1
|
Chen L, Fukuda AM, Jiang S, Leuchter MK, van Rooij SJH, Widge AS, McDonald WM, Carpenter LL. Treating Depression With Repetitive Transcranial Magnetic Stimulation: A Clinician's Guide. Am J Psychiatry 2025; 182:525-541. [PMID: 40302403 DOI: 10.1176/appi.ajp.20240859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Transcranial magnetic stimulation (TMS) applies electromagnetic pulses to stimulate cortical neurons. The antidepressant effect of the repetitive application of TMS (rTMS) was first shown nearly three decades ago. The therapeutic potential of TMS has been extensively investigated, mostly in treatment-resistant depression (TRD). Studies have extensively evaluated stimulation parameters, treatment schedules, methods to localize the stimulation target, and different magnetic coil designs engineered for desired stimulation breadth and depth. Several of these stimulation protocols and coils/devices have received U.S. Food and Drug Administration (FDA) clearance for application in TRD and other neuropsychiatric disorders, such as obsessive-compulsive disorder. Some stimulation protocols, while not FDA-cleared, have substantial clinical trial-derived evidence to support their safety and antidepressant efficacy. The proliferation of rTMS translational and clinical research has resulted in the field's advancement. This clinician-oriented review contains an overview of fundamental TMS principles, physiological effects, and studies of rTMS in TRD. Also discussed are two innovations that are increasingly applied in the clinic: theta burst stimulation and accelerated scheduling. A synthesis of the key clinical considerations given to patient assessment and safety, treatment setup, and the minimization and management of adverse effects is provided.
Collapse
Affiliation(s)
- Leo Chen
- Department of Psychiatry, School of Translational Medicine, Monash University and Alfred Mental and Addiction Health, Alfred Health, Melbourne, Victoria, Australia (Chen); Psychiatric Neurotherapeutics Program, Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA and Department of Psychiatry, Harvard Medical School, Boston (Fukuda); Department of Psychiatry, University of Florida, Gainesville (Jiang); TMS Clinical and Research Program, Neuromodulation Division, UCLA Semel Institute for Neuroscience and Human Behavior and Department of Psychiatry and Biobehavioral Sciences, UCLA David Geffen School of Medicine, Los Angeles (Leuchter); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (van Rooij, McDonald); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Butler Hospital, Department of Psychiatry and Human Behavior, Alpert Medical School at Brown University, Providence, Rhode Island (Carpenter)
| | - Andrew M Fukuda
- Department of Psychiatry, School of Translational Medicine, Monash University and Alfred Mental and Addiction Health, Alfred Health, Melbourne, Victoria, Australia (Chen); Psychiatric Neurotherapeutics Program, Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA and Department of Psychiatry, Harvard Medical School, Boston (Fukuda); Department of Psychiatry, University of Florida, Gainesville (Jiang); TMS Clinical and Research Program, Neuromodulation Division, UCLA Semel Institute for Neuroscience and Human Behavior and Department of Psychiatry and Biobehavioral Sciences, UCLA David Geffen School of Medicine, Los Angeles (Leuchter); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (van Rooij, McDonald); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Butler Hospital, Department of Psychiatry and Human Behavior, Alpert Medical School at Brown University, Providence, Rhode Island (Carpenter)
| | - Shixie Jiang
- Department of Psychiatry, School of Translational Medicine, Monash University and Alfred Mental and Addiction Health, Alfred Health, Melbourne, Victoria, Australia (Chen); Psychiatric Neurotherapeutics Program, Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA and Department of Psychiatry, Harvard Medical School, Boston (Fukuda); Department of Psychiatry, University of Florida, Gainesville (Jiang); TMS Clinical and Research Program, Neuromodulation Division, UCLA Semel Institute for Neuroscience and Human Behavior and Department of Psychiatry and Biobehavioral Sciences, UCLA David Geffen School of Medicine, Los Angeles (Leuchter); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (van Rooij, McDonald); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Butler Hospital, Department of Psychiatry and Human Behavior, Alpert Medical School at Brown University, Providence, Rhode Island (Carpenter)
| | - Michael K Leuchter
- Department of Psychiatry, School of Translational Medicine, Monash University and Alfred Mental and Addiction Health, Alfred Health, Melbourne, Victoria, Australia (Chen); Psychiatric Neurotherapeutics Program, Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA and Department of Psychiatry, Harvard Medical School, Boston (Fukuda); Department of Psychiatry, University of Florida, Gainesville (Jiang); TMS Clinical and Research Program, Neuromodulation Division, UCLA Semel Institute for Neuroscience and Human Behavior and Department of Psychiatry and Biobehavioral Sciences, UCLA David Geffen School of Medicine, Los Angeles (Leuchter); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (van Rooij, McDonald); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Butler Hospital, Department of Psychiatry and Human Behavior, Alpert Medical School at Brown University, Providence, Rhode Island (Carpenter)
| | - Sanne J H van Rooij
- Department of Psychiatry, School of Translational Medicine, Monash University and Alfred Mental and Addiction Health, Alfred Health, Melbourne, Victoria, Australia (Chen); Psychiatric Neurotherapeutics Program, Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA and Department of Psychiatry, Harvard Medical School, Boston (Fukuda); Department of Psychiatry, University of Florida, Gainesville (Jiang); TMS Clinical and Research Program, Neuromodulation Division, UCLA Semel Institute for Neuroscience and Human Behavior and Department of Psychiatry and Biobehavioral Sciences, UCLA David Geffen School of Medicine, Los Angeles (Leuchter); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (van Rooij, McDonald); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Butler Hospital, Department of Psychiatry and Human Behavior, Alpert Medical School at Brown University, Providence, Rhode Island (Carpenter)
| | - Alik S Widge
- Department of Psychiatry, School of Translational Medicine, Monash University and Alfred Mental and Addiction Health, Alfred Health, Melbourne, Victoria, Australia (Chen); Psychiatric Neurotherapeutics Program, Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA and Department of Psychiatry, Harvard Medical School, Boston (Fukuda); Department of Psychiatry, University of Florida, Gainesville (Jiang); TMS Clinical and Research Program, Neuromodulation Division, UCLA Semel Institute for Neuroscience and Human Behavior and Department of Psychiatry and Biobehavioral Sciences, UCLA David Geffen School of Medicine, Los Angeles (Leuchter); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (van Rooij, McDonald); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Butler Hospital, Department of Psychiatry and Human Behavior, Alpert Medical School at Brown University, Providence, Rhode Island (Carpenter)
| | - William M McDonald
- Department of Psychiatry, School of Translational Medicine, Monash University and Alfred Mental and Addiction Health, Alfred Health, Melbourne, Victoria, Australia (Chen); Psychiatric Neurotherapeutics Program, Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA and Department of Psychiatry, Harvard Medical School, Boston (Fukuda); Department of Psychiatry, University of Florida, Gainesville (Jiang); TMS Clinical and Research Program, Neuromodulation Division, UCLA Semel Institute for Neuroscience and Human Behavior and Department of Psychiatry and Biobehavioral Sciences, UCLA David Geffen School of Medicine, Los Angeles (Leuchter); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (van Rooij, McDonald); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Butler Hospital, Department of Psychiatry and Human Behavior, Alpert Medical School at Brown University, Providence, Rhode Island (Carpenter)
| | - Linda L Carpenter
- Department of Psychiatry, School of Translational Medicine, Monash University and Alfred Mental and Addiction Health, Alfred Health, Melbourne, Victoria, Australia (Chen); Psychiatric Neurotherapeutics Program, Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA and Department of Psychiatry, Harvard Medical School, Boston (Fukuda); Department of Psychiatry, University of Florida, Gainesville (Jiang); TMS Clinical and Research Program, Neuromodulation Division, UCLA Semel Institute for Neuroscience and Human Behavior and Department of Psychiatry and Biobehavioral Sciences, UCLA David Geffen School of Medicine, Los Angeles (Leuchter); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (van Rooij, McDonald); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Butler Hospital, Department of Psychiatry and Human Behavior, Alpert Medical School at Brown University, Providence, Rhode Island (Carpenter)
| |
Collapse
|
2
|
Oostra E, Jazdzyk P, Vis V, Dalhuisen I, Hoogendoorn AW, Planting CHM, van Eijndhoven PF, van der Werf YD, van den Heuvel OA, van Exel E. More rTMS pulses or more sessions? The impact on treatment outcome for treatment resistant depression. Acta Psychiatr Scand 2025; 151:485-505. [PMID: 39569643 PMCID: PMC11884915 DOI: 10.1111/acps.13768] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/10/2024] [Accepted: 10/23/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) is effective for treatment-resistant depression (TRD). Optimal rTMS parameters remain unclear, especially whether number of sessions or amount of pulses contribute more to treatment outcome. We hypothesize that treatment outcome depends on the number of sessions rather than on the amount of pulses. METHODS We searched databases for randomized clinical trials (RCTs) on high-frequent (HF) or low-frequent (LF)-rTMS targeting the left or right DLPFC for TRD. Treatment efficacy was measured using standardized mean difference (SMD), calculated from pre- and post-treatment depression scores. Meta-regressions were used to explore linear associations between SMD and rTMS pulses, pulses/session and sessions for HF and LF-rTMS, separately for active and sham-rTMS. If these variables showed no linear association with SMD, we divided the data into quartiles and explored subgroup SMDs. RESULTS Eighty-seven RCTs were included: 67 studied HF-rTMS, eleven studied LF-rTMS, and nine studied both. No linear association was found between SMD and amount of pulses or pulses/session for HF and LF-rTMS. Subgroup analyses showed the largest SMDs for 1200-1500 HF-pulses/session and 360-450 LF-pulses/session. The number of sessions was significantly associated with SMD for active HF (β = 0.09, p < 0.05) and LF-rTMS (β = 0.06, p < 0.01). Thirty was the maximal number of sessions, in the included RCTs. CONCLUSION More rTMS sessions, but not more pulses, were associated with improved treatment outcome, in both HF and LF-rTMS. Our findings suggest that 1200-1500 HF-pulses/session and 360-450 LF-pulses/session are already sufficient, and that a treatment course should consist of least 30 sessions for higher chance of response.
Collapse
Affiliation(s)
- E. Oostra
- Amsterdam UMC, Dept. PsychiatryVrije Universiteit AmsterdamAmsterdamNetherlands
- Amsterdam UMC, Dept Anatomy & NeuroscienceVrije Universiteit AmsterdamAmsterdamNetherlands
- GGZ inGeest Specialized Mental Health CareAmsterdamNetherlands
- Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress programAmsterdamNetherlands
| | - P. Jazdzyk
- Second Department of PsychiatryInstitute of Psychiatry and NeurologyWarsawPoland
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical ResearchMedical University of WarsawWarsawPoland
| | - V. Vis
- Amsterdam UMC, Dept Anatomy & NeuroscienceVrije Universiteit AmsterdamAmsterdamNetherlands
| | - I. Dalhuisen
- Department of PsychiatryRadboud University Medical CenterNijmegenHBNetherlands
- Donders Institute of Brain Cognition and BehaviorCentre for NeuroscienceNijmegenHENetherlands
| | - A. W. Hoogendoorn
- Amsterdam UMC, Dept. PsychiatryVrije Universiteit AmsterdamAmsterdamNetherlands
- GGZ inGeest Specialized Mental Health CareAmsterdamNetherlands
| | - C. H. M. Planting
- Amsterdam UMC, Dept. PsychiatryVrije Universiteit AmsterdamAmsterdamNetherlands
- GGZ inGeest Specialized Mental Health CareAmsterdamNetherlands
| | - P. F. van Eijndhoven
- Department of PsychiatryRadboud University Medical CenterNijmegenHBNetherlands
- Donders Institute of Brain Cognition and BehaviorCentre for NeuroscienceNijmegenHENetherlands
| | - Y. D. van der Werf
- Amsterdam UMC, Dept Anatomy & NeuroscienceVrije Universiteit AmsterdamAmsterdamNetherlands
- Amsterdam Neuroscience, Compulsivity Impulsivity AttentionAmsterdamNetherlands
| | - O. A. van den Heuvel
- Amsterdam UMC, Dept. PsychiatryVrije Universiteit AmsterdamAmsterdamNetherlands
- Amsterdam UMC, Dept Anatomy & NeuroscienceVrije Universiteit AmsterdamAmsterdamNetherlands
- Amsterdam Neuroscience, Compulsivity Impulsivity AttentionAmsterdamNetherlands
| | - E. van Exel
- Amsterdam UMC, Dept. PsychiatryVrije Universiteit AmsterdamAmsterdamNetherlands
- GGZ inGeest Specialized Mental Health CareAmsterdamNetherlands
- Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress programAmsterdamNetherlands
| |
Collapse
|
3
|
Trapp NT, Purgianto A, Taylor JJ, Singh MK, Oberman LM, Mickey BJ, Youssef NA, Solzbacher D, Zebley B, Cabrera LY, Conroy S, Cristancho M, Richards JR, Flood MJ, Barbour T, Blumberger DM, Taylor SF, Feifel D, Reti IM, McClintock SM, Lisanby SH, Husain MM. Consensus review and considerations on TMS to treat depression: A comprehensive update endorsed by the National Network of Depression Centers, the Clinical TMS Society, and the International Federation of Clinical Neurophysiology. Clin Neurophysiol 2025; 170:206-233. [PMID: 39756350 PMCID: PMC11825283 DOI: 10.1016/j.clinph.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/13/2024] [Accepted: 12/01/2024] [Indexed: 01/07/2025]
Abstract
This article updates the prior 2018 consensus statement by the National Network of Depression Centers (NNDC) on the use of transcranial magnetic stimulation (TMS) in the treatment of depression, incorporating recent research and clinical developments. Publications on TMS and depression between September 2016 and April 2024 were identified using methods informed by PRISMA guidelines. The NNDC Neuromodulation Work Group met monthly between October 2022 and April 2024 to define important clinical topics and review pertinent literature. A modified Delphi method was used to achieve consensus. 2,396 abstracts and manuscripts met inclusion criteria for review. The work group generated consensus statements which include an updated narrative review of TMS safety, efficacy, and clinical features of use for depression. Considerations related to training, roles/responsibilities of providers, and documentation are also discussed. TMS continues to demonstrate broad evidence for safety and efficacy in treating depression. Newer forms of TMS are faster and potentially more effective than conventional repetitive TMS. Further exploration of targeting methods, use in special populations, and accelerated protocols is encouraged. This article provides an updated overview of topics relevant to the administration of TMS for depression and summarizes expert, consensus opinion on the practice of TMS in the United States.
Collapse
Affiliation(s)
- Nicholas T Trapp
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA.
| | - Anthony Purgianto
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Joseph J Taylor
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Manpreet K Singh
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Sacramento, CA, USA
| | - Lindsay M Oberman
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Brian J Mickey
- Department of Psychiatry, Huntsman Mental Health Institute, University of Utah, Salt Lake City, UT, USA
| | - Nagy A Youssef
- Pine Rest Christian Mental Health Services, Grand Rapids, MI, USA; Division of Psychiatry and Behavioral Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Daniela Solzbacher
- Department of Psychiatry, Huntsman Mental Health Institute, University of Utah, Salt Lake City, UT, USA
| | - Benjamin Zebley
- Department of Psychiatry, Weill Cornell Medicine, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Laura Y Cabrera
- Department of Engineering Science and Mechanics, Center for Neural Engineering, Pennsylvania State University, University Park, PA, USA
| | - Susan Conroy
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mario Cristancho
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Jackson R Richards
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | | | - Tracy Barbour
- Division of Neuropsychiatry and Neuromodulation, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel M Blumberger
- Department of Psychiatry, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
| | - Stephan F Taylor
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - David Feifel
- Kadima Neuropsychiatry Institute, La Jolla, CA, USA; University of California-San Diego, San Diego, CA, USA
| | - Irving M Reti
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Shawn M McClintock
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas,TX, USA
| | - Sarah H Lisanby
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA; Division of Translational Research, National Institute of Mental Health, Bethesda, MD, USA; Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Mustafa M Husain
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas,TX, USA; Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
4
|
Dalhuisen I, Bui K, Kleijburg A, van Oostrom I, Spijker J, van Exel E, van Mierlo H, de Waardt D, Arns M, Tendolkar I, van Eijndhoven P, Wijnen B. Cost-Effectiveness of rTMS as a Next Step in Antidepressant Non-Responders: A Randomized Comparison With Current Antidepressant Treatment Approaches. Acta Psychiatr Scand 2024; 151:613-624. [PMID: 39709996 PMCID: PMC11962342 DOI: 10.1111/acps.13782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/29/2024] [Accepted: 12/08/2024] [Indexed: 12/24/2024]
Abstract
BACKGROUND Although repetitive transcranial magnetic stimulation (rTMS) is an effective and commonly used treatment option for treatment-resistant depression, its cost-effectiveness remains much less studied. In particular, the comparative cost-effectiveness of rTMS and other treatment options, such as antidepressant medication, has not been investigated. METHODS An economic evaluation with 12 months follow-up was conducted in the Dutch care setting as part of a pragmatic multicenter randomized controlled trial, in which patients with treatment-resistant depression were randomized to treatment with rTMS or treatment with the next pharmacological step according to the treatment algorithm. Missing data were handled with single imputations using predictive mean matching (PMM) nested in bootstraps. Incremental cost-effectiveness and cost-utility ratios (ICERs/ICURs) were calculated, as well as cost-effectiveness planes and cost-effectiveness acceptability curves (CEACs). RESULTS Higher QALYs, response, and remission rates were found for lower costs when comparing the rTMS group to the medication group. After 12 months, QALYs were 0.618 in the rTMS group and 0.545 in the medication group. The response was 27.1% and 24.4% and remission was 25.0% and 17.1%, respectively. Incremental costs for rTMS were -€2.280, resulting in a dominant ICUR for QALYs and ICER for response and remission. CONCLUSION rTMS appears to be a cost-effective treatment option for treatment-resistant depression when compared to the next pharmacological treatment step. The results support the implementation of rTMS as a step in the treatment algorithm for depression. TRIAL REGISTRATION The trial is registered within the Netherlands Trial Register (code: NL7628, date: March 29, 2019).
Collapse
Affiliation(s)
- Iris Dalhuisen
- Department of PsychiatryRadboud University Medical CenterNijmegenThe Netherlands
- Donders Institute for Brain Cognition and BehaviorCentre for Medical NeuroscienceNijmegenThe Netherlands
| | - Kim Bui
- Department of Health Sciences, Faculty of Earth and Life SciencesVU UniversityAmsterdamThe Netherlands
- Center for Economic Evaluation, Trimbos Institute – Netherlands Institute of Mental Health and AddictionUtrechtThe Netherlands
| | - Anne Kleijburg
- Center for Economic Evaluation, Trimbos Institute – Netherlands Institute of Mental Health and AddictionUtrechtThe Netherlands
- Department of Health Services Research, CAPHRI Care and Public Health Research InstituteMaastricht UniversityMaastrichtThe Netherlands
| | | | - Jan Spijker
- Depression Expertise Centre, Pro Persona Mental Health CareNijmegenThe Netherlands
- Behavioral Science InstituteRadboud UniversityNijmegenThe Netherlands
| | - Eric van Exel
- GGZ inGeest Specialized Mental Health CareAmsterdamThe Netherlands
- Department of PsychiatryAmsterdam University Medical CenterAmsterdamThe Netherlands
| | - Hans van Mierlo
- Department of Psychiatry & PsychologySt. Antonius HospitalUtrecht/NieuwegeinThe Netherlands
| | - Dieuwertje de Waardt
- Department of PsychiatryETZ Hospital (Elisabeth‐TweeSteden Ziekenhuis)TilburgThe Netherlands
| | - Martijn Arns
- Research Institute BrainclinicsBrainclinics FoundationNijmegenThe Netherlands
- Faculty of Psychology and NeuroscienceMaastricht UniversityMaastrichtthe Netherlands
- Stanford Brain Stimulation LabStanford UniversityPalo AltoUSA
| | - Indira Tendolkar
- Department of PsychiatryRadboud University Medical CenterNijmegenThe Netherlands
- Donders Institute for Brain Cognition and BehaviorCentre for Medical NeuroscienceNijmegenThe Netherlands
| | - Philip van Eijndhoven
- Department of PsychiatryRadboud University Medical CenterNijmegenThe Netherlands
- Donders Institute for Brain Cognition and BehaviorCentre for Medical NeuroscienceNijmegenThe Netherlands
| | - Ben Wijnen
- Center for Economic Evaluation, Trimbos Institute – Netherlands Institute of Mental Health and AddictionUtrechtThe Netherlands
| |
Collapse
|
5
|
Tsukuda B, Ikeda S, Minami S, Katsura K, Shimizu T, Kame T, Nishida K, Yoshimura M, Kinoshita T. Targeting Method for rTMS for Treating Depression in Japanese Patients: A Comparison of the Standard, F3, and Neuronavigation Approaches. Neuropsychobiology 2024; 83:170-178. [PMID: 39374590 DOI: 10.1159/000541006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 08/15/2024] [Indexed: 10/09/2024]
Abstract
INTRODUCTION The left dorsolateral prefrontal cortex (lDLPFC) is a commonly targeted brain region for repetitive transcranial magnetic stimulation (rTMS) for depression. The lDLPFC has been identified using the "5-cm rule." However, identification of the lDLPFC may deviate from the ideal stimulation site localized by neuronavigation. Therefore, we aimed to compare this method with other methods and examine the relationship between deviation from the ideal stimulation site and treatment effects. While most existing studies have focused on participants of European descent, this study focused on Japanese participants. METHODS The study participants were 16 patients who underwent rTMS and had the stimulus location identified using the 5-cm method. The lDLPFC was identified by the F3 electrode position and neuronavigation in addition to the 5-cm rule, and these locations were compared. We then performed a correlation analysis of the distance between the sites identified by the 5-cm method and by neuronavigation, as well as changes in scores on the 17-item Hamilton Depression Scale (HAMD-17). RESULTS The lDLPFC identified by the F3 site and neuronavigation was approximately 3 cm more anterolateral than that identified by the 5-cm method. A significant correlation was found between the distance between the sites identified by the 5-cm method and neuronavigation and the rate of change in HAMD-17 scores. CONCLUSION The ideal stimulation site may be approximately 3 cm anterior to the site identified by the 5-cm method, and stimulation of the F3 site may be a valid alternative to the 5-cm method.
Collapse
Affiliation(s)
- Banri Tsukuda
- Department of Neuropsychiatry, Faculty of Medicine, Kansai Medical University, Moriguchi, Japan,
| | - Shunichiro Ikeda
- Department of Neuropsychiatry, Faculty of Medicine, Kansai Medical University, Moriguchi, Japan
| | - Shota Minami
- Department of Neuropsychiatry, Faculty of Medicine, Kansai Medical University, Moriguchi, Japan
| | - Koji Katsura
- Department of Neuropsychiatry, Faculty of Medicine, Kansai Medical University, Moriguchi, Japan
| | - Toshiyuki Shimizu
- Department of Neuropsychiatry, Faculty of Medicine, Kansai Medical University, Moriguchi, Japan
| | - Tomohide Kame
- Department of Neuropsychiatry, Faculty of Medicine, Kansai Medical University, Moriguchi, Japan
| | - Keiichiro Nishida
- Department of Neuropsychiatry, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Masafumi Yoshimura
- Department of Occupational Therapy, Faculty of Rehabilitation, Kansai Medical University, Hirakata, Japan
- Department of Neuropsychiatry, Kansai Medical University Medical Center, Moriguchi, Japan
| | - Toshihiko Kinoshita
- Department of Neuropsychiatry, Faculty of Medicine, Kansai Medical University, Moriguchi, Japan
| |
Collapse
|
6
|
Trapp NT, Barbour T, Kritzer MD, Pottanat R, Carreon D, Chen L, Brown J, Siddiqi S. Defining a Neurostimulation-Focused Subspecialty: Perspectives Inspired by a Debate at the 2023 Clinical TMS Society Annual Meeting. ACADEMIC PSYCHIATRY : THE JOURNAL OF THE AMERICAN ASSOCIATION OF DIRECTORS OF PSYCHIATRIC RESIDENCY TRAINING AND THE ASSOCIATION FOR ACADEMIC PSYCHIATRY 2024; 48:463-470. [PMID: 39148002 DOI: 10.1007/s40596-024-02025-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/04/2024] [Indexed: 08/17/2024]
Affiliation(s)
| | | | | | | | | | - Leo Chen
- Monash University, Melbourne, Victoria, Australia
| | | | | |
Collapse
|
7
|
Winninge M, Cernvall M, Persson J, Bodén R. Early symptom improvement and other clinical predictors of response to repetitive transcranial magnetic stimulation for depression. J Affect Disord 2024; 361:383-389. [PMID: 38897300 DOI: 10.1016/j.jad.2024.06.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/01/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) is a rapidly emerging treatment for depression, but outcome prediction is still a challenge. This study aimed to identify predictors of response to rTMS among baseline clinical factors and early symptomatic improvements. METHODS This cohort study comprised 136 patients with a unipolar or bipolar depressive episode referred for clinical intermittent theta-burst stimulation or right-sided 1 Hz rTMS at the Uppsala Brain Stimulation Unit. The co-primary outcomes used for logistic regression were response, defined as ≥50 % reduction of Montgomery and Åsberg Depression Rating Scale Self-assessment (MADRS-S) total score, and 1-2 points on the Clinical Global Impression Improvement (CGI-I) scale. Early improvement was defined as ≥20 % reduction in the MADRS-S total score, or ≥ 1 point reduction in each MADRS-S item, after two weeks of treatment. RESULTS The response rates were 21 % for MADRS-S and 45 % for CGI-I. A depressive episode >24 months had lower odds for MADRS-S response compared to ≤12 months. Early improvement of the MADRS-S total score predicted CGI-I response (95 % CI = 1.35-9.47, p = 0.011), Initiative6 predicted MADRS-S response (95 % CI = 1.08-9.05, p = 0.035), and Emotional involvement7 predicted CGI-I response (95 % CI = 1.03-8.66, p = 0.044). LIMITATIONS No adjustment for concurrent medication. CONCLUSIONS A depressive episode ≤12 months and early improvement in overall depressive symptoms, as well as the individual items, Initiative6 and Emotional involvement7, predicted subsequent rTMS response in a naturalistic sample of depressed patients. This could facilitate the early identification of patients who will benefit from further rTMS sessions.
Collapse
Affiliation(s)
- Moa Winninge
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Martin Cernvall
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden; Department of Psychology, Division of Clinical Psychology, Uppsala University, Uppsala, Sweden
| | - Jonas Persson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Robert Bodén
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
8
|
Dalhuisen I, van Oostrom I, Spijker J, Wijnen B, van Exel E, van Mierlo H, de Waardt D, Arns M, Tendolkar I, van Eijndhoven P. rTMS as a Next Step in Antidepressant Nonresponders: A Randomized Comparison With Current Antidepressant Treatment Approaches. Am J Psychiatry 2024; 181:806-814. [PMID: 39108161 DOI: 10.1176/appi.ajp.20230556] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/02/2024]
Abstract
OBJECTIVE Although repetitive transcranial magnetic stimulation (rTMS) is an effective treatment for depression, little is known about the comparative effectiveness of rTMS and other treatment options, such as antidepressants. In this multicenter randomized controlled trial, rTMS was compared with the next pharmacological treatment step in patients with treatment-resistant depression. METHODS Patients with unipolar nonpsychotic depression (N=89) with an inadequate response to at least two treatment trials were randomized to treatment with rTMS or to a switch of antidepressants, both in combination with psychotherapy. Treatment duration was 8 weeks and consisted of either 25 high-frequency rTMS sessions to the left dorsolateral prefrontal cortex or a switch of antidepressant medication following the Dutch treatment algorithm. The primary outcome was change in depression severity based on the Hamilton Depression Rating Scale (HAM-D). Secondary outcomes were response and remission rates as well as change in symptom dimensions (anhedonia, anxiety, sleep, rumination, and cognitive reactivity). Finally, expectations regarding treatment were assessed. RESULTS rTMS resulted in a significantly larger reduction in depressive symptoms than medication, which was also reflected in higher response (37.5% vs. 14.6%) and remission (27.1% vs. 4.9%) rates. A larger decrease in symptoms of anxiety and anhedonia was observed after rTMS compared with a switch in antidepressants, and no difference from the medication group was seen for symptom reductions in rumination, cognitive reactivity, and sleep disorders. Expectations regarding treatment correlated with changes in HAM-D scores. CONCLUSIONS In a sample of patients with moderately treatment-resistant depression, rTMS was more effective in reducing depressive symptoms than a switch of antidepressant medication. In addition, the findings suggest that the choice of treatment may be guided by specific symptom dimensions.
Collapse
Affiliation(s)
- Iris Dalhuisen
- Department of Psychiatry, Radboud University Medical Center, and Donders Institute for Brain, Cognition, and Behavior, Centre for Medical Neuroscience, Nijmegen, the Netherlands (Dalhuisen, Tendolkar, van Eijndhoven); Neurocare Clinics, Nijmegen, the Netherlands (van Oostrom); Depression Expertise Centre, Pro Persona Mental Health Care, and Behavioral Science Institute, Radboud University, Nijmegen, the Netherlands (Spijker); Center for Economic Evaluation, Trimbos Institute, Netherlands Institute of Mental Health and Addiction, Utrecht, the Netherlands (Wijnen); GGZ inGeest Specialized Mental Health Care, and Department of Psychiatry, Amsterdam University Medical Center, Amsterdam (van Exel); Department of Psychiatry and Psychology, St. Antonius Hospital, Utrecht/Nieuwegein, the Netherlands (van Mierlo); Department of Psychiatry, Elisabeth-TweeSteden Ziekenhuis Hospital, Tilburg, the Netherlands (de Waardt); Research Institute Brainclinics, Brainclinics Foundation, Nijmegen, the Netherlands (Arns); Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands (Arns)
| | - Iris van Oostrom
- Department of Psychiatry, Radboud University Medical Center, and Donders Institute for Brain, Cognition, and Behavior, Centre for Medical Neuroscience, Nijmegen, the Netherlands (Dalhuisen, Tendolkar, van Eijndhoven); Neurocare Clinics, Nijmegen, the Netherlands (van Oostrom); Depression Expertise Centre, Pro Persona Mental Health Care, and Behavioral Science Institute, Radboud University, Nijmegen, the Netherlands (Spijker); Center for Economic Evaluation, Trimbos Institute, Netherlands Institute of Mental Health and Addiction, Utrecht, the Netherlands (Wijnen); GGZ inGeest Specialized Mental Health Care, and Department of Psychiatry, Amsterdam University Medical Center, Amsterdam (van Exel); Department of Psychiatry and Psychology, St. Antonius Hospital, Utrecht/Nieuwegein, the Netherlands (van Mierlo); Department of Psychiatry, Elisabeth-TweeSteden Ziekenhuis Hospital, Tilburg, the Netherlands (de Waardt); Research Institute Brainclinics, Brainclinics Foundation, Nijmegen, the Netherlands (Arns); Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands (Arns)
| | - Jan Spijker
- Department of Psychiatry, Radboud University Medical Center, and Donders Institute for Brain, Cognition, and Behavior, Centre for Medical Neuroscience, Nijmegen, the Netherlands (Dalhuisen, Tendolkar, van Eijndhoven); Neurocare Clinics, Nijmegen, the Netherlands (van Oostrom); Depression Expertise Centre, Pro Persona Mental Health Care, and Behavioral Science Institute, Radboud University, Nijmegen, the Netherlands (Spijker); Center for Economic Evaluation, Trimbos Institute, Netherlands Institute of Mental Health and Addiction, Utrecht, the Netherlands (Wijnen); GGZ inGeest Specialized Mental Health Care, and Department of Psychiatry, Amsterdam University Medical Center, Amsterdam (van Exel); Department of Psychiatry and Psychology, St. Antonius Hospital, Utrecht/Nieuwegein, the Netherlands (van Mierlo); Department of Psychiatry, Elisabeth-TweeSteden Ziekenhuis Hospital, Tilburg, the Netherlands (de Waardt); Research Institute Brainclinics, Brainclinics Foundation, Nijmegen, the Netherlands (Arns); Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands (Arns)
| | - Ben Wijnen
- Department of Psychiatry, Radboud University Medical Center, and Donders Institute for Brain, Cognition, and Behavior, Centre for Medical Neuroscience, Nijmegen, the Netherlands (Dalhuisen, Tendolkar, van Eijndhoven); Neurocare Clinics, Nijmegen, the Netherlands (van Oostrom); Depression Expertise Centre, Pro Persona Mental Health Care, and Behavioral Science Institute, Radboud University, Nijmegen, the Netherlands (Spijker); Center for Economic Evaluation, Trimbos Institute, Netherlands Institute of Mental Health and Addiction, Utrecht, the Netherlands (Wijnen); GGZ inGeest Specialized Mental Health Care, and Department of Psychiatry, Amsterdam University Medical Center, Amsterdam (van Exel); Department of Psychiatry and Psychology, St. Antonius Hospital, Utrecht/Nieuwegein, the Netherlands (van Mierlo); Department of Psychiatry, Elisabeth-TweeSteden Ziekenhuis Hospital, Tilburg, the Netherlands (de Waardt); Research Institute Brainclinics, Brainclinics Foundation, Nijmegen, the Netherlands (Arns); Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands (Arns)
| | - Eric van Exel
- Department of Psychiatry, Radboud University Medical Center, and Donders Institute for Brain, Cognition, and Behavior, Centre for Medical Neuroscience, Nijmegen, the Netherlands (Dalhuisen, Tendolkar, van Eijndhoven); Neurocare Clinics, Nijmegen, the Netherlands (van Oostrom); Depression Expertise Centre, Pro Persona Mental Health Care, and Behavioral Science Institute, Radboud University, Nijmegen, the Netherlands (Spijker); Center for Economic Evaluation, Trimbos Institute, Netherlands Institute of Mental Health and Addiction, Utrecht, the Netherlands (Wijnen); GGZ inGeest Specialized Mental Health Care, and Department of Psychiatry, Amsterdam University Medical Center, Amsterdam (van Exel); Department of Psychiatry and Psychology, St. Antonius Hospital, Utrecht/Nieuwegein, the Netherlands (van Mierlo); Department of Psychiatry, Elisabeth-TweeSteden Ziekenhuis Hospital, Tilburg, the Netherlands (de Waardt); Research Institute Brainclinics, Brainclinics Foundation, Nijmegen, the Netherlands (Arns); Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands (Arns)
| | - Hans van Mierlo
- Department of Psychiatry, Radboud University Medical Center, and Donders Institute for Brain, Cognition, and Behavior, Centre for Medical Neuroscience, Nijmegen, the Netherlands (Dalhuisen, Tendolkar, van Eijndhoven); Neurocare Clinics, Nijmegen, the Netherlands (van Oostrom); Depression Expertise Centre, Pro Persona Mental Health Care, and Behavioral Science Institute, Radboud University, Nijmegen, the Netherlands (Spijker); Center for Economic Evaluation, Trimbos Institute, Netherlands Institute of Mental Health and Addiction, Utrecht, the Netherlands (Wijnen); GGZ inGeest Specialized Mental Health Care, and Department of Psychiatry, Amsterdam University Medical Center, Amsterdam (van Exel); Department of Psychiatry and Psychology, St. Antonius Hospital, Utrecht/Nieuwegein, the Netherlands (van Mierlo); Department of Psychiatry, Elisabeth-TweeSteden Ziekenhuis Hospital, Tilburg, the Netherlands (de Waardt); Research Institute Brainclinics, Brainclinics Foundation, Nijmegen, the Netherlands (Arns); Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands (Arns)
| | - Dieuwertje de Waardt
- Department of Psychiatry, Radboud University Medical Center, and Donders Institute for Brain, Cognition, and Behavior, Centre for Medical Neuroscience, Nijmegen, the Netherlands (Dalhuisen, Tendolkar, van Eijndhoven); Neurocare Clinics, Nijmegen, the Netherlands (van Oostrom); Depression Expertise Centre, Pro Persona Mental Health Care, and Behavioral Science Institute, Radboud University, Nijmegen, the Netherlands (Spijker); Center for Economic Evaluation, Trimbos Institute, Netherlands Institute of Mental Health and Addiction, Utrecht, the Netherlands (Wijnen); GGZ inGeest Specialized Mental Health Care, and Department of Psychiatry, Amsterdam University Medical Center, Amsterdam (van Exel); Department of Psychiatry and Psychology, St. Antonius Hospital, Utrecht/Nieuwegein, the Netherlands (van Mierlo); Department of Psychiatry, Elisabeth-TweeSteden Ziekenhuis Hospital, Tilburg, the Netherlands (de Waardt); Research Institute Brainclinics, Brainclinics Foundation, Nijmegen, the Netherlands (Arns); Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands (Arns)
| | - Martijn Arns
- Department of Psychiatry, Radboud University Medical Center, and Donders Institute for Brain, Cognition, and Behavior, Centre for Medical Neuroscience, Nijmegen, the Netherlands (Dalhuisen, Tendolkar, van Eijndhoven); Neurocare Clinics, Nijmegen, the Netherlands (van Oostrom); Depression Expertise Centre, Pro Persona Mental Health Care, and Behavioral Science Institute, Radboud University, Nijmegen, the Netherlands (Spijker); Center for Economic Evaluation, Trimbos Institute, Netherlands Institute of Mental Health and Addiction, Utrecht, the Netherlands (Wijnen); GGZ inGeest Specialized Mental Health Care, and Department of Psychiatry, Amsterdam University Medical Center, Amsterdam (van Exel); Department of Psychiatry and Psychology, St. Antonius Hospital, Utrecht/Nieuwegein, the Netherlands (van Mierlo); Department of Psychiatry, Elisabeth-TweeSteden Ziekenhuis Hospital, Tilburg, the Netherlands (de Waardt); Research Institute Brainclinics, Brainclinics Foundation, Nijmegen, the Netherlands (Arns); Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands (Arns)
| | - Indira Tendolkar
- Department of Psychiatry, Radboud University Medical Center, and Donders Institute for Brain, Cognition, and Behavior, Centre for Medical Neuroscience, Nijmegen, the Netherlands (Dalhuisen, Tendolkar, van Eijndhoven); Neurocare Clinics, Nijmegen, the Netherlands (van Oostrom); Depression Expertise Centre, Pro Persona Mental Health Care, and Behavioral Science Institute, Radboud University, Nijmegen, the Netherlands (Spijker); Center for Economic Evaluation, Trimbos Institute, Netherlands Institute of Mental Health and Addiction, Utrecht, the Netherlands (Wijnen); GGZ inGeest Specialized Mental Health Care, and Department of Psychiatry, Amsterdam University Medical Center, Amsterdam (van Exel); Department of Psychiatry and Psychology, St. Antonius Hospital, Utrecht/Nieuwegein, the Netherlands (van Mierlo); Department of Psychiatry, Elisabeth-TweeSteden Ziekenhuis Hospital, Tilburg, the Netherlands (de Waardt); Research Institute Brainclinics, Brainclinics Foundation, Nijmegen, the Netherlands (Arns); Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands (Arns)
| | - Philip van Eijndhoven
- Department of Psychiatry, Radboud University Medical Center, and Donders Institute for Brain, Cognition, and Behavior, Centre for Medical Neuroscience, Nijmegen, the Netherlands (Dalhuisen, Tendolkar, van Eijndhoven); Neurocare Clinics, Nijmegen, the Netherlands (van Oostrom); Depression Expertise Centre, Pro Persona Mental Health Care, and Behavioral Science Institute, Radboud University, Nijmegen, the Netherlands (Spijker); Center for Economic Evaluation, Trimbos Institute, Netherlands Institute of Mental Health and Addiction, Utrecht, the Netherlands (Wijnen); GGZ inGeest Specialized Mental Health Care, and Department of Psychiatry, Amsterdam University Medical Center, Amsterdam (van Exel); Department of Psychiatry and Psychology, St. Antonius Hospital, Utrecht/Nieuwegein, the Netherlands (van Mierlo); Department of Psychiatry, Elisabeth-TweeSteden Ziekenhuis Hospital, Tilburg, the Netherlands (de Waardt); Research Institute Brainclinics, Brainclinics Foundation, Nijmegen, the Netherlands (Arns); Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands (Arns)
| |
Collapse
|
9
|
Yang J, Tang T, Gui Q, Zhang K, Zhang A, Wang T, Yang C, Liu X, Sun N. Status and trends of TMS research in depressive disorder: a bibliometric and visual analysis. Front Psychiatry 2024; 15:1432792. [PMID: 39176225 PMCID: PMC11338766 DOI: 10.3389/fpsyt.2024.1432792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/22/2024] [Indexed: 08/24/2024] Open
Abstract
Background Depression is a chronic psychiatric condition that places significant burdens on individuals, families, and societies. The rapid evolution of non-invasive brain stimulation techniques has facilitated the extensive clinical use of Transcranial Magnetic Stimulation (TMS) for depression treatment. In light of the substantial recent increase in related research, this study aims to employ bibliometric methods to systematically review the global research status and trends of TMS in depression, providing a reference and guiding future studies in this field. Methods We retrieved literature on TMS and depression published between 1999 and 2023 from the Science Citation Index Expanded (SCIE) and Social Science Citation Index (SSCI) databases within the Web of Science Core Collection (WoSCC). Bibliometric analysis was performed using VOSviewer and CiteSpace software to analyze data on countries, institutions, authors, journals, keywords, citations, and to generate visual maps. Results A total of 5,046 publications were extracted covering the period from 1999 to 2023 in the field of TMS and depression. The publication output exhibited an overall exponential growth trend. These articles were published across 804 different journals, BRAIN STIMULATION is the platform that receives the most articles in this area. The literature involved contributions from over 16,000 authors affiliated with 4,573 institutions across 77 countries. The United States contributed the largest number of publications, with the University of Toronto and Daskalakis ZJ leading as the most prolific institution and author, respectively. Keywords such as "Default Mode Network," "Functional Connectivity," and "Theta Burst" have recently garnered significant attention. Research in this field primarily focuses on TMS stimulation patterns, their therapeutic efficacy and safety, brain region and network mechanisms under combined brain imaging technologies, and the modulation effects of TMS on brain-derived neurotrophic factor (BDNF) and neurotransmitter levels. Conclusion In recent years, TMS therapy has demonstrated extensive potential applications and significant implications for the treatment of depression. Research in the field of TMS for depression has achieved notable progress. Particularly, the development of novel TMS stimulation patterns and the integration of TMS therapy with multimodal techniques and machine learning algorithms for precision treatment and investigation of brain network mechanisms have emerged as current research hotspots.
Collapse
Affiliation(s)
- Jun Yang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Tingting Tang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Qianqian Gui
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Kun Zhang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Aixia Zhang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Ting Wang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Chunxia Yang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaodong Liu
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Ning Sun
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
10
|
Hsu TW, Yeh TC, Kao YC, Thompson T, Brunoni AR, Carvalho AF, Hsu CW, Tu YK, Liang CS. The dose-effect relationship of six stimulation parameters with rTMS over left DLPFC on treatment-resistant depression: A systematic review and meta-analysis. Neurosci Biobehav Rev 2024; 162:105704. [PMID: 38723735 DOI: 10.1016/j.neubiorev.2024.105704] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/17/2024] [Accepted: 05/01/2024] [Indexed: 05/20/2024]
Abstract
This study aimed to evaluate the association of the six parameters, namely stimulation intensity, stimulation frequency, pulses per session, treatment duration, number of sessions, and total number of pulses with the efficacy of conventional transcranial magnetic stimulation (rTMS) over left dorsolateral prefrontal cortex for patients with treatment-resistant depression (TRD). A random-effects dose-response meta-analysis of blinded randomized controlled trials (RCTs) involving 2391 participants were conducted to examine the dose-effect relationship of six stimulation parameters. Any of the six parameters significantly individually predicted proportion of variance in efficacy: pulses per session (R²=52.7%), treatment duration (R²=51.2%), total sessions (R²=50.9%), frequency (R²=49.6%), total pulses (R²=49.5%), and intensity (R²= 40.4%). Besides, we identified frequency as a potential parameter interacting with the other five parameters, resulting in a significant increase in variance(ΔR2) ranging from 5.0% to 16.7%. Finally, we found that RCTs using frequency > 10 Hz compared to those of 10 Hz showed better dose-effect relationships. We conclude that the six stimulation parameters significantly predict the dose-effect relationship of conventional rTMS on TRD. Besides, higher stimulation frequency, higher stimulation intensity, and adequate number of pulses were associated with treatment efficacy.
Collapse
Affiliation(s)
- Tien-Wei Hsu
- Department of Psychiatry, E-DA Dachang Hospital, I-Shou University, Kaohsiung, Taiwan; Department of Psychaitry, E-DA Hospital, I-Shou University, Kaohsiung, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ta-Chuan Yeh
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Centre, Taipei, Taiwan; Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
| | - Yu-Chen Kao
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Centre, Taipei, Taiwan; Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, Taipei, Taiwan
| | - Trevor Thompson
- Centre for Chronic Illness and Ageing, University of Greenwich, London, UK
| | - Andre R Brunoni
- Service of Interdisciplinary Neuromodulation, Laboratory of Neurosciences (LIM-27), Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-010, Brazil; Service of Electroconvulsive Therapy, Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-010, Brazil
| | - Andre F Carvalho
- IMPACT (Innovation in Mental and Physical Health and Clinical Treatment) Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, VIC, Australia
| | - Chih-Wei Hsu
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yu-Kang Tu
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan; Institute of Health Data Analytics & Statistics, College of Public Health, National Taiwan University, Taiwan
| | - Chih-Sung Liang
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Centre, Taipei, Taiwan; Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, Taipei, Taiwan.
| |
Collapse
|
11
|
Xia Z, Yang PY, Chen SL, Zhou HY, Yan C. Uncovering the power of neurofeedback: a meta-analysis of its effectiveness in treating major depressive disorders. Cereb Cortex 2024; 34:bhae252. [PMID: 38889442 DOI: 10.1093/cercor/bhae252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/25/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Neurofeedback, a non-invasive intervention, has been increasingly used as a potential treatment for major depressive disorders. However, the effectiveness of neurofeedback in alleviating depressive symptoms remains uncertain. To address this gap, we conducted a comprehensive meta-analysis to evaluate the efficacy of neurofeedback as a treatment for major depressive disorders. We conducted a comprehensive meta-analysis of 22 studies investigating the effects of neurofeedback interventions on depression symptoms, neurophysiological outcomes, and neuropsychological function. Our analysis included the calculation of Hedges' g effect sizes and explored various moderators like intervention settings, study designs, and demographics. Our findings revealed that neurofeedback intervention had a significant impact on depression symptoms (Hedges' g = -0.600) and neurophysiological outcomes (Hedges' g = -0.726). We also observed a moderate effect size for neurofeedback intervention on neuropsychological function (Hedges' g = -0.418). As expected, we observed that longer intervention length was associated with better outcomes for depressive symptoms (β = -4.36, P < 0.001) and neuropsychological function (β = -2.89, P = 0.003). Surprisingly, we found that shorter neurofeedback sessions were associated with improvements in neurophysiological outcomes (β = 3.34, P < 0.001). Our meta-analysis provides compelling evidence that neurofeedback holds promising potential as a non-pharmacological intervention option for effectively improving depressive symptoms, neurophysiological outcomes, and neuropsychological function in individuals with major depressive disorders.
Collapse
Affiliation(s)
- Zheng Xia
- Key Laboratory of Brain Functional Genomics (MOE&STCSM), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
- Shanghai Changning Mental Health Center, 299 Xiehe Road, Shanghai 200335, China
| | - Peng-Yuan Yang
- Department of Methodology and Statistics, Faculty of Behavioral and Social Sciences, Tilburg University, Warandelaan 2, 5037 AB, Tilburg, The Netherlands
| | - Si-Lu Chen
- Shanghai Changning Mental Health Center, 299 Xiehe Road, Shanghai 200335, China
| | - Han-Yu Zhou
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Chao Yan
- Key Laboratory of Brain Functional Genomics (MOE&STCSM), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
- Shanghai Changning Mental Health Center, 299 Xiehe Road, Shanghai 200335, China
- Key Laboratory of Philosophy and Social Science of Anhui Province on Adolescent Mental Health and Crisis Intelligence Intervention, Hefei Normal University, 1688 Lianhua Road, Hefei 230601, China
| |
Collapse
|
12
|
Meinke C, Lueken U, Walter H, Hilbert K. Predicting treatment outcome based on resting-state functional connectivity in internalizing mental disorders: A systematic review and meta-analysis. Neurosci Biobehav Rev 2024; 160:105640. [PMID: 38548002 DOI: 10.1016/j.neubiorev.2024.105640] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 02/29/2024] [Accepted: 03/21/2024] [Indexed: 04/07/2024]
Abstract
Predicting treatment outcome in internalizing mental disorders prior to treatment initiation is pivotal for precision mental healthcare. In this regard, resting-state functional connectivity (rs-FC) and machine learning have often shown promising prediction accuracies. This systematic review and meta-analysis evaluates these studies, considering their risk of bias through the Prediction Model Study Risk of Bias Assessment Tool (PROBAST). We examined the predictive performance of features derived from rs-FC, identified features with the highest predictive value, and assessed the employed machine learning pipelines. We searched the electronic databases Scopus, PubMed and PsycINFO on the 12th of December 2022, which resulted in 13 included studies. The mean balanced accuracy for predicting treatment outcome was 77% (95% CI: [72%- 83%]). rs-FC of the dorsolateral prefrontal cortex had high predictive value in most studies. However, a high risk of bias was identified in all studies, compromising interpretability. Methodological recommendations are provided based on a comprehensive exploration of the studies' machine learning pipelines, and potential fruitful developments are discussed.
Collapse
Affiliation(s)
- Charlotte Meinke
- Department of Psychology, Humboldt-Universität zu Berlin, Germany.
| | - Ulrike Lueken
- Department of Psychology, Humboldt-Universität zu Berlin, Germany; German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Germany.
| | - Henrik Walter
- Charité Universtätsmedizin Berlin, corporate member of FU Berlin and Humboldt Universität zu Berlin, Department of Psychiatrie and Psychotherapy, CCM, Germany.
| | - Kevin Hilbert
- Department of Psychology, Humboldt-Universität zu Berlin, Germany; Department of Psychology, Health and Medical University Erfurt, Germany.
| |
Collapse
|
13
|
Ikawa H, Osawa R, Takeda Y, Sato A, Mizuno H, Noda Y. Real-world retrospective study of repetitive transcranial magnetic stimulation (TMS) treatment for bipolar and unipolar depression using TMS registry data in Tokyo. Heliyon 2024; 10:e27288. [PMID: 38495204 PMCID: PMC10940930 DOI: 10.1016/j.heliyon.2024.e27288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/12/2024] [Accepted: 02/27/2024] [Indexed: 03/19/2024] Open
Abstract
Despite the prevalence of empirical practice, evidence supporting the use of repetitive transcranial magnetic stimulation (rTMS) in treating bipolar depression (BD) is sparse compared to that for unipolar depression. Therefore, this study aimed to conduct a retrospective observational analysis using TMS registry data to compare the efficacy of rTMS treatment for BD and unipolar depression. Data from 20 patients diagnosed with unipolar and BD were retrospectively extracted from the TMS registry to ensure age and sex matching. The primary outcomes of this registry study were measured using the 21-item Hamilton Depression Rating Scale (HAM-D21) and Montgomery-Åsberg Depression Rating Scale (MADRS). Analysis did not reveal significant differences between the two groups in terms of depression severity, motor threshold, or stimulus intensity at baseline. Similarly, no significant differences were observed in absolute or relative changes in the total HAM-D21 and MADRS scores. Furthermore, the response and remission rates following rTMS treatment did not differ significantly between groups. The only adverse event reported in this study was scalp pain at the stimulation site; however, the incidence and severity were not significantly different between the groups. In conclusion, this retrospective study, using real-world TMS registry data, suggests that rTMS treatment for BD could be as effective as that for unipolar depression. These findings underscore the need for further validation in prospective randomized controlled trials with larger sample sizes.
Collapse
Affiliation(s)
| | | | | | | | | | - Yoshihiro Noda
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
14
|
Conway CR, Aaronson ST, Sackeim HA, Duffy W, Stedman M, Quevedo J, Allen RM, Riva-Posse P, Berger MA, Alva G, Malik MA, Dunner DL, Cichowicz I, Luing H, Zajecka J, Nahas Z, Mickey BJ, Kablinger AS, Kriedt CL, Bunker MT, Lee YCL, Shy O, Majewski S, Olin B, Tran Q, Rush AJ. Clinical characteristics and treatment exposure of patients with marked treatment-resistant unipolar major depressive disorder: A RECOVER trial report. Brain Stimul 2024; 17:448-459. [PMID: 38574853 DOI: 10.1016/j.brs.2024.03.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND RECOVER is a randomized sham-controlled trial of vagus nerve stimulation and the largest such trial conducted with a psychiatric neuromodulation intervention. OBJECTIVE To describe pre-implantation baseline clinical characteristics and treatment history of patients with unipolar, major depressive disorder (MDD), overall and as a function of exposure to interventional psychiatric treatments (INTs), including electroconvulsive therapy, transcranial magnetic stimulation, and esketamine. METHODS Medical, psychiatric, and treatment records were reviewed by study investigators and an independent Study Eligibility Committee prior to study qualification. Clinical characteristics and treatment history (using Antidepressant Treatment History [Short] Form) were compared in those qualified (N = 493) versus not qualified (N = 228) for RECOVER, and among the qualified group as a function of exposure to INTs during the current major depressive episode (MDE). RESULTS Unipolar MDD patients who qualified for RECOVER had marked TRD (median of 11.0 lifetime failed antidepressant treatments), severe disability (median WHODAS score of 50.0), and high rate of baseline suicidality (77% suicidal ideation, 40% previous suicide attempts). Overall, 71% had received at least one INT. Compared to the no INT group, INT recipients were younger and more severely depressed (QIDS-C, QIDS-SR), had greater suicidal ideation, earlier diagnosis of MDD, and failed more antidepressant medication trials. CONCLUSIONS RECOVER-qualified unipolar patients had marked TRD and marked treatment resistance with most failing one or more prior INTs. Treatment with ≥1 INTs in the current MDE was associated with earlier age of MDD onset, more severe clinical presentation, and greater treatment resistance relative to patients without a history of INT. TRIAL REGISTRATION ClinicalTrials.gov Identifier NCT03887715.
Collapse
Affiliation(s)
- Charles R Conway
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA.
| | - Scott T Aaronson
- Department of Clinical Research, Sheppard Pratt Health System, Baltimore, MD, USA
| | - Harold A Sackeim
- Departments of Psychiatry and Radiology, Columbia University, New York, NY, USA
| | | | | | - João Quevedo
- Center for Interventional Psychiatry, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX, USA
| | | | - Patricio Riva-Posse
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Gustavo Alva
- ATP Clinical Research, Senior Brain Health, Hoag Hospital, Newport Beach, CA and Department of Psychiatry and Neuroscience, University of California, Riverside, CA, USA
| | | | - David L Dunner
- Center for Anxiety and Depression, Mercer Island, WA, USA
| | | | | | - John Zajecka
- Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL, USA; Psychiatric Medicine Associates, LLC, Skokie, IL, USA
| | - Ziad Nahas
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Brian J Mickey
- Department of Psychiatry, Huntsman Mental Health Institute, University of Utah, Salt Lake City, UT, USA
| | - Anita S Kablinger
- Department of Psychiatry and Behavioral Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| | - Christopher L Kriedt
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Mark T Bunker
- LivaNova PLC (or a Subsidiary), London, Great Britain, United Kingdom
| | | | - Olivia Shy
- LivaNova PLC (or a Subsidiary), London, Great Britain, United Kingdom
| | - Shannon Majewski
- LivaNova PLC (or a Subsidiary), London, Great Britain, United Kingdom
| | - Bryan Olin
- LivaNova PLC (or a Subsidiary), London, Great Britain, United Kingdom
| | - Quyen Tran
- LivaNova PLC (or a Subsidiary), London, Great Britain, United Kingdom
| | - A John Rush
- Duke-NUS Medical School, Singapore; Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| |
Collapse
|
15
|
Hickson R, Simonsen MW, Miller KJ, Madore MR. Durability of deep transcranial magnetic stimulation for veterans with treatment resistant depression with comorbid suicide risk and PTSD symptoms. Psychiatry Res 2024; 332:115690. [PMID: 38183924 DOI: 10.1016/j.psychres.2023.115690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/08/2024]
Abstract
Evidence supports transcranial magnetic stimulation (TMS) as an effective treatment for symptoms of depression and PTSD; however, there has been limited investigation into the durability of symptoms reduction. The Hampton Veterans Affairs Medical Center's (HVAMC) rTMS clinic used H-coil for dTMS for Veterans with treatment-resistant depression and tracked symptomology at multiple times points up to six months post-treatment. Veterans underwent 30 session of dTMS treatment using the Hesed coil (H1 coil). The PHQ-9, PCL-5, and BSS were administered to Veterans at four time points: pretreatment, post-treatment, three months after treatment, and six months after treatment. In aggregate, there were clinically significant reductions in symptoms of depression (43.47%), PTSD (44.14%) and suicidal ideation (54.02%) at the six month follow-up relative to pretreatment. Results provide evidence of the impact and durability of dTMS on symptoms of MDD, PTSD, and suicidal ideation among Veterans with treatment-resistant depression.
Collapse
Affiliation(s)
- Robert Hickson
- Department of Psychology, Palo Alto University, Palo Alto, CA, United States; VA Palo Alto Health Care System Sierra Pacific Mental Illness Research Education Clinical Center, Palo Alto, CA, United States
| | - Max W Simonsen
- Hampton VA Medical Center, Hampton, VA, United States; Department of Psychiatry, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Kenneth J Miller
- Hampton VA Medical Center, Hampton, VA, United States; Department of Psychiatry, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Michelle R Madore
- VA Palo Alto Health Care System Sierra Pacific Mental Illness Research Education Clinical Center, Palo Alto, CA, United States; Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Stanford, CA, United States.
| |
Collapse
|
16
|
Breda V, Freire R. Repetitive Transcranial Magnetic Stimulation (rTMS) in Major Depression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1456:145-159. [PMID: 39261428 DOI: 10.1007/978-981-97-4402-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Major depressive disorder (MDD) is a psychiatric disorder with several effective therapeutic approaches, being antidepressants and psychotherapies the first-line treatments. Nonetheless, due to side effects, limited efficacy, and contraindications for these treatments, alternative treatment options are required. Neurostimulation is a non-pharmacological and non-psychotherapeutic approach that has been under study for diverse neuropsychiatric conditions in the form of electrical or magnetic stimulation of the brain. Repetitive transcranial magnetic stimulation (rTMS) is a neurostimulation method designed to generate magnetic fields and deliver magnetic pulses to stimulate the brain cortex. The magnetic pulses produce electrical currents in the brain which are not intense enough to provoke seizures, differentiating this method from other forms of neurostimulation that produce seizures. Although the exact rTMS mechanisms of action are not completely understood, rTMS seems to cause its beneficial effects through changes in neuroplasticity. Devices and protocols for rTMS are still evolving, becoming more efficient over time. There are still some challenges to be addressed, including further refinement of parameters (coil/device type, location, intensity, frequency, number of sessions, and duration of treatment); treatment cost and burden for patients; and treatment resistance. However, the efficacy, tolerability, and safety of some rTMS protocols have been demonstrated in different double-blind sham-controlled randomized controlled trials and meta-analyses for treatment-resistant depression.
Collapse
Affiliation(s)
- Vitor Breda
- Department of Psychiatry, Western University, London, ON, Canada
- Victoria Hospital & Children's Hospital, London Health Sciences Centre, London, ON, Canada
| | - Rafael Freire
- Department of Psychiatry and Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada.
- Kingston General Hospital Research Institute, Kingston Health Sciences Centre, Kingston, ON, Canada.
- Laboratory of Panic and Respiration, Institute of Psychiatry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
17
|
Yu T, Chen W, Huo L, Luo X, Wang J, Zhang B. Association between daily dose and efficacy of rTMS over the left dorsolateral prefrontal cortex in depression: A meta-analysis. Psychiatry Res 2023; 325:115260. [PMID: 37229909 DOI: 10.1016/j.psychres.2023.115260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 05/27/2023]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a well-established, safe, and effective brain stimulation technique for depression; however, uniform parameters have not been used in clinical practice. The aim of this study was to identify the parameters that affect rTMS effectiveness and ascertain the range in which that parameter has optimal efficacy. A meta-analysis of sham-controlled trials using rTMS delivered over the left dorsolateral prefrontal cortex (DLPFC) in depression was conducted. In the meta-regression and subgroup analyses, all rTMS stimulation parameters were extracted and their association with efficacy was investigated. Of the 17,800 references, 52 sham-controlled trials were included. Compared to sham controls, our results demonstrated a significant improvement in depressive symptoms at the end of treatment. According to the results of meta-regression, the number of pulses and sessions per day correlated with rTMS efficacy; however, the positioning method, stimulation intensity, frequency, number of treatment days, and total pulses did not. Furthermore, subgroup analysis revealed that the efficacy was correspondingly better in the group with higher daily pulses. In clinical practice, increasing the number of daily pulses and sessions may improve the effectiveness of rTMS.
Collapse
Affiliation(s)
- Tong Yu
- Department of Psychiatry, Guangzhou Medical University, Guangzhou, PR. China; The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, PR. China
| | - Wangni Chen
- Department of Psychiatry, Guangzhou Medical University, Guangzhou, PR. China; The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, PR. China
| | - Lijuan Huo
- Department of Psychiatry, Guangzhou Medical University, Guangzhou, PR. China; The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, PR. China
| | - Xin Luo
- Department of Psychiatry, Guangzhou Medical University, Guangzhou, PR. China; The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, PR. China
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR. China
| | - Bin Zhang
- Tianjin Anding Hospital, Tianjin Medical University, Tianjin, PR. China.
| |
Collapse
|