1
|
Nielsen AI. Navigating uncertainty: a reflexive thematic analysis of rehabilitation staff's perception of communicative interactions in Disorders of Consciousness and Posttraumatic Amnesia. Disabil Rehabil 2024:1-16. [PMID: 39648769 DOI: 10.1080/09638288.2024.2435527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 11/07/2024] [Accepted: 11/22/2024] [Indexed: 12/10/2024]
Abstract
PURPOSE This study aims to improve our understanding of how communicative interaction is perceived by experienced rehabilitation staff working with patients with Disorders of Consciousness (DoC) and Posttraumatic Amnesia (PTA). METHOD This qualitative study involved five workshops guided by modified Nominal Group Technique with 22 professionals from six disciplines. Reflexive thematic analysis was employed for analysis. RESULTS Four main themes were developed: (1) Watching carefully for any reaction, (2) The Challenge of careful interpretation, (3) Framing the interaction, and (4) Valued knowledge for involving and communicating with the patient. Rehabilitation professionals exhibited awareness of minimal communicative behaviors but reported regular focus shifts from natural interactions to testing and validating behaviors as part of their clinical reasoning. The emphasis on reliability reflected insecurity in their interpretations. Although spontaneous interactions were recognized, they were often undervalued in favor of reproducible behaviors. Participants also stressed the importance of sharing communicative strategies to ensure consistent patient care. CONCLUSION The findings highlight the tension between ethical awareness and clinical reasoning, with staff prioritizing reliability over spontaneous communication. Structured support, training, and interprofessional collaboration are essential to help rehabilitation professionals navigate the complexities of DoC and PTA, ensuring that communicative interactions are effectively supported throughout recovery.
Collapse
Affiliation(s)
- Annesofie Ishøy Nielsen
- Division of Brain Injury, Department of Brain and Spinal Cord Injury, The Neuroscience Centre, Copenhagen University Hospital, Rigshospitalet, Denmark
- Department of Culture and Language, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
2
|
Xiao X, Ding J, Yu M, Dong Z, Cruz S, Ding N, Aubinet C, Laureys S, Di H, Chen Y. Exploring the clinical diagnostic value of linguistic learning ability in patients with disorders of consciousness using electrooculography. Neuroimage 2024; 297:120753. [PMID: 39053636 DOI: 10.1016/j.neuroimage.2024.120753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/15/2024] [Accepted: 07/23/2024] [Indexed: 07/27/2024] Open
Abstract
For patients with disorders of consciousness (DoC), accurate assessment of residual consciousness levels and cognitive abilities is critical for developing appropriate rehabilitation interventions. In this study, we investigated the potential of electrooculography (EOG) in assessing language processing abilities and consciousness levels. Patients' EOG data and related electrophysiological data were analysed before and after explicit language learning. The results showed distinct differences in vocabulary learning patterns among patients with varying levels of consciousness. While minimally conscious patients showed significant neural tracking of artificial words and notable learning effects similar to those observed in healthy controls, whereas patients with unresponsive wakefulness syndrome did not show such effects. Correlation analysis further indicated that EOG detected vocabulary learning effects with comparable validity to electroencephalography, reinforcing the credibility of EOG indicator as a diagnostic tool. Critically, EOG also revealed significant correlations between individual patients' linguistic learning performance and their Oromotor/verbal function as assessed through behavioural scales. In conclusion, this study explored the differences in language processing abilities among patients with varying consciousness levels. By demonstrating the utility of EOG in evaluating consciousness and detecting vocabulary learning effects, as well as its potential to guide personalised rehabilitation, our findings indicate that EOG indicators show promise as a rapid, accurate and effective additional tool for diagnosing and managing patients with DoC.
Collapse
Affiliation(s)
- Xiangyue Xiao
- International Unresponsive Wakefulness Syndrome and Consciousness Science Institute, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Ageing and Cancer Biology of Zhejiang Province, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Junhua Ding
- Department of Psychology, University of Edinburgh, Edinburgh EH8 9YL, UK
| | - Mingyan Yu
- International Unresponsive Wakefulness Syndrome and Consciousness Science Institute, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Ageing and Cancer Biology of Zhejiang Province, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhicai Dong
- International Unresponsive Wakefulness Syndrome and Consciousness Science Institute, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Ageing and Cancer Biology of Zhejiang Province, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Sara Cruz
- The Psychology for Development Research Centre, Lusiada University Porto, Porto 4100-348, Portugal
| | - Nai Ding
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Sciences, Zhejiang University, Hangzhou 310027, China
| | - Charlène Aubinet
- Coma Science Group, GIGA Consciousness & Centre du Cerveau, University and University Hospital of Liège, Liège 4000, Belgium; Psychology & Neuroscience of Cognition Research Unit, University of Liège, Liège 4000, Belgium
| | - Steven Laureys
- Coma Science Group, GIGA Consciousness & Centre du Cerveau, University and University Hospital of Liège, Liège 4000, Belgium
| | - Haibo Di
- International Unresponsive Wakefulness Syndrome and Consciousness Science Institute, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Ageing and Cancer Biology of Zhejiang Province, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| | - Yan Chen
- International Unresponsive Wakefulness Syndrome and Consciousness Science Institute, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Ageing and Cancer Biology of Zhejiang Province, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
3
|
Lejeune N, Fritz P, Cardone P, Szymkowicz E, Vitello MM, Martial C, Thibaut A, Gosseries O. Exploring the Significance of Cognitive Motor Dissociation on Patient Outcome in Acute Disorders of Consciousness. Semin Neurol 2024; 44:271-280. [PMID: 38604229 DOI: 10.1055/s-0044-1785507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Cognitive motor dissociation (CMD) is characterized by a dissociation between volitional brain responses and motor control, detectable only through techniques such as electroencephalography (EEG) and functional magnetic resonance imaging. Hence, it has recently emerged as a major challenge in the assessment of patients with disorders of consciousness. Specifically, this review focuses on the prognostic implications of CMD detection during the acute stage of brain injury. CMD patients were identified in each diagnostic category (coma, unresponsive wakefulness syndrome/vegetative state, minimally conscious state minus) with a relatively similar prevalence of around 20%. Current knowledge tends to indicate that the diagnosis of CMD in the acute phase often predicts a more favorable clinical outcome compared with other unresponsive non-CMD patients. Nevertheless, the review underscores the limited research in this domain, probably at least partially explained by its nascent nature and the lack of uniformity in the nomenclature for CMD-related disorders, hindering the impact of the literature in the field.
Collapse
Affiliation(s)
- Nicolas Lejeune
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
- DoC Care Unit, Centre Hospitalier Neurologique William Lennox, Ottignies-Louvain-la-Neuve, Belgium
- Institute of NeuroScience, UCLouvain, Brussels, Belgium
| | - Pauline Fritz
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
| | - Paolo Cardone
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
| | - Emilie Szymkowicz
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
| | - Marie M Vitello
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
| | - Charlotte Martial
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
| | - Aurore Thibaut
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
| | - Olivia Gosseries
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
| |
Collapse
|
4
|
Pisano F, Bilotta F. Verbal Glasgow Coma Scale as predictor of persistent disorder of consciousness: Insights for improving accuracy and reliability in clinical practice. Clin Neurol Neurosurg 2024; 240:108274. [PMID: 38583299 DOI: 10.1016/j.clineuro.2024.108274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/20/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024]
Abstract
This brief report discusses the relationship between verbal function, disorders of consciousness, and neurological follow-up after acute brain injury. It provides valuable insights for improving the accuracy and reliability of Verbal Glasgow Coma Scale scoring in clinical practice. The report addresses the need for standardized training and underlines the importance of physiological stabilization before assessment. Clarity in communication, recognition of non-verbal cues, and serial assessments are emphasized as critical factors to reduce the Verbal Glasgow Coma Scale inconsistencies. It also promotes interdisciplinary collaboration and cultural sensitivity to refine the Verbal Glasgow Coma Scale evaluation, improving the prediction of long-term neurological outcomes after acute brain injury and optimizing effective rehabilitation programs. Possible strategies to implement in the routine clinical practice the provided tips are discussed.
Collapse
Affiliation(s)
- Francesca Pisano
- Department of Cognitive Sciences, Psychology, Education and Cultural Studies, University of Messina, Messina 98121, Italy; Department of Anesthesiology, Critical Care and Pain Medicine, Policlinico Umberto I, "Sapienza" University of Rome, Rome 00161, Italy.
| | - Federico Bilotta
- Department of Anesthesiology, Critical Care and Pain Medicine, Policlinico Umberto I, "Sapienza" University of Rome, Rome 00161, Italy
| |
Collapse
|
5
|
Herbert C. Brain-computer interfaces and human factors: the role of language and cultural differences-Still a missing gap? Front Hum Neurosci 2024; 18:1305445. [PMID: 38665897 PMCID: PMC11043545 DOI: 10.3389/fnhum.2024.1305445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 02/02/2024] [Indexed: 04/28/2024] Open
Abstract
Brain-computer interfaces (BCIs) aim at the non-invasive investigation of brain activity for supporting communication and interaction of the users with their environment by means of brain-machine assisted technologies. Despite technological progress and promising research aimed at understanding the influence of human factors on BCI effectiveness, some topics still remain unexplored. The aim of this article is to discuss why it is important to consider the language of the user, its embodied grounding in perception, action and emotions, and its interaction with cultural differences in information processing in future BCI research. Based on evidence from recent studies, it is proposed that detection of language abilities and language training are two main topics of enquiry of future BCI studies to extend communication among vulnerable and healthy BCI users from bench to bedside and real world applications. In addition, cultural differences shape perception, actions, cognition, language and emotions subjectively, behaviorally as well as neuronally. Therefore, BCI applications should consider cultural differences in information processing to develop culture- and language-sensitive BCI applications for different user groups and BCIs, and investigate the linguistic and cultural contexts in which the BCI will be used.
Collapse
Affiliation(s)
- Cornelia Herbert
- Applied Emotion and Motivation Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| |
Collapse
|
6
|
Regnier A, Mélotte E, Aubinet C, Alnagger N, Fischer D, Lagier A, Thibaut A, Laureys S, Kaux JF, Gosseries O. Swallowing dysfunctions in patients with disorders of consciousness: Evidence from neuroimaging data, assessment, and management. NeuroRehabilitation 2024; 54:91-107. [PMID: 38217621 DOI: 10.3233/nre-230135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
Following severe brain injuries, a subset of patients may remain in an altered state of consciousness; most of these patients require artificial feeding. Currently, a functional oral phase and the presence of exclusive oral feeding may constitute signs of consciousness. Additionally, the presence of pharyngo-laryngeal secretions, saliva aspiration, cough reflex and tracheostomy are related to the level of consciousness. However, the link between swallowing and consciousness is yet to be fully understood. The primary aim of this review is to establish a comprehensive overview of the relationship between an individual's conscious behaviour and swallowing (reflexive and voluntary). Previous studies of brain activation during volitional and non-volitional swallowing tasks in healthy subjects are also reviewed. We demonstrate that the areas activated by voluntary swallowing tasks (primary sensorimotor, cingulate, insula, premotor, supplementary motor, cerebellum, and operculum) are not specific to deglutitive function but are shared with other motor tasks and brain networks involved in consciousness. This review also outlines suitable assessment and treatment methods for dysphagic patients with disorders of consciousness. Finally, we propose that markers of swallowing could contribute to the development of novel diagnostic guidelines for patients with disorders of consciousness.
Collapse
Affiliation(s)
- Amandine Regnier
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
- Department of Physical and Rehabilitation Medicine, University Hospital of Liège, Liège, Belgium
| | - Evelyne Mélotte
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium
| | - Charlène Aubinet
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
- Psychology and Neuroscience of Cognition Research Unit, University of Liège, Liège, Belgium
| | - Naji Alnagger
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
| | - David Fischer
- Department of Neurology, Division of Neurocritical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Aude Lagier
- Department of Otorhinolaryngology, University Hospital of Liège, Liège, Belgium
| | - Aurore Thibaut
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
| | - Steven Laureys
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
- Joint International Research Unit on Consciousness, CERVO Brain Research Centre, CIUSS, Laval University, Québec, QC, Canada
| | - Jean-François Kaux
- Department of Physical and Rehabilitation Medicine, University Hospital of Liège, Liège, Belgium
| | - Olivia Gosseries
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
| |
Collapse
|
7
|
Liuzzi P, Hakiki B, Draghi F, Romoli AM, Burali R, Scarpino M, Cecchi F, Grippo A, Mannini A. EEG fractal dimensions predict high-level behavioral responses in minimally conscious patients. J Neural Eng 2023; 20:046038. [PMID: 37494926 DOI: 10.1088/1741-2552/aceaac] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/26/2023] [Indexed: 07/28/2023]
Abstract
Objective.Brain-injured patients may enter a state of minimal or inconsistent awareness termed minimally conscious state (MCS). Such patient may (MCS+) or may not (MCS-) exhibit high-level behavioral responses, and the two groups retain two inherently different rehabilitative paths and expected outcomes. We hypothesized that brain complexity may be treated as a proxy of high-level cognition and thus could be used as a neural correlate of consciousness.Approach.In this prospective observational study, 68 MCS patients (MCS-: 30; women: 31) were included (median [IQR] age 69 [20]; time post-onset 83 [28]). At admission to intensive rehabilitation, 30 min resting-state closed-eyes recordings were performed together with consciousness diagnosis following international guidelines. The width of the multifractal singularity spectrum (MSS) was computed for each channel time series and entered nested cross-validated interpretable machine learning models targeting the differential diagnosis of MCS±.Main results.Frontal MSS widths (p< 0.05), as well as the ones deriving from the left centro-temporal network (C3:p= 0.018, T3:p= 0.017; T5:p= 0.003) were found to be significantly higher in the MCS+ cohort. The best performing solution was found to be the K-nearest neighbor model with an aggregated test accuracy of 75.5% (median [IQR] AuROC for 100 executions 0.88 [0.02]). Coherently, the electrodes with highest Shapley values were found to be Fz and Cz, with four out the first five ranked features belonging to the fronto-central network.Significance.MCS+ is a frequent condition associated with a notably better prognosis than the MCS-. High fractality in the left centro-temporal network results coherent with neurological networks involved in the language function, proper of MCS+ patients. Using EEG-based interpretable algorithm to complement differential diagnosis of consciousness may improve rehabilitation pathways and communications with caregivers.
Collapse
Affiliation(s)
- Piergiuseppe Liuzzi
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via di Scandicci 269, Firenze, FI, Italy
- The Biorobotics Institute, Scuola Superiore Sant'Anna Istituto di BioRobotica, Viale Rinaldo Piaggio 34, Pontedera, PI, Italy
| | - Bahia Hakiki
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via di Scandicci 269, Firenze, FI, Italy
| | - Francesca Draghi
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via di Scandicci 269, Firenze, FI, Italy
| | - Anna Maria Romoli
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via di Scandicci 269, Firenze, FI, Italy
| | - Rachele Burali
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via di Scandicci 269, Firenze, FI, Italy
| | - Maenia Scarpino
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via di Scandicci 269, Firenze, FI, Italy
| | - Francesca Cecchi
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via di Scandicci 269, Firenze, FI, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, Florence, 50143 FI, Italy
| | - Antonello Grippo
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via di Scandicci 269, Firenze, FI, Italy
| | - Andrea Mannini
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via di Scandicci 269, Firenze, FI, Italy
| |
Collapse
|
8
|
Liuzzi P, Hakiki B, Scarpino M, Burali R, Maiorelli A, Draghi F, Romoli AM, Grippo A, Cecchi F, Mannini A. Neural coding of autonomic functions in different states of consciousness. J Neuroeng Rehabil 2023; 20:96. [PMID: 37491259 PMCID: PMC10369699 DOI: 10.1186/s12984-023-01216-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/10/2023] [Indexed: 07/27/2023] Open
Abstract
Detecting signs of residual neural activity in patients with altered states of consciousness is a crucial issue for the customization of neurorehabilitation treatments and clinical decision-making. With this large observational prospective study, we propose an innovative approach to detect residual signs of consciousness via the assessment of the amount of autonomic information coded within the brain. The latter was estimated by computing the mutual information (MI) between preprocessed EEG and ECG signals, to be then compared across consciousness groups, together with the absolute power and an international qualitative labeling. One-hundred seventy-four patients (73 females, 42%) were included in the study (median age of 65 years [IQR = 20], MCS +: 29, MCS -: 23, UWS: 29). Electroencephalography (EEG) information content was found to be mostly related to the coding of electrocardiography (ECG) activity, i.e., with higher MI (p < 0.05), in Unresponsive Wakefulness Syndrome and Minimally Consciousness State minus (MCS -). EEG-ECG MI, besides clearly discriminating patients in an MCS - and +, significantly differed between lesioned areas (sides) in a subgroup of unilateral hemorrhagic patients. Crucially, such an accessible and non-invasive measure of residual consciousness signs was robust across electrodes and patient groups. Consequently, exiting from a strictly neuro-centric consciousness detection approach may be the key to provide complementary insights for the objective assessment of patients' consciousness levels and for the patient-specific planning of rehabilitative interventions.
Collapse
Affiliation(s)
- Piergiuseppe Liuzzi
- Sant’Anna School of Advanced Studies, The BioRobotics Institute, Viale Rinaldo Piaggio 69, 56025 Pontedera, PI Italy
- IRCSS Fondazione Don Carlo Gnocchi ONLUS, Via di Scandicci 269, FI 50143 Florence, Italy
| | - Bahia Hakiki
- IRCSS Fondazione Don Carlo Gnocchi ONLUS, Via di Scandicci 269, FI 50143 Florence, Italy
| | - Maenia Scarpino
- IRCSS Fondazione Don Carlo Gnocchi ONLUS, Via di Scandicci 269, FI 50143 Florence, Italy
| | - Rachele Burali
- IRCSS Fondazione Don Carlo Gnocchi ONLUS, Via di Scandicci 269, FI 50143 Florence, Italy
| | - Antonio Maiorelli
- IRCSS Fondazione Don Carlo Gnocchi ONLUS, Via di Scandicci 269, FI 50143 Florence, Italy
| | - Francesca Draghi
- IRCSS Fondazione Don Carlo Gnocchi ONLUS, Via di Scandicci 269, FI 50143 Florence, Italy
| | - Anna Maria Romoli
- IRCSS Fondazione Don Carlo Gnocchi ONLUS, Via di Scandicci 269, FI 50143 Florence, Italy
| | - Antonello Grippo
- IRCSS Fondazione Don Carlo Gnocchi ONLUS, Via di Scandicci 269, FI 50143 Florence, Italy
| | - Francesca Cecchi
- IRCSS Fondazione Don Carlo Gnocchi ONLUS, Via di Scandicci 269, FI 50143 Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50143 Florence, FI Italy
| | - Andrea Mannini
- IRCSS Fondazione Don Carlo Gnocchi ONLUS, Via di Scandicci 269, FI 50143 Florence, Italy
| |
Collapse
|
9
|
Ferré F, Heine L, Naboulsi E, Gobert F, Beaudoin-Gobert M, Dailler F, Buffières W, Corneyllie A, Sarton B, Riu B, Luauté J, Silva S, Perrin F. Self-processing in coma, unresponsive wakefulness syndrome and minimally conscious state. Front Hum Neurosci 2023; 17:1145253. [PMID: 37125347 PMCID: PMC10132704 DOI: 10.3389/fnhum.2023.1145253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/23/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction Behavioral and cerebral dissociation has been now clearly established in some patients with acquired disorders of consciousness (DoC). Altogether, these studies mainly focused on the preservation of high-level cognitive markers in prolonged DoC, but did not specifically investigate lower but key-cognitive functions to consciousness emergence, such as the ability to take a first-person perspective, notably at the acute stage of coma. We made the hypothesis that the preservation of self-recognition (i) is independent of the behavioral impairment of consciousness, and (ii) can reflect the ability to recover consciousness. Methods Hence, using bedside Electroencephalography (EEG) recordings, we acquired, in a large cohort of 129 severely brain damaged patients, the brain response to the passive listening of the subject's own name (SON) and unfamiliar other first names (OFN). One hundred and twelve of them (mean age ± SD = 46 ± 18.3 years, sex ratio M/F: 71/41) could be analyzed for the detection of an individual and significant discriminative P3 event-related brain response to the SON as compared to OFN ('SON effect', primary endpoint assessed by temporal clustering permutation tests). Results Patients were either coma (n = 38), unresponsive wakefulness syndrome (UWS, n = 30) or minimally conscious state (MCS, n = 44), according to the revised version of the Coma Recovery Scale (CRS-R). Overall, 33 DoC patients (29%) evoked a 'SON effect'. This electrophysiological index was similar between coma (29%), MCS (23%) and UWS (34%) patients (p = 0.61). MCS patients at the time of enrolment were more likely to emerged from MCS (EMCS) at 6 months than coma and UWS patients (p = 0.013 for comparison between groups). Among the 72 survivors' patients with event-related responses recorded within 3 months after brain injury, 75% of the 16 patients with a SON effect were EMCS at 6 months, while 59% of the 56 patients without a SON effect evolved to this favorable behavioral outcome. Discussion About 30% of severely brain-damaged patients suffering from DoC are capable to process salient self-referential auditory stimuli, even in case of absence of behavioral detection of self-conscious processing. We suggest that self-recognition covert brain ability could be an index of consciousness recovery, and thus could help to predict good outcome.
Collapse
Affiliation(s)
- Fabrice Ferré
- CAP Team (Cognition Auditive et Psychoacoustique), Lyon Neuroscience Research Centre (Université Claude Bernard Lyon 1, INSERM U1028, CNRS UMR5292), Bron Cedex, France
- Intensive Care Unit, Purpan University Teaching Hospital, Place du Dr Joseph Baylac, Toulouse CEDEX 9, France
- Toulouse NeuroImaging Centre (ToNIC), UPS—INSERM UMR, Place du Dr Joseph Baylac, Purpan University Teaching Hospital, Toulouse CEDEX 3, France
- *Correspondence: Fabrice Ferré,
| | - Lizette Heine
- CAP Team (Cognition Auditive et Psychoacoustique), Lyon Neuroscience Research Centre (Université Claude Bernard Lyon 1, INSERM U1028, CNRS UMR5292), Bron Cedex, France
| | - Edouard Naboulsi
- Intensive Care Unit, Purpan University Teaching Hospital, Place du Dr Joseph Baylac, Toulouse CEDEX 9, France
| | - Florent Gobert
- CAP Team (Cognition Auditive et Psychoacoustique), Lyon Neuroscience Research Centre (Université Claude Bernard Lyon 1, INSERM U1028, CNRS UMR5292), Bron Cedex, France
- Neuro-Intensive Care Unit, Hospices Civils de Lyon, Neurological Hospital Pierre-Wertheimer, Bron, France
- Trajectoires Team, Lyon Neuroscience Research Centre (Université Claude Bernard Lyon 1, INSERM U1028, CNRS UMR5292), Bron, France
| | - Maude Beaudoin-Gobert
- Physical Medicine and Rehabilitation Department, Henry-Gabrielle Hospital, Hospices Civils de Lyon, Saint Genis Laval, France
| | - Frédéric Dailler
- Neuro-Intensive Care Unit, Hospices Civils de Lyon, Neurological Hospital Pierre-Wertheimer, Bron, France
| | - William Buffières
- Intensive Care Unit, Purpan University Teaching Hospital, Place du Dr Joseph Baylac, Toulouse CEDEX 9, France
- Toulouse NeuroImaging Centre (ToNIC), UPS—INSERM UMR, Place du Dr Joseph Baylac, Purpan University Teaching Hospital, Toulouse CEDEX 3, France
| | - Alexandra Corneyllie
- CAP Team (Cognition Auditive et Psychoacoustique), Lyon Neuroscience Research Centre (Université Claude Bernard Lyon 1, INSERM U1028, CNRS UMR5292), Bron Cedex, France
| | - Benjamine Sarton
- Intensive Care Unit, Purpan University Teaching Hospital, Place du Dr Joseph Baylac, Toulouse CEDEX 9, France
- Toulouse NeuroImaging Centre (ToNIC), UPS—INSERM UMR, Place du Dr Joseph Baylac, Purpan University Teaching Hospital, Toulouse CEDEX 3, France
| | - Béatrice Riu
- Intensive Care Unit, Purpan University Teaching Hospital, Place du Dr Joseph Baylac, Toulouse CEDEX 9, France
| | - Jacques Luauté
- Physical Medicine and Rehabilitation Department, Henry-Gabrielle Hospital, Hospices Civils de Lyon, Saint Genis Laval, France
| | - Stein Silva
- Intensive Care Unit, Purpan University Teaching Hospital, Place du Dr Joseph Baylac, Toulouse CEDEX 9, France
- Toulouse NeuroImaging Centre (ToNIC), UPS—INSERM UMR, Place du Dr Joseph Baylac, Purpan University Teaching Hospital, Toulouse CEDEX 3, France
| | - Fabien Perrin
- CAP Team (Cognition Auditive et Psychoacoustique), Lyon Neuroscience Research Centre (Université Claude Bernard Lyon 1, INSERM U1028, CNRS UMR5292), Bron Cedex, France
| |
Collapse
|
10
|
Development of an Italian version of the functional communication measures and preliminary observations in patients with severe acquired brain injury and emerging from a prolonged disorder of consciousness. Neurol Sci 2022; 43:5267-5273. [PMID: 35657497 DOI: 10.1007/s10072-022-06173-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/26/2022] [Indexed: 01/07/2023]
Abstract
A proper assessment tool targeting communicative abilities in patients with severe acquired brain injury (sABI), and particularly for patients recovering from prolonged disorders of consciousness (pDoC), is lacking. The Functional Communication Measures (FCM) consists of a series of rating scales, ranging from 1 (least functional) to 7 (most functional), assessing cognitive requirements for communication and communicative abilities in patients with brain injury. Here we presented exploratory data concerning an Italian adaptation of FCM administered to patients with sABI. After the translation into Italian language, the FCM was blindly administered by 2 independent speech therapists to 19 patients (10 males; median age = 58; IQR = 25) admitted to neurorehabilitation unit after sABI with a level of cognitive functioning between 4 and 8. Two further patients who presented a pDoC after sABI and emerged from the minimally conscious state (a 64-year-old female and a 74-year-old female) were also evaluated by means of the FCM, the Coma Recovery Scale-Revised, and the Disability Rating Scale. Inter-rater agreement was almost perfect for attention, memory, and swallowing items, and substantial for communicative-augmentative communication, motor speech, spoken language expression, and spoken language comprehension. Importantly, in the two pDoC patients, the FCM identified two different functioning profiles in the attention, swallowing, motor speech, and spoken language expression scales, notwithstanding the two patients achieved the same scores on scales for functional disability and consciousness level. The FCM might be a promising and easy-to-administer tool to assess communicative functions in patients with sABI, independently from evaluation of functional disability.
Collapse
|
11
|
Stasolla F, Vinci LA, Cusano M. The Integration of Assistive Technology and Virtual Reality for Assessment and Recovery of Post-coma Patients With Disorders of Consciousness: A New Hypothesis. Front Psychol 2022; 13:905811. [PMID: 35899005 PMCID: PMC9309568 DOI: 10.3389/fpsyg.2022.905811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/22/2022] [Indexed: 11/18/2022] Open
|
12
|
Bodien YG, Katz DI, Schiff ND, Giacino JT. Behavioral Assessment of Patients with Disorders of Consciousness. Semin Neurol 2022; 42:249-258. [PMID: 36100225 PMCID: PMC11529827 DOI: 10.1055/s-0042-1756298] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Severe brain injury is associated with a period of impaired level of consciousness that can last from days to months and results in chronic impairment. Systematic assessment of level of function in patients with disorders of consciousness (DoC) is critical for diagnosis, prognostication, and evaluation of treatment efficacy. Approximately 40% of patients who are thought to be unconscious based on clinical bedside behavioral assessment demonstrate some signs of consciousness on standardized behavioral assessment. This finding, in addition to a growing body of literature demonstrating the advantages of standardized behavioral assessment of DoC, has led multiple professional societies and clinical guidelines to recommend standardized assessment over routine clinical evaluation of consciousness. Nevertheless, even standardized assessment is susceptible to biases and misdiagnosis, and examiners should consider factors, such as fluctuating arousal and aphasia, that may confound evaluation. We review approaches to behavioral assessment of consciousness, recent clinical guideline recommendations for use of specific measures to evaluate patients with DoC, and strategies for mitigating common biases that may confound the examination.
Collapse
Affiliation(s)
- Yelena G. Bodien
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Douglas I. Katz
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
- Brain Injury Program, Encompass Health Braintree Rehabilitation Hospital, Braintree, Massachusetts
| | - Nicholas D. Schiff
- Feil Family Brain and Mind Institute, Weill Cornell Medicine, New York, New York
- Department of Neurology, Weill Cornell Brain and Spine Institute, Weill Cornell Medicine, New York, NY, United States
| | - Joseph T. Giacino
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Charlestown, Massachusetts
| |
Collapse
|
13
|
Aubinet C, Schnakers C, Majerus S. Language Assessment in Patients with Disorders of Consciousness. Semin Neurol 2022; 42:273-282. [PMID: 36100226 DOI: 10.1055/s-0042-1755561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
The assessment of residual language abilities in patients with disorders of consciousness (DoC) after severe brain injury is particularly challenging due to their limited behavioral repertoire. Moreover, associated language impairment such as receptive aphasia may lead to an underestimation of actual consciousness levels. In this review, we examine past research on the assessment of residual language processing in DoC patients, and we discuss currently available tools for identifying language-specific abilities and their prognostic value. We first highlight the need for validated and sensitive bedside behavioral assessment tools for residual language abilities in DoC patients. As regards neuroimaging and electrophysiological methods, the tasks involving higher level linguistic commands appear to be the most informative about level of consciousness and have the best prognostic value. Neuroimaging methods should be combined with the most appropriate behavioral tools in multimodal assessment protocols to assess receptive language abilities in DoC patients in the most complete and sensitive manner.
Collapse
Affiliation(s)
- Charlène Aubinet
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium.,Centre du Cerveau, University Hospital of Liège, Liège, Belgium.,Psychology and Neuroscience of Cognition Research Unit, University of Liège, Liège, Belgium
| | - Caroline Schnakers
- Research Institute, Casa Colina Hospital and Centers for Healthcare, Pomona, California
| | - Steve Majerus
- Psychology and Neuroscience of Cognition Research Unit, University of Liège, Liège, Belgium
| |
Collapse
|