the correlation between stress and pain and their potential negative impact on the rehabilitation process. Moreover, we described the most relevant interventions used to manage stress and pain in the neurological population. In conclusion, this review sheds light on the connection between chronic stress and chronic pain and their impact on the neurorehabilitation pathway. Our results emphasize the need for tailored rehabilitation protocols to effectively manage pain, improve treatment adherence, and ensure comprehensive patient care.
Collapse
Affiliation(s)
- Mirjam Bonanno
- IRCCS Centro Neurolesi Bonino-Pulejo, 98124 Messina, Italy; (M.B.); (R.S.C.)
| | - Davide Papa
- International College of Osteopathic Medicine, 20092 Cinisello Balsamo, Italy;
| | - Antonio Cerasa
- S’Anna Institute, 88900 Crotone, Italy;
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy
- Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Maria Grazia Maggio
- IRCCS Centro Neurolesi Bonino-Pulejo, 98124 Messina, Italy; (M.B.); (R.S.C.)
| | | |
Collapse
|
17
|
Yang Y, Shangguan Y, Wang X, Liu R, Shen Z, Tang M, Jiang G. The efficacy and safety of third-generation antiseizure medications and non-invasive brain stimulation to treat refractory epilepsy: a systematic review and network meta-analysis study. Front Neurol 2024; 14:1307296. [PMID: 38264091 PMCID: PMC10804851 DOI: 10.3389/fneur.2023.1307296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/13/2023] [Indexed: 01/25/2024] Open
Abstract
Background The new antiseizure medications (ASMs) and non-invasive brain stimulation (NIBS) are controversial in controlling seizures. So, this network meta-analysis aimed to evaluate the efficacy and safety of five third-generation ASMs and two NIBS therapies for the treatment of refractory epilepsy. Methods We searched PubMed, EMBASE, Cochrane Library and Web of Science databases. Brivaracetam (BRV), cenobamate (CNB), eslicarbazepine acetate (ESL), lacosamide (LCM), perampanel (PER), repetitive transcranial magnetic stimulation (rTMS), and transcranial direct current stimulation (tDCS) were selected as additional treatments for refractory epilepsy in randomized controlled studies and other cohort studies. Randomized, double-blind, placebo-controlled, add-on studies that evaluated the efficacy or safety of medication and non-invasive brain stimulation and included patients with seizures were uncontrolled by one or more concomitant ASMs were identified. A random effects model was used to incorporate possible heterogeneity. The primary outcome was the change in seizure frequency from baseline, and secondary outcomes included the proportion of patients with ≥50% reduction in seizure frequency, and the rate of treatment-emergent adverse events. Results Forty-five studies were analyzed. The five ASMs and two NIBS decreased seizure frequency from baseline compared with placebo. The 50% responder rates of the five antiseizure drugs were significantly higher than that of placebo, and the ASMs were associated with fewer adverse events than placebo (p < 0.05). The surface under the cumulative ranking analysis revealed that ESL was most effective in decreasing the seizure frequency from baseline, whereas CNB provided the best 50% responder rate. BRV was the best tolerated. No significant publication bias was identified for each outcome index. Conclusion The five third-generation ASMs were more effective in controlling seizures than placebo, among which CNB, ESL, and LCM were most effective, and BRV exhibited better safety. Although rTMS and tDCS did not reduce seizure frequency as effectively as the five drugs, their safety was confirmed. Systematic review registration PROSPERO, https://www.crd.york.ac.uk/prospero/ (CRD42023441097).
Collapse
Affiliation(s)
- Yang Yang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, China
| | - Yafei Shangguan
- Department of Neurology, The First People’s Hospital of Guiyang, Guiyang, China
| | - Xiaoming Wang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, China
| | - Ruihong Liu
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, China
| | - Ziyi Shen
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, China
| | - Ming Tang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, China
| | - Guohui Jiang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, China
| |
Collapse
|
18
|
Mayor RS, Ferreira NR, Lanzaro C, Castelo-Branco M, Valentim A, Donato H, Lapa T. Noninvasive transcranial brain stimulation in central post-stroke pain: A systematic review. Scand J Pain 2024; 24:sjpain-2023-0130. [PMID: 38956966 DOI: 10.1515/sjpain-2023-0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 06/05/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND The aim of this systematic review is to analyze the efficacy of noninvasive brain stimulation (NBS) in the treatment of central post-stroke pain (CPSP). METHODS We included randomized controlled trials testing the efficacy of transcranial magnetic stimulation (TMS) or transcranial direct current stimulation versus placebo or other usual therapy in patients with CPSP. Articles in English, Portuguese, Spanish, Italian, and French were included. A bibliographic search was independently conducted on June 1, 2022, by two authors, using the databases MEDLINE (PubMed), Embase (Elsevier), Cochrane Central Register of Controlled Trials (CENTRAL), Scopus, and Web of Science Core Collection. The risk of bias was assessed using the second version of the Cochrane risk of bias (RoB 2) tool and the certainty of the evidence was evaluated through Grading of Recommendations Assessment, Development and Evaluation. RESULTS A total of 2,674 records were identified after removing duplicates, of which 5 eligible studies were included, involving a total of 119 patients. All five studies evaluated repetitive TMS, four of which stimulated the primary motor cortex (M1) and one stimulated the premotor/dorsolateral prefrontal cortex. Only the former one reported a significant pain reduction in the short term, while the latter one was interrupted due to a consistent lack of analgesic effect. CONCLUSION NBS in the M1 area seems to be effective in reducing short-term pain; however, more high-quality homogeneous studies, with long-term follow-up, are required to determine the efficacy of this treatment in CSPS.
Collapse
Affiliation(s)
- Rita Sotto Mayor
- Anesthesiology Department, Hospitais da Universidade de Coimbra, Praceta Prof. Mota Pinto, 3000-075, Coimbra, Portugal
| | - Natália R Ferreira
- Institute of Occlusion and Orofacial Pain, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Camile Lanzaro
- Anesthesiology Department, Local Unit of Health in Alto Minho, Viana do Castelo, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
| | - Ana Valentim
- Anesthesiology Department, Hospitais da Universidade de Coimbra, Praceta Prof. Mota Pinto, 3000-075, Coimbra, Portugal
| | - Helena Donato
- Hospitais da Universidade de Coimbra, Coimbra, Portugal
| | - Teresa Lapa
- Anesthesiology Department, Hospitais da Universidade de Coimbra, Praceta Prof. Mota Pinto, 3000-075, Coimbra, Portugal
- Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
19
|
Kong Q, Li T, Reddy S, Hodges S, Kong J. Brain stimulation targets for chronic pain: Insights from meta-analysis, functional connectivity and literature review. Neurotherapeutics 2024; 21:e00297. [PMID: 38237403 PMCID: PMC10903102 DOI: 10.1016/j.neurot.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 02/16/2024] Open
Abstract
Noninvasive brain stimulation (NIBS) techniques have demonstrated their potential for chronic pain management, yet their efficacy exhibits variability across studies. Refining stimulation targets and exploring additional targets offer a possible solution to this challenge. This study aimed to identify potential brain surface targets for NIBS in treating chronic pain disorders by integrating literature review, neuroimaging meta-analysis, and functional connectivity analysis on 90 chronic low back pain patients. Our results showed that the primary motor cortex (M1) (C3/C4, 10-20 EEG system) and prefrontal cortex (F3/F4/Fz) were the most used brain stimulation targets for chronic pain treatment according to the literature review. The bilateral precentral gyrus (M1), supplementary motor area, Rolandic operculum, and temporoparietal junction, were all identified as common potential NIBS targets through both a meta-analysis sourced from Neurosynth and functional connectivity analysis. This study presents a comprehensive summary of the current literature and refines the existing NIBS targets through a combination of imaging meta-analysis and functional connectivity analysis for chronic pain conditions. The derived coordinates (with integration of the international electroencephalography (EEG) 10/20 electrode placement system) within the above brain regions may further facilitate the localization of these targets for NIBS application. Our findings may have the potential to expand NIBS target selection beyond current clinical trials and improve chronic pain treatment.
Collapse
Affiliation(s)
- Qiao Kong
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Tingting Li
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Sveta Reddy
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Sierra Hodges
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Jian Kong
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.
| |
Collapse
|
20
|
Holm A, Orenius T, Karttunen N, Ristolainen L, Kautiainen H, Hurri H. Impact of antidepressant medication on the analgetic effect of repetitive transcranial magnetic stimulation treatment of neuropathic pain. Preliminary findings from a registry study. Scand J Pain 2023; 23:670-676. [PMID: 37459208 DOI: 10.1515/sjpain-2023-0021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/05/2023] [Indexed: 10/20/2023]
Abstract
OBJECTIVES Repetitive transcranial magnetic stimulation (rTMS) has been found to be effective in chronic neuropathic pain conditions. However, information about the combined effects of rTMS and antidepressant treatment is scarce. We studied the outcome of rTMS and concurrent antidepressant treatment in patients with neuropathic pain. METHODS In this retrospective, real-world study, 34 patients with neuropathic pain, who were considered resistant or not benefitting from conventional treatment, received rTMS treatment between 2017 and 2020. Pain-related factors were measured using the Numerical Rating Scale (NRS), Global Impression of Change (GIC), and Beck Depression Inventory. RESULTS A decrease in pain intensity and pain interference assessed with NRS was observed after 10 treatment sessions in 16 patients. The impression of change was positive in 20 patients. Half of the patients (n=17) used antidepressant medication, while half (n=17) did not. A concurrent use of antidepressants with therapeutic rTMS was significantly linked with less pain intensity relief when compared with the nonuse of antidepressants (p=0.019). The impression of change was significantly in favor of the antidepressant nonuser group (p=0.002). No group differences in pain interference were found between the groups. CONCLUSIONS Therapeutic rTMS for neuropathic pain is plausibly sensitive to interference with antidepressant medication. The exact mechanism of our findings remains to be elucidated; confirmatory studies are warranted.
Collapse
Affiliation(s)
- Anu Holm
- Satakunta University of Applied Sciences (SAMK), Pori, Finland
- SataDiag, Hospital District of Satakunta, Pori, Finland
- Recuror Oy, Turku, Finland
| | | | - Nina Karttunen
- Satakunta University of Applied Sciences (SAMK), Pori, Finland
- SataDiag, Hospital District of Satakunta, Pori, Finland
| | | | - Hannu Kautiainen
- Unit of Primary Health Care, Helsinki University Central Hospital, Helsinki, Finland
- Department of General Practice, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
21
|
Shi Y, Wu W. Multimodal non-invasive non-pharmacological therapies for chronic pain: mechanisms and progress. BMC Med 2023; 21:372. [PMID: 37775758 PMCID: PMC10542257 DOI: 10.1186/s12916-023-03076-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/11/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Chronic pain conditions impose significant burdens worldwide. Pharmacological treatments like opioids have limitations. Non-invasive non-pharmacological therapies (NINPT) encompass diverse interventions including physical, psychological, complementary and alternative approaches, and other innovative techniques that provide analgesic options for chronic pain without medications. MAIN BODY This review elucidates the mechanisms of major NINPT modalities and synthesizes evidence for their clinical potential across chronic pain populations. NINPT leverages peripheral, spinal, and supraspinal mechanisms to restore normal pain processing and limit central sensitization. However, heterogeneity in treatment protocols and individual responses warrants optimization through precision medicine approaches. CONCLUSION Future adoption of NINPT requires addressing limitations in standardization and accessibility as well as synergistic combination with emerging therapies. Overall, this review highlights the promise of NINPT as a valuable complementary option ready for integration into contemporary pain medicine paradigms to improve patient care and outcomes.
Collapse
Affiliation(s)
- Yu Shi
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Wen Wu
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| |
Collapse
|
22
|
Ferraro MC, Cashin AG, Wand BM, Smart KM, Berryman C, Marston L, Moseley GL, McAuley JH, O'Connell NE. Interventions for treating pain and disability in adults with complex regional pain syndrome- an overview of systematic reviews. Cochrane Database Syst Rev 2023; 6:CD009416. [PMID: 37306570 PMCID: PMC10259367 DOI: 10.1002/14651858.cd009416.pub3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
BACKGROUND Complex regional pain syndrome (CRPS) is a chronic pain condition that usually occurs in a limb following trauma or surgery. It is characterised by persisting pain that is disproportionate in magnitude or duration to the typical course of pain after similar injury. There is currently no consensus regarding the optimal management of CRPS, although a broad range of interventions have been described and are commonly used. This is the first update of the original Cochrane review published in Issue 4, 2013. OBJECTIVES To summarise the evidence from Cochrane and non-Cochrane systematic reviews of the efficacy, effectiveness, and safety of any intervention used to reduce pain, disability, or both, in adults with CRPS. METHODS We identified Cochrane reviews and non-Cochrane reviews through a systematic search of Ovid MEDLINE, Ovid Embase, Cochrane Database of Systematic Reviews, CINAHL, PEDro, LILACS and Epistemonikos from inception to October 2022, with no language restrictions. We included systematic reviews of randomised controlled trials that included adults (≥18 years) diagnosed with CRPS, using any diagnostic criteria. Two overview authors independently assessed eligibility, extracted data, and assessed the quality of the reviews and certainty of the evidence using the AMSTAR 2 and GRADE tools respectively. We extracted data for the primary outcomes pain, disability and adverse events, and the secondary outcomes quality of life, emotional well-being, and participants' ratings of satisfaction or improvement with treatment. MAIN RESULTS: We included six Cochrane and 13 non-Cochrane systematic reviews in the previous version of this overview and five Cochrane and 12 non-Cochrane reviews in the current version. Using the AMSTAR 2 tool, we judged Cochrane reviews to have higher methodological quality than non-Cochrane reviews. The studies in the included reviews were typically small and mostly at high risk of bias or of low methodological quality. We found no high-certainty evidence for any comparison. There was low-certainty evidence that bisphosphonates may reduce pain intensity post-intervention (standardised mean difference (SMD) -2.6, 95% confidence interval (CI) -1.8 to -3.4, P = 0.001; I2 = 81%; 4 trials, n = 181) and moderate-certainty evidence that they are probably associated with increased adverse events of any nature (risk ratio (RR) 2.10, 95% CI 1.27 to 3.47; number needed to treat for an additional harmful outcome (NNTH) 4.6, 95% CI 2.4 to 168.0; 4 trials, n = 181). There was moderate-certainty evidence that lidocaine local anaesthetic sympathetic blockade probably does not reduce pain intensity compared with placebo, and low-certainty evidence that it may not reduce pain intensity compared with ultrasound of the stellate ganglion. No effect size was reported for either comparison. There was low-certainty evidence that topical dimethyl sulfoxide may not reduce pain intensity compared with oral N-acetylcysteine, but no effect size was reported. There was low-certainty evidence that continuous bupivacaine brachial plexus block may reduce pain intensity compared with continuous bupivacaine stellate ganglion block, but no effect size was reported. For a wide range of other commonly used interventions, the certainty in the evidence was very low and provides insufficient evidence to either support or refute their use. Comparisons with low- and very low-certainty evidence should be treated with substantial caution. We did not identify any RCT evidence for routinely used pharmacological interventions for CRPS such as tricyclic antidepressants or opioids. AUTHORS' CONCLUSIONS Despite a considerable increase in included evidence compared with the previous version of this overview, we identified no high-certainty evidence for the effectiveness of any therapy for CRPS. Until larger, high-quality trials are undertaken, formulating an evidence-based approach to managing CRPS will remain difficult. Current non-Cochrane systematic reviews of interventions for CRPS are of low methodological quality and should not be relied upon to provide an accurate and comprehensive summary of the evidence.
Collapse
Affiliation(s)
- Michael C Ferraro
- Centre for Pain IMPACT, Neuroscience Research Australia, Sydney, Australia
- School of Health Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Aidan G Cashin
- Centre for Pain IMPACT, Neuroscience Research Australia, Sydney, Australia
- School of Health Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Benedict M Wand
- The School of Health Sciences and Physiotherapy, The University of Notre Dame Australia, Fremantle, Australia
| | - Keith M Smart
- UCD School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
- Physiotherapy Department, St Vincent's University Hospital, Dublin, Ireland
| | - Carolyn Berryman
- IIMPACT in Health, University of South Australia, Kaurna Country, Adelaide, South Australia, Australia
- School of Biomedicine, The University of Adelaide, Kaurna Country, Adelaide, Australia
| | - Louise Marston
- Department of Primary Care and Population Health, University College London, London, UK
| | - G Lorimer Moseley
- IIMPACT in Health, University of South Australia, Kaurna Country, Adelaide, South Australia, Australia
| | - James H McAuley
- Centre for Pain IMPACT, Neuroscience Research Australia, Sydney, Australia
- School of Health Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Neil E O'Connell
- Department of Health Sciences, Centre for Health and Wellbeing Across the Lifecourse, Brunel University London, Uxbridge, UK
| |
Collapse
|
23
|
Bai YW, Yang QH, Chen PJ, Wang XQ. Repetitive transcranial magnetic stimulation regulates neuroinflammation in neuropathic pain. Front Immunol 2023; 14:1172293. [PMID: 37180127 PMCID: PMC10167032 DOI: 10.3389/fimmu.2023.1172293] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023] Open
Abstract
Neuropathic pain (NP) is a frequent condition caused by a lesion in, or disease of, the central or peripheral somatosensory nervous system and is associated with excessive inflammation in the central and peripheral nervous systems. Repetitive transcranial magnetic stimulation (rTMS) is a supplementary treatment for NP. In clinical research, rTMS of 5-10 Hz is widely placed in the primary motor cortex (M1) area, mostly at 80%-90% RMT, and 5-10 treatment sessions could produce an optimal analgesic effect. The degree of pain relief increases greatly when stimulation duration is greater than 10 days. Analgesia induced by rTMS appears to be related to reestablishing the neuroinflammation system. This article discussed the influences of rTMS on the nervous system inflammatory responses, including the brain, spinal cord, dorsal root ganglia (DRG), and peripheral nerve involved in the maintenance and exacerbation of NP. rTMS has shown an anti-inflammation effect by decreasing pro-inflammatory cytokines, including IL-1β, IL-6, and TNF-α, and increasing anti-inflammatory cytokines, including IL-10 and BDNF, in cortical and subcortical tissues. In addition, rTMS reduces the expression of glutamate receptors (mGluR5 and NMDAR2B) and microglia and astrocyte markers (Iba1 and GFAP). Furthermore, rTMS decreases nNOS expression in ipsilateral DRGs and peripheral nerve metabolism and regulates neuroinflammation.
Collapse
Affiliation(s)
- Yi-Wen Bai
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qi-Hao Yang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Pei-Jie Chen
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
| |
Collapse
|
24
|
Bielewicz J, Kamieniak M, Szymoniuk M, Litak J, Czyżewski W, Kamieniak P. Diagnosis and Management of Neuropathic Pain in Spine Diseases. J Clin Med 2023; 12:jcm12041380. [PMID: 36835916 PMCID: PMC9961043 DOI: 10.3390/jcm12041380] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Neuropathic pain is generally defined as a non-physiological pain experience caused by damage to the nervous system. It can occur spontaneously, as a reaction to a given stimulus, or independently of its action, leading to unusual pain sensations usually referred to as firing, burning or throbbing. In the course of spine disorders, pain symptoms commonly occur. According to available epidemiological studies, a neuropathic component of pain is often present in patients with spinal diseases, with a frequency ranging from 36% to 55% of patients. Distinguishing between chronic nociceptive pain and neuropathic pain very often remains a challenge. Consequently, neuropathic pain is often underdiagnosed in patients with spinal diseases. In reference to current guidelines for the treatment of neuropathic pain, gabapentin, serotonin and norepinephrine reuptake inhibitors and tricyclic antidepressants constitute first-line therapeutic agents. However, long-term pharmacologic treatment often leads to developing tolerance and resistance to used medications. Therefore, in recent years, a plethora of therapeutic methods for neuropathic pain have been developed and investigated to improve clinical outcomes. In this review, we briefly summarized current knowledge about the pathophysiology and diagnosis of neuropathic pain. Moreover, we described the most effective treatment approaches for neuropathic pain and discussed their relevance in the treatment of spinal pain.
Collapse
Affiliation(s)
- Joanna Bielewicz
- Department of Neurology, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
| | - Maciej Kamieniak
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
| | - Michał Szymoniuk
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
- Correspondence:
| | - Jakub Litak
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
- Department of Clinical Immunology, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland
| | - Wojciech Czyżewski
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
- Department of Didactics and Medical Simulation, Medical University of Lublin, Chodźki 4, 20-093 Lublin, Poland
| | - Piotr Kamieniak
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
| |
Collapse
|
25
|
Application of Repetitive Transcranial Magnetic Stimulation in Neuropathic Pain: A Narrative Review. Life (Basel) 2023; 13:life13020258. [PMID: 36836613 PMCID: PMC9962564 DOI: 10.3390/life13020258] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/08/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Neuropathic pain, affecting 6.9-10% of the general population, has a negative impact on patients' quality of life and potentially leads to functional impairment and disability. Repetitive transcranial magnetic stimulation (rTMS)-a safe, indirect and non-invasive technique-has been increasingly applied for treating neuropathic pain. The mechanism underlying rTMS is not yet well understood, and the analgesic effects of rTMS have been inconsistent with respect to different settings/parameters, causing insufficient evidence to determine its efficacy in patients with neuropathic pain. This narrative review aimed to provide an up-to-date overview of rTMS for treating neuropathic pain as well as to summarize the treatment protocols and related adverse effects from existing clinical trials. Current evidence supports the use of 10 Hz HF-rTMS of the primary motor cortex to reduce neuropathic pain, especially in patients with spinal cord injury, diabetic neuropathy and post-herpetic neuralgia. However, the lack of standardized protocols impedes the universal use of rTMS for neuropathic pain. rTMS was hypothesized to achieve analgesic effects by upregulating the pain threshold, inhibiting pain impulse, modulating the brain cortex, altering imbalanced functional connectivity, regulating neurotrophin and increasing endogenous opioid and anti-inflammatory cytokines. Further studies are warranted to explore the differences in the parameters/settings of rTMS for treating neuropathic pain due to different disease types.
Collapse
|
26
|
Du Z, Zhang J, Han X, Yu W, Gu X. Potential novel therapeutic strategies for neuropathic pain. Front Mol Neurosci 2023; 16:1138798. [PMID: 37152429 PMCID: PMC10160452 DOI: 10.3389/fnmol.2023.1138798] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Purpose To explore the potential therapeutic strategies of different types of neuropathic pain (NP) and to summarize the cutting-edge novel approaches for NP treatment based on the clinical trials registered on ClinicalTrials.gov. Methods The relevant clinical trials were searched using ClinicalTrials.gov Dec 08, 2022. NP is defined as a painful condition caused by neurological lesions or diseases. All data were obtained and reviewed by the investigators to confirm whether they were related to the current topic. Results A total of 914 trials were included in this study. They were divided into painful diabetic neuropathy (PDN), postherpetic neuralgia (PHN), sciatica (SC), peripheral nerve injury-related NP (PNI), trigeminal neuralgia (TN), chemotherapy-induced NP (CINP), general peripheral NP (GPNP) and spinal cord injury NP (SCI-NP). Potential novel therapeutic strategies, such as novel drug targets and physical means, were discussed for each type of NP. Conclusion NP treatment is mainly dominated by drug therapy, and physical means have become increasingly popular. It is worth noting that novel drug targets, new implications of conventional medicine, and novel physical means can serve as promising strategies for the treatment of NP. However, more attention needs to be paid to the challenges of translating research findings into clinical practice.
Collapse
|
27
|
Erdoğan ET, Küçük Z, Eskikurt G, Kurt A, Ermutlu N, Karamürsel S. Single Session Anodal Transcranial Direct Current Stimulation on Different Cortical Areas. J PSYCHOPHYSIOL 2022. [DOI: 10.1027/0269-8803/a000311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract. Transcranial direct current stimulation (tDCS) studies in healthy volunteers have shown conflicting results in terms of modulation in pain thresholds. The aim of this study was to investigate how single session anodal tDCS and modulated tDCS (mtDCS) of distinct cortical areas affected pain and perception thresholds in healthy participants. Five different stimulation conditions were applied at different cortical sites to 20 healthy volunteers to investigate the effects of tDCS and mtDCS (20 Hz) on pain and perception thresholds. TDCS over the motor cortex (M1), mtDCS over the motor cortex, tDCS over the dorsolateral prefrontal cortex (DLPFC), mtDCS of the DLPFC, and mtDCS over the occipital cortex were the stimulation conditions. All of the stimulations were anodal. The stimulations were given in a randomized order at 20-minute intervals. For comparison, electrical pain and perception thresholds were obtained from the right middle finger before and during the tDCS. After each measurement, participants were asked to give a score to their pain. In repeated measures analysis of variance (RM-ANOVA) test, the Condition × Time interaction showed no significant influence on changes in pain, perception thresholds, and pain scores ( p = .48, p = .89, and p = .50, respectively). However, regardless of the condition types, there was a significant difference in pain and perceptual thresholds during tDCS ( p = .01, p = .025, respectively). Our findings did not support difference in pain and perception modulation by a single session anodal tDCS over M1 and DLPFC compared to the occipital cortex in healthy volunteers. The increase in all thresholds during tDCS, irrespective of conditions, and peripheral sensations, including an active control group, taken together, suggest a placebo effect of active tDCS. Future studies about pain and perception in healthy subjects should consider the level of experimental pain and a strong placebo effect.
Collapse
Affiliation(s)
- Ezgi Tuna Erdoğan
- Department of Physiology, School of Medicine, Koç University, Istanbul, Turkey
| | - Zeynep Küçük
- Department of Psychology, Faculty of Science and Literature, Halic University, Istanbul, Turkey
| | - Gökçer Eskikurt
- Department of Physiology, Faculty of Medicine, Istinye University, Istanbul, Turkey
| | - Adnan Kurt
- Department of Physiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Numan Ermutlu
- Department of Physiology, Faculty of Medicine, Istanbul Health and Technology University, Istanbul, Turkey
| | - Sacit Karamürsel
- Department of Physiology, School of Medicine, Koç University, Istanbul, Turkey
| |
Collapse
|
28
|
Hu Y, Zhu Y, Wen X, Zeng F, Feng Y, Xu Z, Xu F, Wang J. Repetitive transcranial magnetic stimulation regulates neuroinflammation, relieves hyperalgesia and reverses despair-like behaviour in chronic constriction injury rats. Eur J Neurosci 2022; 56:4930-4947. [PMID: 35895439 DOI: 10.1111/ejn.15779] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 07/08/2022] [Accepted: 07/16/2022] [Indexed: 11/28/2022]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) could effectively relieve the pain and depression in neuropathic pain (NP) patients. However, the specific treatment parameters and exact mechanism are still unclear. Our purpose is to observe the effects of rTMS on pain and despair-like behaviour in chronic constriction injury (CCI) rats and explore its possible mechanism. Thirty-two 8-week-old male Sprague-Dawley rats were randomly divided into four groups: sham operation group (S, n = 8), CCI group (n = 8), 1 Hz-rTMS group (n = 8) and 10 Hz-rTMS group (n = 8). The rTMS was applied to the left dorsal anterior agranular insular (AId) 1 week after the operation, once a day, 5 days/week for 4 consecutive weeks. Mechanical hyperalgesia, despair-like behaviours and sciatic nerve function were used to evaluate the effects of rTMS. Besides, glucose metabolism, the metabotropic glutamate receptors 5 (mGluR5), N-Methyl-D-Aspartic acid receptor type 2B (NMDAR2B), tumour necrosis factor-α (TNF-α), interleukin-6 (Ll-6) and interleukin-1β (Ll-1β) in AId were tested to explore the possible mechanism. Compared with 1 Hz-rTMS, the rats of 10 Hz-rTMS had higher the mechanical hyperalgesia, higher sugar preference and shorter swimming immobility time. Besides, the expressions of mGluR5, NMDAR2B, TNF-α, Ll-1β and Ll-6 both in 1 Hz-rTMS and 10 Hz-rTMS groups were reduced compared with the CCI group; the 10 Hz-rTMS group had a more decrease than that of 1 Hz-rTMS. Furthermore, the [18]F-FDG uptake was lower than that in the 1 Hz-rTMS group. Compared with 1 Hz-rTMS, 10 Hz-rTMS could more effectively relieve mechanical hyperalgesia and reverse despair-like behaviour in rats. The mechanism could be related to regulating mGluR5/NMDAR2B-related inflammatory signalling pathways in the AId.
Collapse
Affiliation(s)
- Yue Hu
- Department of Rehabilitation Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuanliang Zhu
- Department of Rehabilitation Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xin Wen
- Department of Rehabilitation Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Fanshuo Zeng
- Department of Rehabilitation Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yue Feng
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
| | - Zhangyu Xu
- Department of Rehabilitation Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Fangyuan Xu
- Department of Rehabilitation Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jianxiong Wang
- Department of Rehabilitation Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, China
| |
Collapse
|
29
|
Tomeh A, Yusof Khan AHK, Inche Mat LN, Basri H, Wan Sulaiman WA. Repetitive Transcranial Magnetic Stimulation of the Primary Motor Cortex beyond Motor Rehabilitation: A Review of the Current Evidence. Brain Sci 2022; 12:brainsci12060761. [PMID: 35741646 PMCID: PMC9221422 DOI: 10.3390/brainsci12060761] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 02/01/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) has emerged as a novel technique to stimulate the human brain through the scalp. Over the years, identifying the optimal brain region and stimulation parameters has been a subject of debate in the literature on therapeutic uses of repetitive TMS (rTMS). Nevertheless, the primary motor cortex (M1) has been a conventional target for rTMS to treat motor symptoms, such as hemiplegia and spasticity, as it controls the voluntary movement of the body. However, with an expanding knowledge base of the M1 cortical and subcortical connections, M1-rTMS has shown a therapeutic efficacy that goes beyond the conventional motor rehabilitation to involve pain, headache, fatigue, dysphagia, speech and voice impairments, sleep disorders, cognitive dysfunction, disorders of consciousness, anxiety, depression, and bladder dysfunction. In this review, we summarize the latest evidence on using M1-rTMS to treat non-motor symptoms of diverse etiologies and discuss the potential mechanistic rationale behind the management of each of these symptoms.
Collapse
Affiliation(s)
- Abdulhameed Tomeh
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.T.); (A.H.K.Y.K.); (L.N.I.M.); (H.B.)
| | - Abdul Hanif Khan Yusof Khan
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.T.); (A.H.K.Y.K.); (L.N.I.M.); (H.B.)
- Malaysian Research Institute on Ageing (MyAgeingTM), Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Liyana Najwa Inche Mat
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.T.); (A.H.K.Y.K.); (L.N.I.M.); (H.B.)
| | - Hamidon Basri
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.T.); (A.H.K.Y.K.); (L.N.I.M.); (H.B.)
| | - Wan Aliaa Wan Sulaiman
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.T.); (A.H.K.Y.K.); (L.N.I.M.); (H.B.)
- Malaysian Research Institute on Ageing (MyAgeingTM), Universiti Putra Malaysia, Serdang 43400, Malaysia
- Correspondence: ; Tel.: +60-3-9769-5560
| |
Collapse
|
30
|
Tang Y, Chen H, Zhou Y, Tan ML, Xiong SL, Li Y, Ji XH, Li YS. Analgesic Effects of Repetitive Transcranial Magnetic Stimulation in Patients With Advanced Non-Small-Cell Lung Cancer: A Randomized, Sham-Controlled, Pilot Study. Front Oncol 2022; 12:840855. [PMID: 35372024 PMCID: PMC8969560 DOI: 10.3389/fonc.2022.840855] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/25/2022] [Indexed: 12/30/2022] Open
Abstract
Objective Current pharmacological intervention for the cancer-related pain is still limited. The aim of this study was to explore whether repetitive transcranial magnetic stimulation (rTMS) could be an effective adjuvant therapy to reduce pain in patients with advanced non-small cell lung cancer (NSCLC). Methods This was a randomized, sham–controlled study. A total of 41 advanced NSCLC patients with uncontrolled pain (score≥4 on pain intensity assessed with an 11-point numeric rating scale) were randomized to receive active (10 Hz, 2000 stimuli) (n = 20) or sham rTMS (n = 20) for 3 weeks. Pain was the primary outcome and was assessed with the Numeric Rating Scale (NRS). Secondary outcomes were oral morphine equivalent (OME) daily dose, quality of life (WHO Quality of Life-BREF), and psychological distress (the Hospital Depression and Anxiety Scale). All outcomes were measured at baseline, 3 days, 1 week, 2 weeks, and 3 weeks. Results The pain intensity in both groups decreased gradually from day 3 and decreased to the lowest at the week 3, with a decrease rate of 41.09% in the rTMS group and 23.23% in the sham group. The NRS score of the rTMS group was significantly lower than that of the sham group on the week 2 (p < 0.001, Cohen’s d =1.135) and week 3 (p=0.017, Cohen’s d = -0.822). The OME daily dose, physiology and psychology domains of WHOQOL-BREF scores, as well as the HAM-A and HAM-D scores all were significantly improved at week 3 in rTMS group. Conclusion Advanced NSCL patients with cancer pain treated with rTMS showed better greater pain relief, lower dosage of opioid, and better mood states and quality of life. rTMS is expected to be a new effective adjuvant therapy for cancer pain in advanced NSCLC patients.
Collapse
Affiliation(s)
- Ying Tang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Han Chen
- Department of Rehabilitation, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yi Zhou
- Department of Rehabilitation, Southwest Hospital, Army Medical University, Chongqing, China
| | - Ming-Liang Tan
- Department of Rehabilitation, Southwest Hospital, Army Medical University, Chongqing, China
| | - Shuang-Long Xiong
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Yan Li
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Xiao-Hui Ji
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Yong-Sheng Li
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
31
|
Current Status of Neuromodulation-Induced Cortical Prehabilitation and Considerations for Treatment Pathways in Lower-Grade Glioma Surgery. LIFE (BASEL, SWITZERLAND) 2022; 12:life12040466. [PMID: 35454957 PMCID: PMC9024440 DOI: 10.3390/life12040466] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/19/2022] [Accepted: 03/19/2022] [Indexed: 12/15/2022]
Abstract
The infiltrative character of supratentorial lower grade glioma makes it possible for eloquent neural pathways to remain within tumoural tissue, which renders complete surgical resection challenging. Neuromodulation-Induced Cortical Prehabilitation (NICP) is intended to reduce the likelihood of premeditated neurologic sequelae that otherwise would have resulted in extensive rehabilitation or permanent injury following surgery. This review aims to conceptualise current approaches involving Repetitive Transcranial Magnetic Stimulation (rTMS-NICP) and extraoperative Direct Cortical Stimulation (eDCS-NICP) for the purposes of inducing cortical reorganisation prior to surgery, with considerations derived from psychiatric, rehabilitative and electrophysiologic findings related to previous reports of prehabilitation. Despite the promise of reduced risk and incidence of neurologic injury in glioma surgery, the current data indicates a broad but compelling possibility of effective cortical prehabilitation relating to perisylvian cortex, though it remains an under-explored investigational tool. Preliminary findings may prove sufficient for the continued investigation of prehabilitation in small-volume lower-grade tumour or epilepsy patients. However, considering the very low number of peer-reviewed case reports, optimal stimulation parameters and duration of therapy necessary to catalyse functional reorganisation remain equivocal. The non-invasive nature and low risk profile of rTMS-NICP may permit larger sample sizes and control groups until such time that eDCS-NICP protocols can be further elucidated.
Collapse
|
32
|
When Two Is Better Than One: A Pilot Study on Transcranial Magnetic Stimulation Plus Muscle Vibration in Treating Chronic Pelvic Pain in Women. Brain Sci 2022; 12:brainsci12030396. [PMID: 35326352 PMCID: PMC8946237 DOI: 10.3390/brainsci12030396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/08/2022] [Accepted: 03/14/2022] [Indexed: 02/04/2023] Open
Abstract
Chronic pelvic pain syndrome (CPPS) affects about 4–16% of adult women, and about one-third of them require medical assistance due to severe symptoms. Repetitive transcranial magnetic stimulation (rTMS) over the supplementary motor area (SMA) has been shown to manage pain in refractory CPPS. Focal muscle vibration (FMV) has also been reported to relieve pelvic pain. The objective of this study was to assess the feasibility and effect of rTMS coupled with FMV to reduce pain in seven adult women with refractory CPPS. This pilot, open-labeled, prospective trial examined treatment by 5 Hz rTMS over SMA and 150 Hz FMV over the perineum, suprapubic, and sacrococcygeal areas, with one daily session for five consecutive days for three weeks. We assessed tolerance and subjective pain changes (as per visual analog scale, VAS) until one month post-treatment, with a primary endpoint at day 7. No patients experienced serious adverse effects or a significant increase in pain. Six out of seven patients experienced a VAS improvement of at least 10% at T7; three of these individuals experienced a VAS improvement of more than 30%. Overall, we found a significant VAS reduction of 15 points (95% CI 8.4–21.6) at T7 (t = 6.3, p = 0.001; ES = 2.3 (1.1–3.9)). Three of the women who demonstrated a significant VAS reduction at T7 retained such VAS improvement at T30. VAS decreased by six points (95% CI 1.3–10.7) at T30 (t = 3.1, p = 0.02; ES = 1.5 (0.2–2.6)). This coupled approach seems promising for pain management in adult women with refractory CPPS and paves the way for future randomized controlled trials.
Collapse
|